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1. Introduction

The second run of the LHC is currently in full swing, with more and more data becoming
available for an increased center-of-mass energy1. While the experiments acquire further data to
rediscover and establish the scalar sector of the Standard Model (SM), beyond the Standard Model
(BSM) scenarios need to be further scrutinized.
In this work, we discuss a two Higgs doublet model with a discrete symmetry, which we label
D-symmetry, with transformations defined as:

φS→ φS, φD→−φD, SM→ SM. (1.1)

This discrete symmetry is respected by the Lagrangian and the vacuum. The φS doublet plays the
same role as the corresponding doublet in the SM, providing the SM-like Higgs particle. This
doublet is even under the D symmetry, while the second doublet, φD, is D-odd. This so called inert
or dark doublet contains 4 scalars, two charged and two neutral ones, with the lightest neutral scalar
being a natural DM candidate. This Inert Doublet Model (IDM) was first discussed in [2, 3, 4].
The model was studied in context of discovery at the LHC, both for the Higgs boson discovery
[4, 3] as well as dark matter discovery e.g. in two lepton + MET channel [5, 6]. Other collider
studies and scans of the models parameter space have been presented in [7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17]. Moreover the model offers rich cosmological phenomenology. It was shown
that the Universe evolution to the current Inert phase may lead through one, two or three phase
transitions [18], and especially may lead to a strong enough first-order transition, fulfilling one
of the Sakharov conditions for the baryogenesis [19, 20, 21]. The metastability of the potential
was equally discussed, see [22, 23, 24]. The dark matter arising from IDM is also referred to as
"archetypical WIMP" [25], and thus many astrophysical observations can be reinterpreted in its
context.

In this work, we present updates of the scan presented in [26] (see also [27, 28]) and especially
discuss how they influence the benchmark planes proposed therein. We include updated limits on
direct dark matter detection, as well as the total width and branching ratios of the 125 GeV Higgs.
Our results should be considered as an intermediate step to a full update of our previous work.

We also present some results on the extension of the IDM by a neutral complex singlet with a
complex vacuum expectation value. Here, as in the IDM, the only D-odd field in the model is φD,
while all other fields are D-even:

φS→ φS, φD→−φD, SM fields→ SM fields, χ → χ. (1.2)

This IDMS model, in a constrained version called cIDMS, offers a possibility of a spontaneous
violation of CP, while at the same time retaining the main properties of the IDM, therefore being
in agreement with LHC and astrophysical data [29].

2. The IDM

The scalar sector of IDM consists of two SU(2) doublets of complex scalar fields, φS and φD,

1See e.g. [1].
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with the D-symmetric potential:
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(2.1)

Due to this symmetry the scalar fields in φD do not mix with the SM-like field from φS , and
the lightest particle of the dark sector is stable. After electroweak symmetry breaking (EWSB),
only φS acquires a nonzero vacuum expectation value (v). The dark sector contains 4 new particles:
H, A and H±. We here choose H to denote the dark matter (DM) candidate2.

After EWSB, the model contains a priori seven free parameters. Agreement with the Higgs
boson discovery and electroweak precision observables fixes the SM-like Higgs mass Mh and v,
and we are left with 5 free parameters, which we take as

MH ,MA,MH± ,λ2,λ345, (2.2)

where the λ ’s correspond couplings within the dark sector and to the SM-like Higgs respectively.
In the following, we will use the shortcut λ345 = λ3 +λ4 +λ5.

2.1 Updates on limits on the total width of h, branching ratios, and direct dark matter
detection

The work presented here follows previous work [26] (see also [27, 28]) and introduces updates
on several of the experimental constraints. In particular

• We use an updated constraint on the total width of the SM-like Higgs h, Γh ≤ 13MeV [31];

• We update the limits on the invisible decay of Mh: we take the results presented in [32],
leading to BRh→ inv ≤ 0.16.

• We also use new limits on the branching ratio h → γ γ , taken from [32], and rendering
µ = 1.14+0.19

−0.18, which, in combination with the Standard Model value [15] of BR(h→ γ γ) =

2.270 × 10−3, gives
BR(h → γ γ) ∈ [1.77;3.45]× 10−3 (2.3)

on a two-sigma level, leading to slightly more stringent results than the previous constraint
[26]

BRold (h → γ γ) ∈ [1.76;3.84]× 10−3.

• We also implement an update on direct detection bounds, presented in [33].

• We confront the model agains the newest experimental bounds as implemented in HiggsBounds-5.0.0
[34, 35, 36] and HiggsSignals-2.0.0 [37]. 3

2A priori, any of the new scalars can function as a dark matter candidate. However, we neglect the choice of a
charged dark matter candidate, as these are strongly constrained [30]. Choosing A instead of H changes the meaning of
λ5, but not the overall phenomenology of the model, cf. [26].

3Available from http://higgsbounds.hepforge.org/downloads.html. Note that current releases are beta versions, and
thus should be treated with care.
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We plan to extend our scan in the future, e.g. in the direction presented in [17]. In this note, we
focus on how the above bounds limit the parameter space and benchmark planes presented in [26]
(see also [15]). All other theoretical and experimental constraints follow our scan in [26], and we
refer to this work for more details.

2.1.1 Results

The improved constraint on the total width of Mh cited above does not have any direct conse-
quence for the allowed parameter space. While it is important in an intermediate step, we found
this always to be superseded by constraints from Higgs signal rates, which we implemented using
HiggsSignals. The same holds for the updated value on the branching ratio to invisible par-
ticles. The update on h → γ γ decay rates leads to slightly stronger constraints for MH ≤ Mh

4.
Afterwards the surviving points were also confronted with the most updates results, including
13 TeV analysis as implemented in HiggsBounds-5.0.0 and HiggsSignals-2.0.0, but
showed no additional impact on the allowed parameter space.
On the other hand, the inclusion of new LUX bounds [33] significantly reduces the allowed pa-
rameter space. For illustration, we show the benchmark planes before ([26]) and after the new
constraint has been applied. We do this exemplarily for HA and H H± production cross sections at
a 13 TeV LHC in Figs. 1 and 2, respectively. Implementation of the new direct detection bounds
leads to a significant reduction of valid points in the (MH ;λ345) plane, while still rendering similar
orders of magnitude for the respective production cross sections. For the case where MH ≤ Mh,
the updates on bounds from direct detection mainly play a role in the region where MH ≥ Mh/2,
see Fig. 3. In this case, however, the new limits do not diminish the available parameter space
significantly.

In [26], we also discussed the case of multi-component dark matter scenarios, pointing out
that especially the allowed parameter space for AA pair-production is largely enhanced in such
a scenario. When we apply a strict lower limit on BR(h → γγ) instead of a softer limit using
HiggsSignals, we see that the parameter space is significantly reduced in the low MA/ low λ345

plane, leading to the reduction of available production cross sections by about one to two orders of
magnitude, cf. Fig. 4. As discussed in our previous work, this limit can directly be related to regions
in the (λ3;MH±/Mh) plane, the important parameters in the corresponding BSM contribution in the
IDM, see Fig. 5.

3. The cIDMS

The IDM provides a simple, yet compelling candidate for a DM particle, and in general is in
agreement with experimental data. However, one significant feature is missing from the IDM: an
additional source of CP violation. One possibility of introducing it is by adding a complex field
χ with a complex VEV. This was done in the model called the IDMS: a D-symmetric Two-Higgs
Doublet Model, the IDM, with a complex singlet [29]. As in the IDM, the only D-odd field in the

4Note that in the previous study, we included constraints using HiggsSignals, which corresponds to a global fit
over all signal strength measurements. Limits obtained with a cut on one of these only might therefore render slightly
different results due to the difference in statistical treatment.
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Figure 1: Total production cross section at a 13 TeV collider for HA final states, using old [38] (left) and
new [33] (right) limits from direct detection, in the (MH , λ345) (upper row) and (MH , MA) (lower row) plane.
The new bounds constrain the parameter space significantly.

model is φD, while all other fields are D-even:

D : φS→ φS, φD→−φD, SM fields→ SM fields, χ → χ, (3.1)

The constrained version of the model, called cIDMS, is based on the following potential:
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(3.2)

with all parameters real. The first part of the potential corresponds to the doublet interactions from
Eq. (2.1). New parameters include the mass and interaction terms for the singlet, as well as the
portal interaction with the SM-like doublet φS through Λ1.

In this model a D-odd scalar doublet provides a good DM candidate (the lightest particle
among the D-odd H,A,H± – as in the IDM we chose H to be the lightest), while a complex singlet
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Figure 2: Total production cross section at a 13 TeV collider for H H± final states, using old [38] (left)
and new [33] (right) limits from direct detection, in the (MH , λ345) (upper row) and (MH , MH±) (lower row)
plane. The new bounds constrain the parameter space significantly.

with a non-zero complex VEV, 〈χ〉= weiξ , can introduce additional sources of CP violation. The
physical Higgs spectrum consists of three scalar particles, h1,h2,h3, and one of them (typically the
lightest one, labelled h1) can play the role of the SM-like Higgs particle. In that sense the cIDMS
can be treated as an extension of the IDM, with many features repeated from the IDM. However,
additional Higgs particles can influence Higgs and DM phenomenology.

There are two phenomenolgically interesting cases: (i) only one Higgs particle, playing a role
of the SM-like Higgs, is light, while the remaining two are significantly heavier, (ii) where at least
one of additional Higgs particles has a mass of the order of 2MH .

3.1 The one and two light Higgs particles scenarios

The first scenario, with two additional Higgs particles heavier than the SM-like Higgs and DM
particles, resembles the IDM. The low DM mass region, defined as MH < Mh1/2, reproduces the
known behaviour of Higgs-portal DM models, like the IDM. For MH . 53 GeV it is impossible to
fulfil LHC constraints for the Higgs invisible decay branching ratio and relic density measurements
at the same time. For 53GeV . MH . 63GeV we are in the resonance region of enhanced annihila-
tion where a very small value of the coupling λ345 reproduces the proper relic density. This region
is partially in agreement with DM direct detection constraints, however both indirect detection and
the LHC results constrain the parameter space, as in the IDM. For MH > Mh1/2 DM annihilation

5
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Figure 3: Regions in the (MH ,λ345) plane that are allowed (red) after all constraints, as well as point
excluded from dark matter relic density (black), direct detection (brown), as well as collider data (green).
We again display old [38] (left) and new [33] (right) limits from direct detection. We find minimally stronger
constraints for MH ≥ Mh/2. The left hand plot includes two points (displayed on top of each other) which
render exact relic density (golden). After the new constraints have been applied, these vanish due to BR(h→
γ γ) as well as the new LUX bound, respectively.
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Figure 4: Production cross sections for AA final states at a 13 TeV LHC for a multi-component dark matter
scenario, as discussed in [26]. The left figure is taken from [26]. Including a hard cut on BR(h → γ γ) (right)
reduces the parameter space significantly, leading to a decrease in the maximally allowed production cross
sections.

into gauge boson final states becomes important, and the Higgs-DM couplings are generally larger,
leading to strong constraints from direct detection experiments. However, as in the IDM, it is still
possible to find solutions that are in agreement with all the data.

The most striking change with respect to the IDM arises in the relic density analysis with the
possibility of having an additional resonance region if the mass of one of additional Higgs particles
is smaller than 2MW . In this case the coupling of SM-like Higgs to DM candidate is very small,
therefore it will escape direct detection limits.

Below (Figs. 6 and 7) we compare these two scenarios for the corresponding two benchmarks
denoted A1 and A4.
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and (λ345,MH±/Mh) (right) plane. We here allow for multicomponent dark matter which significantly opens
up the parameter space to large λ345 values.

• A1: Mh1 = 124.83GeV, Mh2 = 194.46GeV, Mh3 = 239.99GeV,

• A4: Mh1 = 125.36GeV, Mh2 = 149.89GeV, Mh3 = 473.95GeV.
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Figure 6: The coupling λ345 versus mass of DM particle (H). (Left): for the IDM, (Right) for cIDMS (A1,
red): case with one light Higgs particle, (A4, blue): case with two light Higgs particles. The red and blue
bands constitute regions in agreement with relic density as measured by Planck experiment [39]. From [40]
and [11].

3.2 LHC constraints

It is important to stress that in a large part of the parameter space it is the LHC that provides
the strongest constraints for the model. If the Higgs-DM coupling is small, we generally escape the
direct or indirect detection limits. Therefore, from the point of view of dedicated DM experiments,
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Figure 7: DM-nucleon scattering cross-section for the cIDMS (A1, red): case with one light Higgs particle,
(A4, blue): case with two light Higgs particles. The red and blue bands constitute regions in agreement with
relic density as measured by Planck experiment [39]. In addition, limits from LUX [33] (solid black) and
XENON1T [41] (dashed black) are shown.

the small Higgs-DM coupling in the resonance region(s) is favoured. However, even in this region
we can expect significant modifications which influence LHC measurements in the Higgs sector.

Strong constraints for the model come particularly from measurements of the 125 GeV Higgs
decay to γγ . In general, in the cIDMS this value is reduced with respect to the SM prediction
µSM

h→γγ
. In the IDM-like case the preferred values for h1 are 0.95×µSM

h→γγ
. In cases where there are

two relatively light Higgs particles we obtain much smaller values of h1→ γγ and h1→ Zγ signal
strengths. These can differ up to 20 % from the SM value, and – while not being yet excluded by
the experiments within current experimental errors, they are not favoured. Noting the fact that the
very small Higgs-DM coupling leads to a scattering cross-section that will not be seen at the DM
direct detection experiments, it will be the LHC that will provide us with the strongest exclusion
limits for this scenario.

3.3 Strong 1st order phase transition, CP violation and bariogenesis

A significant difference between the cIDMS and the IDM is a mixing between the SM-like
doublet and a singlet, resulting in three Higgs states h1, h2 and h3. Note, however, that all three
Higgs particles couple to vector boson pairs (e.g. hiZZ, hiW+W−) in a similar manner, with a
reduced strenght compared to the SM- Higgs particles. LHC constraints for the 125 GeV Higgs
boson coupling to gauge bosons being close to the SM value (e.g. for ZZ the 1-σ interval is 0.92-
1.00) [32]), if applied to the h1ZZ within the cIDMS, leads to small corresponding couplings of h2

and h3, as they fulfill corresponding sum rules [42].
In principle the vacuum state with a non-zero phase for a singlet can induce CP violation. CP

violating vacuum and possible CP-violation in the scalar sector are due to the singlet cubic terms
in the potential, which are proportional to parameters κ2 or κ3, as shown in [43]. These terms
are also crucial to obtain strong enough first order phase transition already in the high temperature
approximation. Note, that for IDM these conditions were obtained using the one-loop effective

8
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potential approach [19, 20, 21]. It suggests that the cIDMS can lead to an even stronger first order
phase transition, as it contains two sources for it.

For parameter regions providing a sufficiently strong first-order phase transition, the next step
is to check whether the correct baryon asymmetry in the Universe can be generated in the model.
It is known that a Standard Model with a complex singlet can provide a strong enough first-order
phase transition [44] and enough CP violation if an iso-doublet vector quark is added to the model,
since in this case the Yukawa Lagrangian acquires additional terms, which depend on the CP-
violating phases. More studies are needed to establish whenever it is also possible to have a stable
DM particle at the same time, in agreement with all experimental constraints. If it is indeed the case,
the cIDMS would be a model that could address these important problems, while being testable at
the LHC.

4. Conclusions and Outlook

In this note, several extensions of the SM scalar sector were discussed. These extensions are
based on the Inert Doublet Model, a two-Higgs doublet model with a discrete Z2 symmetry ren-
dering a dark matter candidate. First, we presented an update of previous work [26], where we
thoroughly investigated the parameter space of the Inert Doublet Model. Here, we include more re-
cent constraints on signal strength for 125 GeV Higgs from a combined ATLAS and CMS analysis
[32], as well as updates on direct detection for dark matter candidates from the LUX experiment
[33]. We show how these modify our previous work, and lead to relatively large restrictions in the
models parameter space, partially decreasing the available production cross sections by at least one
order of magnitude.

We also discuss an extension of the IDM, denoted the cIDMS, where a complex scalar field
with a complex VEV is added to the model. It shares a lot of features of the IDM, but the presence of
additional Higgs particles can change DM annihilation scenarios, opening new parameter regions.
By introducing an additional source of CP violation we make a step towards explaining the origin
of baryon asymmetry of the Universe – a feature that is missing from the IDM.
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