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1. Introduction

From a fundamental point of view, presumably the most basic parameters are given at a mass-

defining scale which is considered to be the Planck mass MP ≃ 2.43×1018 GeV. Any other scale

involves a small coupling which is that scale divided by MP. Below MP, one tries to understand

elementary particles in this sense. Figure 1 is a theorist’s design to plan his idea, starting with

a grand framework, presumably inclusive of as much natural phenomena as possible. Within

this framework, he builds a theory. The theory contains models. These models must be work-

ing examples, explaining the observed phenomena. Without a model example, some will say that

it is a religion even though the design is fantastic. Our job is to find working models in this

FRAMEWORK/THEORY/MODEL inclusion cartoon. In this sense, “symmetry” as a framework

has worked for a century.

Framework
Theory

Model

Figure 1: An inclusive relation of frameworks due to Gross [1].

Nowadays, flavor symmetries are studied mainly by some discrete symmetries, due to the

observed large mixing angles in the leptonic sector. But, flavor symmetry may be a gauge symmetry

in which case a true unification is GUTs with the flavor symmetry included there. The first attempt

along this line was due to Georgi in SU(11) [2] on the unification of GUT families (UGUTF). The

next try with spinor representation of SO(4n+2) groups was in SO(14) [3]. A more attempt along

this line is from string compactification based on Z12−I orbifold compactification [4]. But, mostly

one tries to obtain an electroweak-scale massive particle by a discrete symmetry and a light scalar

by the Goldstone theorem. Among Goldstone bosons, “invisible” axion is the most interesting one.

2. CP’s

To discuss violation of a symmetry, first one has to define the symmetry. Parity P is the most

well-known example for the definition and violation of a symmetry. Even though kinetic mixings

of U(1) gauge bosons have been considered for some time, the definition of a symmetry is usually

done such that the kinetic energy terms preserve the symmetry. If there exists a possibility of a

Lagrangian that satisfies (CP)L (CP)−1 = L , then the CP symmetry is preserved. Here, the first

thing to do is to define fields with CP quantum numbers. Next, find out terms breaking CP and

search for its physical implications.

CP violation is an interference phenomenon. At this workshop, Domencico [5] cited Okun’s

statement, “Neutral K mesons are a unique physical system which appears to be created by nature

1
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to demonstrate, in the most impressive manner, a number of most spectacular phenomenon”. One

may replace (spectacular)→(interference). CP violation in the SM is an interference phenomenon,

encompassing all three families. This will become clearer below when we express the Jarlskog

determinant J.

After the discovery of weak CP violation in 1964, needs for theories of weak CP violation

became very important. Some of these weak CP violation were

1. by light colored scalars [6],

2. by right-handed current(s) [7, 6],

3. by three left-handed families [6] (2.1)

4. by propagators of light color-singlet scalars [8],

5. by an extra-U(1) gauge interaction [9],

where some examples interpretable in modern gauge theories are cited. Item 3 is known as the

Cabibbo[10]-Kobayashi-Maskwa(CKM) model.

In the standard model(SM), the kinetic energy terms of quarks, leptons, and Higgs doublets

are CP conserving. The CP violation in the SM arises in the interaction terms, typically through the

Yukawa couplings. If the VEVs of Higgs doublets vanish, then there is no CP violation because all

fermions are massless. Below the VEV scale of the Higgs doublets, all the SM fields obtain masses,

and one can locate the CP phase in the left-handed currents, coupling to W±
µ . The charged current

couplings are defined in this setup for the CKM (for quarks) and Pontecorvo-Maki-Nakagawa-

Sakata(PMNS) (for leptons) [11] matrices. The CKM matrix is unitary, which is the only condition

for the CKM matrix. The physical significance of the weak CP violation is given by the Jarlskog

determinant J which is obtained from the imaginary part of a product of two elements of V and two

elements of V ∗ of the CKM matrix, e.g. of the type J = |Im(V12V23V ∗
13V ∗

22)| [12].

Let us choose the CKM and PMNS matrices such that the 1st row real. Then, the CKM matrix

can be chosen as [13],

VKS =







c1, s1c3, s1s3

−c2s1, e−iδCKMs2s3 + c1c2c3, −e−iδCKMs2c3 + c1c2s3

−eiδCKMs1s2, −c2s3 + c1s2c3eiδCKM , c2c3 + c1s2s3eiδCKM






, with DetVKS = 1 (2.2)

where ci = cosθi and si = sinθi for i = 1,2,3. In this form, the invariant quantity for the CP

violation, the Jarlskog determinant is directly seen from VKS itself [14],1

J = |ImV13V22V31| ≃ O(λ 6), (2.3)

where λ ≃ 0.22 is the Cabibbo parameter λ = sinθC [10]. Note that all three families participate

in the evaluartion of J, fulfilling the claim that CP violation is an “ interference phenomenon”. For

the CP violation to be nonzero, in addition, all u-type quark masses must be different and all d-type

quark masses must be different, because one can rotate the phases of identical-mass quarks such

that δCKM changes, which implies that δCKM is unobservable.

1For the PMNS matrix, we use different parameters by replacing θi → Θi and δCKM → δPMNS.

2
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δ

λ
λ

Jarlskog determinant

J ≃ λ6|V13V31/λ
6| sin δ

•
O(λ5)

(a) (b)

Figure 2: The Jarlskog triangles. (a) B-meson decay including a K-meson, and (b) B-meson decay to π

mesons.

There are many different parametrization schemes. Different parametrizations give different

CP phases δCKM [14]. This can be understtod by the Jarlskog triangle for B-meson decay, shown

in Fig. 2 (a). For the parametrization of Eq. (2.2), J is given with the red parameters

J = c1c2c3s2
1s2s3 sinα (2.4)

while the PDG parametrization with the blue parameters fives J = c12c2
31c23s12s23s13 sinγ [15]. In

any parametrization, the area of Fig. 2 (a) gives the same value.

We can use the KS–parametrization, Eq. (2.2), to show the maximality of the weak CP viola-

tion for the measured values of real angles θi. Let us use the fact that any Jarlskog triangle has the

same area. So, consider Fig. 2 (b). With the λ = sinθC expansion, the area of the Jarlskog triangle

is of order λ 6, which is the product of two sides enclosing the angle δ . Rotate the side of O(λ 5)

in the red arrow direction, making a triangle implied by dashed lines. This area of the triangle is

maximal when the rotating angle δ ≃ 90o, which is the triangle enclosing the yellow in Fig. 2 (b).

Note that α of Fig. 2 (a) is determined by the fitting groups close to α = π
2

,

α =
(

85.4+3.9
−3.8

)o
[PDG, [15]],

(

88.6+3.3
−3.3

)o
[Ufit, [16]],

(

90.6+3.9
−1.1

)o
[CKMfit, [17]]. (2.5)

With the KS parametrization, δ ≃ π
2

is in the allowed region. So, we proved that the weak CP viola-

tion is maximal with the pre-fixed real angles in the KS–parametrization. Since physical statements

are parametrization independent, this maximality must be the case in the PDG–parametrization

also.

In the leptonic sector also, there is a preliminary hint that δPMNS 6= 0, and close to −π
2

even

though the error bar is large [18]. The quark mixing angles are θi and δCKM, and lepton mixing

angles are Θi and δPMNS. Even if θi and Θi cannot be related, we can relate δCKM and δPMNS if there

is only one CP phase in the whole theory. Indeed, this has been shown in Ref. [19] where the weak

CP violation is spontaneous and one unremovable phase is located at the weak interaction singlet

à la the Froggatt-Nielsen(FN) mechanism [20].2 In the supersymmetric model, it was shown that

2After the talk, another method for the flavor solution has been proposed [21].
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n n n pn

〈π0, η′〉
(a)

(b)

n n

n n

Aµ

π− π−
pn n•

•

•

Aµ

p

π−

(c) (d)

Figure 3: (a) CP violation by the insertion of 〈π0,η ′〉. The bullets in (b,c,d) are (a) of the CP violating

interaction. (c) and (d) lead to an nEDM.

one phase in the ultra-violet completion gives [14]: δPMNS =±δCKM. Then, the Jarlskog triangles

of the quark and lepton sectors will have one common phase.

In addition to the CKM and PMNS phases, there are Majorana and leptogenesis phases also. If

there is only one phase in the ultra-violet completed theory, all of these must be expressed in terms

of one phase. So, the Majorana phase determined at the intermediate scale and the leptogenesis

phase can be also expressed in terms of this one phase, as shown in Ref. [22].

3. The strong CP problem

Because of instanton solutions of QCD, there exists an effective interaction term containing

the gluon anomaly: θ̄{GG̃}. It is the flavor singlet and the source solving the U(1) problem of

QCD by ’t Hooft [23]. This gluon anomaly term is physical, but leads to

• The strong CP problem, “Why is the nEDM so small?” This leads to the three classes of

natural solutions.

• The remaining ‘natural solution’ is “invisible” axion [24].

The three classes of solutions are (1) calculable models, (2) massless up quark, and (3) “invisible”

axion. Calculable models is not separable from the discussion of the weak CP violation. If the

CP violating coupling gπNN is present, the neutron electric dipole moment(nEDM) is calculated as

(with the CP conserving gπNN term),

dn

e
=

gπNNgπNN

4π2mN

ln

(

mN

mπ

)

. (3.1)

4
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Figure 4: md vs. mu [28].

Figure 3 (a) shows gπNN , and Figure 3 (c,d) give Eq. (3.1) [25]. If the θ̄ term is present in QCD,

then π0 can obtain a VEV. VEVs of π0 and η ′ break CP, and give |gπNN | ≃ θ̄/3 [24]. The non-

observation of nEDM put a limit on |θ̄ | as less than 10−10. For the class of calculable solutions, the

so-called Nelson-Barr type weak CP violation is close to a solution [26, 27], but the limit 10−10 is

difficult to realize.

For the massless up-quark solution, it seems not favored by the measured current quark masses

as shown in Fig. 4 [28].

This leads us to a brief historical introduction, eventually leading to the “invisible” axion

[29, 30, 31]. Pre- “invisible” axion developments are the following.

At the time when the third quark family was not discovered, Weinberg tried to introduce the

weak CP violation in the Higgs potential. Satisfying the Glashow-Weinberg condition that up-type

quarks couple to Hu and down-type quarks couple to Hd [32], he introduced many Higgs doublets.

Then, the weak CP violation introduced in the potential, with a discrete symmetry φI →−φI ,

VW =
1

2
∑

I

m2
I φ †

I φI +
1

4
∑
IJ

{

aIJφ †
I φIφ

†
J φJ +bIJφ †

I φIφ
†
J φJ +(cIJφ †

I φIφ
†
J φJ +H.c.)

}

(3.2)

Weinberg’s necessary condition for the existence of CP violation is non-zero cIJ terms [8]. If one

removes the cIJ terms, Peccei and Quinn (PQ) noticed that there emerges a global symmetry which

is now called the U(1)PQ symmetry [33]. This is an example that keeping only a few terms among

the discrete symmetry allowed terms in the potential produces a global symmetry.

With the PQ symmetry by removing the ci j term in Eq. (3.2) [33], Weinberg and Wilczek

at Ben Lee Memorial Conference noted the existence of a pseudoscalar, the PQWW axion [34],

which was soon declared to be non-existent [35]. This has led to calculable models discussed in

[36, 37, 38, 39, 40].

5
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KSVZ: Qem caγγ

0 −2

± 1
3

− 4
3

± 2
3

2
3

±1 4

(m,m) − 1
3

DFSZ: (qc-eL) pair Higgs caγγ

non-SUSY (dc,e) Hd
2
3

non-SUSY (uc,e) H∗
u − 4

3

GUTs 2
3

SUSY 2
3

Table 1: caγγ in the KSVZ and DFSZ models. For the u and d quark masses, mu = 0.5md is assumed for

simplicity. (m,m) in the last row the KSVZ means m quarks of Qem = 2
3

e and m quarks of Qem = − 1
3

e.

SUSY in the DFSZ includes contributions of color partners of Higgsinos. If we do not include the color

partners, i.e. in the MSSM without heavy colored particles, caγγ ≃ 0 [45].

4. The “invisible” axion

However, a good symmetry principle of Fig. 1 is so an attractive framework, the PQ symmetry

is re-introduced by a SM singlet field [29], which has been named as “invisible” axion a. It was

noted that the “invisible” axion was harmful in the evolution of the Universe [41], which has been

later turned into a bonus after realizing that the CDM contribution was important in the evolution

of the Universe [42].

“Invisible” can be made “visible” if one invents a clever cavity detector [43], which is used in

many axion search labs now [44]. There have been the cosmic experiment and solar axion search

experiments [46]. In Fig. 5, the current bounds on the “invisible” QCD axion search are shown.

An SU(2)xU(1) singlet housing the “invisible” axion gives the effective Lagrangian of a as

L = c1

∂µa

fa
∑
q

q̄γµγ5 q−∑
q

(q̄L mqR eic2a/ fa +h.c.)+
c3

32π2 fa

aGµνG̃µν (4.1)

+
caWW

32π2 fa

aWµνW̃ µν +
caYY

32π2 fa

aYµνỸ µν +L leptons,

where G̃µν ,W̃ µν , and Ỹ µν are dual field strengths of gluon, W , and hypercharge fields, respectively.

It is a key question how the PQ symmetry is defined. These couplings arise from the following

renormalizable couplings,

LKSVZ = − f QRQL +h.c., (4.2)

VDFSZ = −µ2
1 H∗

u Hu −µ2
2 H∗

d Hd +λ1(H
∗
u Hu)

2 +λ2(H
∗
d Hd)

2 +σ terms (4.3)

(+MHuHdσ)+λ ′HuHdσ2 +h.c.

In the KSVZ model, the heavy quark Q is introduced and the f -term Yukawa coupling is the defi-

nition of the PQ symmetry. In the DFSZ model, the λ ′-term is the definition of the PQ symmetry.

Note, however, that there must be a fine-tuning in the coefficient λ ′ such that vew ≪ fa [49]. The

axion-photon-photon couplings are listed in Table 1.

The fine-tuning problem in the DFSZ model is resolved in the supersymmetric(SUSY) exten-

sion of the model. There is no renormalizable term of the singlet superfield σ with the SM fields.

6
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Figure 5: Axion detection bounds on the caγγ vs. ma plane with regions for several model parameters [47].

The white square on the upper left corner is the MI-axion point [48].

The leading term is the so-called Kim-Nilles term [50],

WKN =
1

M
HuHdσ2, (4.4)

where M is determined from a theory. It is shown in Table 1 as the SUSY caγγ . In Table 1, Hd and

H∗
u imply that they give mass to e. GUTs and SUSY choose appropriate Higgs doublets and always

give caγγ =
2
3
.

In the discussion of “invisible” axion, gravity effects was considered to be crucial. It started

with the wormhole effects in the Euclidian quantum gravity [51]. In fact, gravity equation with

7
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O S

+
+
+

−

−

−

+
+
+

Figure 6: A wormhole connection to a shadow world.

the antisymmetric tensor field Bµν gives wormhole solutions [52]. This triggered the discrete

symmetries allowable as subgroups of gauge groups [53], and U(1)PQ global symmetry needed

for “invisible” axion was considered to be problematic [54]. It is euristically presented in Fig. 6

for a flow of gauge charges from an observer O to a shadow world S through a wormhole. If he

disconnects S, he recovers all gauge charges and concludes that no gauge charge is lost. This is

because gauge charges carry hairs of flux lines. Thus, O confirms that gauge symmetries are not

broken by wormholes. But, global symmetries do not carry flux lines and quantum gravity does

not allow global symmetries. Thus, “invisible” axion has the gravity spoil problem [54].

One may consider all terms allowed with some discrete symmetries, which is symbolized in

the most left column of Fig. 7 (a). Discrete symmetries appear in most string compactification and

the wormhole effects do not break these discrete symmetries. If only a few terms in all possible

terms in V are considered as symbolized in the lavender color in Fig. 7, there may appear global

symmetries. For example, we can keep terms except the ci j terms in Eqs. (3.2), which led to the

U(1)PQ symmetry as discussed before. These global symmetries are approximate and broken by

terms in the red parts in Fig. 7. The red part above the lavender symbolizes the terms in V . One

large violation of a global symmetry was suggested for heavy axions or axizillas at the TeV scale

[55]. The important one for “invisible” axion is the case of no ∆V as shown in Fig. 7 (b). Then, the

minimum of the potential is at θ̄ = 0 [56]. If a term in ∆V is present, it must be sufficiently small

such that the “invisible” axion solution of the strong CP problem is intact. In any case, a PQ global

symmetry can be obtained at least approximately from an ultra-violet completed theory.

The well-known global symmetric operators are the effective neutrino mass term in the La-

grangian (instead of V ) for U(1)L [57] and the Kim-Nilles term in SUSY for U(1)PQ,

−L νmass =
fi j

M
ℓiℓ jHuHu, WKN =

1

M
σ1σ2HuHd , (4.5)

where ℓ’s are lepton doublets in the SM. Equations in (4.5) define the lepton number L and the PQ

8
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quantum number Q,

L(ℓℓ) = 2, L(HuHu) =−2, (4.6)

Q(σ1σ2) = 2, Q(HuHd) =−2.

For masses of the SM neutrinos, 〈HuHu〉 6= 0 is enough. The renormalizable interactions with

right-handed neutrinos NR leading to Eq. (4.6), ℓLHuNR, are not needed for phenomenological

neutrino masses at low energy. For the KN term also, renormalizable couplings, σ1HuXdoublet,

σ2HdX ′
doublet,QLQRσ1, · · ·, can give the term.

In this road toward detecting an “invisible” QCD axion, there has been a few theoretical de-

velopment starting from an ultra-violet completed theory. The scale must be intermediate. The

model-indepent(MI) superstring axion [58] is not suitable for this because the decay constant is

about 1016 GeV [59] which is the white square on the upper left corner in Fig. 5.

The question is, “is it possible to obtain exact global symmetries?”

From string compactification, there is one way to make the “invisible” QCD axion to be located

at the intermediate scale starting with an exact global symmetry,

109 GeV ≤ fa ≤ 1011.5 GeV. (4.7)

It starts from the appearance of an anomalous U(1) gauge symmetry in string compactification. In

compactifying the E8×E′
8 heterotic string, there appears an anomalous U(1)a gauge symmetry in

many cases [61],

E8 ×E8 → U(1)a ×·· · (4.8)

Thus, the anomalous U(1)a is belonging to a gauge symmetry of E8×E′
8. In the original E8×E′

8

heterotic string, there is also the MI-axion degree Bµν . The gauge boson corresponding to this

Global Symmetry
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Figure 7: Terms allowed in interactions. (a) Terms allowed by discrete symmetries (the most left column)

and non-Abelian anomalies, and (b) terms allowed only by non-Abelian anomalies. Considering only terms

in the lavender color, one finds a global symmetry.
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String: caγγ Comments

Ref. [63] − 1
3

Approximate

Ref. [47, 48] 2
3

Anom. U(1)

Table 2: String model prediction of caγγ . In the last line, caγγ = (1−2sin2 θW )/sin2 θW with mu = 0.5md .

anomalous U(1)anom obtains mass by absorbing the MI-axion degree as its longitudinal degree.

Therefore, the harmful MI-axion disappears, but not quite completely. Below the compactification

scale of 1017 GeV, there appears a global symmetry which works as the PQ symmetry. This PQ

symmetry can be broken by a SM singlet Higgs scalar(s), producing the “invisible” axion. So, this

“invisible” axion arises from an exact global symmetry U(1)anom, and is free from the gravity spoil

problem because its origin is gauge symmetry.

Within this string compactification scheme, the axion-photon-photon coupling has been cal-

culated [62, 47, 48] and presented in Table 2.

5. CP and cosmology

Consideration of CP in cosmological dark energy (DE), CDM, and ∆B can be realated CP

symmetry and its violation. Quintessential axion [64], QCD axion, and Sakharov’s conditions are

related to CP. ∆B needs CP violation. In the Type-II leptogenesis, which will be given shortly,

involves the weak CP violation.

The axion solution of the strong CP problem is a cosmological solution. QCD axions oscillate

with the CP violating vacuum angle θ̄ , but the average value is 0. If the axion vacuum starts

from a/ fa = θ1 6= 0, then the vacuum oscillates and this collective motion behaves like cold dark

matter(CDM) as commented around Fig. 5 [65], for which a recent calculation energy density of

coherent oscillation, ρa, is given in [66].

The axion vacuum is identified by the shift of axion field by 2πNDW fa,

a → a+2π NDW fa. (5.1)

It is because the θ̄ term has the periodicity 2π ,

Lθ̄ =− a

32π2 fa

∫

d4xGa
µνG̃a µν , a = a+2π fa, (5.2)

H • � H

Figure 8: The axion vacuum with NDW = 3.
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(a) (b)

Figure 9: Domain walls in Z2. (a) Domain wall ball, and (b) a cosmological scale domain wall.

while matter fields Φ may not have the periodicity of 2π fa, but only after 2πNDW fa,

Φ → eiθ̄/NDWΦ, θ̄ =
a

fa

. (5.3)

The axion vacuum with NDW = 3 is shown in Fig. 8, where the red triangle vacuum is returning to

itsef after going over three maxima. Between different vacua, there are domain walls.

Topological defects of global U(1)global produce an additional axion energy density by the

decay of string-wall system, ρst . Contribution of axionic string to energy density was known for

a long time [67]. In addition, axionic domain walls carry huge energy density [68, 69]. Because

of the difficulty of removing comological scale domain walls for NDW ≥ 2 as sketched in Fig. 9,

it was suggested that the axionic domain wall number should be 1 [69]. If NDW = 1, the horizon

scale walls can be annihilated as in Fig. 10 [68, 70]. A small wall bounded by string collides with

a horizon scale wall (a), and eats up the wall with the light velocity (b), eventually annihilating the

horizon scale string-wall system (c).

Computer simulations use axion models with NDW = 1. Three groups have calculated these

which vary from O(1) to O(100),

Florida group: O(1)[71],

Cambridge group: O(100)[72], (5.4)

Tokyo group: O(10)[73].

A recent calculation for NDW = 1 models has been given ρst ∼ O(10)ρa [74].

Therefore, it is important to realize axion models with NDW = 1. The KSVZ axion model with

one heavy quark achieves NDW = 1. There are two other methods. One is identifying different

vacua modulo the center number of the GUT gauge group [75]. Another important one is obtaining

NDW = 1 by the Goldstone boson direction [76, 60], which is shown in Fig. 11. There are two

degrees for the shifts, N1 and N2 directions. For the torus of N1 = 3 and N2 = 2 models, seemingly

there are 6 vacua represended by red bullets in Fig. 11. The Goldstone boson directions are shown

as arrow lines and torus identifications are shown as dashed arrows. So, all six vacua are connected

by one way or the other, and the N1 = 3 and N2 = 2 model gives NDW = 1. One always obtain

NDW = 1 if N1 and N2 are relatively prime. The reason that the “invisible” axion from U(1)anom has

NDW = 1 is because Nfrom E8×E′
8
= large integer but NMI axion = 1 [77, 60], and Nfrom E8×E′

8
and

NMI axion are relatively prime.
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(a) (b) (c)

Figure 10: Domain walls in NDW = 1. (a) A DW ball is approaching to a horizon scale DW, (b) the DW ball

is punching the huge wall and expands with the light velocity, and (c) it eats up the huge wall [70].

• • •

• • •

◦ ◦ ◦ ◦

◦

◦

©1

©2

©3

©4
©5

©6

0 1 2 N1

0

1

N2

Figure 11: Vacua identification by Goldstone boson direction.

There is another cosmological solution that the axionic string-wall system created at fa is

allevated by another confining force at high temperature [78]. The instantons of this force, acting

below fa, can generate an axion potential that erases the axion strings long before QCD effects

become important, preventing QCD-generated axion walls from ever appearing.

Axionic string contribution is important if strings are created after PQ symmetry breaking. On

the other hand, with a high scale inflation this string contribution to energy density is important,

as shown in Eq. (5.4). There can be a more important constraint if a large r(= tensor/scalar ratio)

is observed. Two groups reported this constraint [79] after the BICEP2 report [80]. Probably, this

is the most significant impact of BICEP2 result on NDW = 1 axion physics. The region is marked

around ma ∼ 71 µeV in Fig. 5.

6. Type-II leptogenesis

The mere 5 % of the energy pie, mainly atoms composed of baryons of the Universe, belongs

12
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to the problem on the chiral representations of quarks in the GUT scheme [2, 81, 4]. In cosmology,

it belongs to Sakharov’s three conditions [82],

• B number (or global quantum number) violation,

• CP and C violation,

• Out of thermal equilibrium.

For the last condition, we just make sure that the process proceeds in non-equilibrium conditions.

Usually, heavy particle decays proceed out of thermal equilibrium. The first one is the existence of

baryon number violating interaction implied in GUTs, and the second condition is on the CP and

C violation.

Sphaleron processes at the electroweak scale changes baryon (B) and lepton(L) numbers but

do not change the combination (B−L). If the sphaleron processes are 100 % effective in converting

these global quantum numbers, a net baryon number is ∆B|after sphaleron ∝ (B−L). Thus, SU(5) GUT

is problematic because it conserves B−L and cannot generate (B−L) by the SU(5) processes. So,

if one tries to use GUTs, choose one which violates B−L such as in the SO(10) GUT.

But, a simple way is to work in the SM, SU(3)×SU(2)×U(1), and introduce SM singlet

fermions N which are called neutrinos. These N particles are considered to be heavy. This issue

is the first condition on the global quantum number. If the SM singlets are present, there always

appear neutrino masses, which implies that L is broken. In defining the lepton number L, let us

remember the Weinberg operator for neutrino masses [57, 83],

Lνmass =
fi j

M
ℓiℓ jHuHu (6.1)

where ℓ are left-handed lepton doublets, and gauge invariant indices are implied. M is an effective

mass in the non-renormalizable operator. The lepton number is defined with the left-handed SM

doublets ℓL(∋ νe,µ,τ) carrying L =+1. Non-zero neutrino masses break L. So, as far as 〈Hu〉= 0,

neutrinos do not obtain mass by the above operator. Therefore, L can be properly defined below

the scale of 〈Hu〉 6= 0. One may argue that there is also Hd , which is exactly the reason that Hu

can carry a global quantum number, because both Hu and Hd can together define a gauge charge

Y and a global charge L. Two ℓ’s carry +2. However, who cares about renormalizable terms very

importantly at low energy? In cosmology, however, it is important. In cosmology, lepton number

of Hu is defined by

Type-I: L(HuHu) = 0,

Type-II: L(HuHu) =−2.

The quantum numbers of Type-I [84] and Type-II [22] leptogeneses are suggested by the following

renormalizable term, and the quantum numbers of L,

ℓL Hu NL (6.2)

Type− I : +1, 0, −1 (6.3)

Type− II : +1, −1, 0 (6.4)
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•
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Figure 12: The Feynman diagrams interfering in the N decay: (a) the lowest order diagram in Type-II, (b)

the W exchange diagram, (c) the wave function renormalization diagram, and (d) the heavy neutral lepton

exchange diagram. There exist similar N -decay diagrams. In all figures, the final leptons can be both

charged leptons and neutrinos. The lepton number violations are inserted with blue bullets and phases are

inserted at red bullets. (a) and (b) interfere. (c) and (d) give a vanishing contribution in N0 domination with

one complex VEV.

The early idea was to define a right(left)-handed N with lepton number L =+1(−1) [84]. In fact,

the definition of lepton number, related to neutrino masses, is a combination of defining the lepton

number of the up-type Higgs doublets together with that of N.

‘Type-II leptogenesis’ is proposed under a different definition on L from that of Type-I and

the electroweak symmetry breaking at high temperature. There exists a finite region of parame-

ter space in the multi-Higgs model that the electroweak symmetry is broken at high temperature

[85]. In SUSY, the electroweak symmetry breaking at high temperature is more probable since the

temperature dependent terms in V are SUSY breaking terms.

In Fig. 12, we present diagrams appearing in Type-I and Type-II leptogeneses. The SM Higgs

doublet is h, and an inert Higgs doublet is H. (e), (c), and (d) give Type-I where both the L violation

and CP violation appear in blue bullets. In Type-I, CP violation is introduced at the mass term of

N, needing at least two N’s for the interference of Figs. 3 (e), (c), and (d). So, if there is a hierarchy

of masses such as mN0
/mN1

≪ 1, then the lepton asymmetry is suppressed by that factor.

In Fig. 12, (a) and (b) give Type-II, and CP violation is introduced by the PMNS matrix.

Thus, we must have W boson is not massless, i.e. SU(2)×U(1) symmetry is broken at the high

temperature. Indeed, such possibility has been suggested long time ago [85]. One can define the

lepton number L as shown in Table 3. In Type-II, we detail the lepton numbers in Table 4. Here,

we need an inert Higgs doublet Hu carrying L =−2 and singlet leptons N carrying L =+1. Here,

14
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ℓL hu (Hu) N

Type-I leptogenesis +1 0 −1

Type-II leptogenesis +1 −1(−2) 0

Table 3: Definition of lepton numbers, in Type-I and Type-II leptogeneses.

ℓL Hu Hd hu N N

Type-II leptogen. +1 −2 +2 −1 0 +1

VEV × inert inert vew sβ × ×

Table 4: Definition of lepton numbers in Type-II leptogeneses. We introduced an inert Higgs Hu carrying

L =−2 with zero VEV and singlet leptons N carrying L =+1.

the lepton number violation appears in blue bullets and the CP violation appears in red bullets.

Anyway, the fields Hu,d and N introduced at high energy scale are not visible at low energy scale.

We introduce interactions

N0 ℓLhu, N0 ℓLHu, N0 N0, HuHd , · · · (6.5)

h∗uHu, N0 N0, N0N0, · · · (6.6)

where the first line conserves L and the second line violates L.

Within this framework, we calculated the lepton asymmetry which turned out to be consistent

with the fact that in these diagrams the lepton violation is on the left side of the cut diagram as

discussed in [86]. The lepton asymmetry we obtain is a form,

εN0

L (W ) ≈ αem

2
√

2sin2 θW

∆m2
h

m2
0

(6.7)

·∑i, j Ai j sin[(±nP +n′−ni +n j)δX ], (6.8)

where Ai j are given by Yukawa couplings, nP,n
′,ni,n j are integers, and we assumed that only one

phase δX appears in the full theory. Two independent n′ are Majorana phases multiplied to the

PMNS matrix. Using the sphaleron calculation of [87], we obtain

Γbroken
sph

T 3H(T )
= κα4

W

(

4πk

gW

)7

e
−1.52k 4π

gW

√

90

π2g∗

MP

T
≥ 1, (6.9)

leading to the constraint

C2C3 sinδc +C1S2S3 sin(δc +δPMNS)≃ 2.4×10−2, (6.10)

where δc is a Majorana neutrino phase. So, there is an enough parameter space to allow an accept-

able ∆L.

7. Conclusion

My talk is centered around CP symmetry/violation and its cosmological effects. A few em-

phases were: (1) the Jarlskog determinant J is |ImV31V22V13| in the KS form, (2) it is shown that the
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Jarlskog determinant J is almost maximum with the current determination of quark (real) mixing

angles, (3) why we need “invisible” axions for a solution of strong CP problem, (4) we commented

some cosmological problems, (5) the “invisible” axion from an exact U(1)global with NDW = 1 is

possible if it arises from U(1)anom in string compactification, and (6) we discussed also the recent

idea of Type-II leptogenesis.

Note added. After the talk, there appeared some relevant papers [21, 88, 89].
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