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1. Introduction

I am honoured to be invited to speak at this School, dedicated to the memory of Ioannis
Bakas. I had the chance to interact with Ioannis a number of times and enjoyed reading some of his
many original contributions to theoretical physics. Ioannis was a very solid and eclectic theoretical
physics, he wrote extremely interesting papers in many diverse topics such as string sigma models,
large N limit of extended conformal symmetries, W algebras, non-associative structure in physics,
integrable models, holography, WZW models, gauged supergravity, etc. Many of these papers led
to new insights and new progresses. This work is dedicated to his memory.

There is now a large class of observables in different supersymmetric gauge theories in various
dimensions that have been computed exactly. They can be used to explore fascinating aspects of
gauge theories, such as dualities, large N physics, resurgence, non-perturbative phenomena and
integrable systems. A powerful tool to find exact results is supersymmetric localization, which
has been used, in particular, to compute the partition function of general N = 2 four-dimensional
theories, with any gauge group and matter content [1, 2, 3]. The result is expressed in terms of
a finite dimensional integral, which is still difficult to compute. Here, using some examples, we
will describe how to compute this integral in two interesting limits, the decompactification limit
and the large N limit. In both cases, we will show that the integral is exactly computable by the
saddle-point method.

In the first part of this talk, we will discuss new results on the phase transition occurring in
N = 2 SQCD with gauge group SU(2) and two massive flavors of mass M, found in [4]. The
theory depends on the coupling Λ/M. In [4], the free energy was computed in a strong coupling
regime Λ/M > 2. We will extend the results of [4] by finding the saddle point that dominates
the integral in the weak coupling regime Λ/M < 2. Combining both results, we will compute the
free energy for any coupling and show that the second derivative has a discontinuity at Λ = 2M,
implying a quantum phase transition of the second order.

The second part of the talk is based on the published works [6, 7] in collaboration with Diego
Rodriguez-Gomez. We consider four-dimensional N = 2 superconformal gauge theories. We shall
discuss correlation functions of chiral primary operators (CPO’s) at large N, by using a method
proposed in [5]. By extending this construction, we shall also show how to compute correlation
functions of chiral primary operators and Wilson loops.

2. N = 2 supersymmetric gauge theories

Here we will study N = 2 supersymmetric gauge theories on S4 of radius R with gauge group
U(N) or SU(N). We shall consider the following field content:

Vector multiplet (Aµ ,λα ,ψα ,Φ+ iΦ′)

Matter hypermultiplets (φ ,χα , χ̃α , φ̃) (adjoint or fundamental) (2.1)

The exact partition function for N = 2 supersymmetric Yang-Mills theories on S4, with ar-
bitrary matter content, was computed by Pestun in [3]. The partition function is localized to an
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integral over the Coulomb moduli

〈Φ〉= diag(a1, . . . ,aN) (2.2)

The partition function for the SU(N) theory is given by

Z =
∫

Da Z1−loop |Zinst(a)|2 e−Scl (2.3)

where

Da = dN−1a ∏
i< j

(ai−a j)
2 , (2.4)

Scl represents the classical action

Scl =
1

4g2
Y M

∫
S4

d4x
√

gR TrΦ2 (2.5)

Thus the classical action localizes onto:

Scl = R2 8π2

g2
Y M

∑
i

a2
i (2.6)

Z1−loop is expressed in terms of the function

H(x)≡
∞

∏
n=1

(1+ x2/n2)e−x2/n, (2.7)

which constitutes the building block for the different multiplet contributions:

Z1−loop →
N

∏
i< j

H2(ai−a j) Vector multiplet

→
N

∏
i< j

1
H(ai−a j +M)H(ai−a j−M)

Adjoint hypermultiplet

→
N

∏
i=1

1
H(ai +M)

(anti)Fundamental hypermultiplet (2.8)

Finally, the instanton factor has the form:

Zinst =
∞

∑
k=0

qkZk(M,a,ε1,ε2) , (2.9)

for

q = e2πiτ , τ =
θ

2π
+

4πi
g2

Y M
, ε1 = ε2 = 1/R , (2.10)

where Zk can be computed using the general Nekrasov construction [1, 2] with equivariant param-
eters ε1 = ε2 = 1/R.
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Limits

Computing the integral defining Z is still very complicated. In four dimensions, only for
the N = 4 theory the integral can be carried out exactly (in lower dimensions, there are many
examples). In other N = 2 four-dimensional theories, we may compute the perturbation series by
expanding the integrand. Alternatively, if we are interested in finding a closed analytic expression,
we may consider limits:

• Large N, R arbitrary (λ = g2N fixed). This implies two big simplifications that will allow us
to determine Z exactly:

a) At N = ∞ the integral is exactly determined by a saddle-point.

b) Instantons do not contribute, since |q|= |e2πiτ |= |e−8π2N/λ | → 0.

• Finite N (e.g. SU(2)) but R→ ∞ [4]. Then Z is still exactly determined by a saddle point
(this time the large parameter being MR). In this case, instantons contribute. They can be
incorporated exactly by the Seiberg-Witten curve.

3. N = 2 supersymmetric SU(2) SQCD with two massive flavors

3.1 The partition function

Consider now N = 2 supersymmetric Yang-Mills theory coupled to N f = 2 massive matter,
namely a fundamental and an antifundamental hypermultiplet of mass M. This theory is asymptot-
ically free. Localization now leads to the following partition function [4]

ZSQCD(S4) = const.
∫

∞

−∞

da a2 e4a2R2 lnΛRe1+γ H2(2aR)
H2(aR+ MR√

2
)H2(aR− MR√

2
)

∣∣Zinst(a)
∣∣2 . (3.1)

This integral is extremely complicated. Strikingly, it can be exactly determined in the decompacti-
fication limit, as shown below. This will give F =− lnZSQCD as F = F(Λ/M) in terms of elliptic
functions. The possible phase transitions are determined by the discontinuities of F that occur as
the coupling Λ/M is varied from 0 to infinity.

The decompactification limit implies looking into the infrared regime, where ΛR� 1. Since
the integrand depends on aR, ΛR and Λ/M, at large ΛR, we look for saddle-points dominating the
integral lying at large aR. Thus we can use the asymptotic formula

lnH(x) =−x2 ln |x|eγ− 1
2 +O(lnx) . (3.2)

In addition, we use the formula [1]

2πiFins(a) = lim
ε1,2→0

ε1ε2 lnZins . (3.3)

We find
lim
R�1

ZSQCD(S4) =
∫

da e−R2S(a,M) , (3.4)

3
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with

S(a,M) = 8a2 ln
2e

1
4 a

Λ
−2(a+

M√
2
)2 ln
|a+ M√

2
|

Λ
−2(a− M√

2
)2 ln
|a− M√

2
|

Λ

− 2πiFins +2πiF̄ins . (3.5)

We recognize the one-loop contribution to the prepotential, which, combined with the instanton
contributions, gives the full prepotential of the theory [8, 9]. The singularity at a =±M/

√
2 repre-

sents the point in the moduli space where the hypermultiplet becomes massless.
Note that the lnΛ piece originating from the curvature coupling of the scalar field of the vector

multiplet has combined with the terms from the one-loop determinant to produce the correct one-
loop terms of the prepotential with the dynamical scale Λ included. Thus, denoting by a∗ the
saddle-point dominating the integral, we get the exact partition function as ZSQCD = ZSQCD(Λ/M),

lim
R→∞

1
R2 lnZSQCD(S4) = 2πiF (a∗)−2πiF̄ (a∗) , (3.6)

The limit is taken with M, Λ fixed. To complete the derivation, we need to incorporate the instan-
tons in (3.5). This is done in the next subsection using the Seiberg-Witten formalism.

3.2 Exact results via Seiberg-Witten

The Seiberg-Witten curve for N = 2 SU(2) SYM with two flavors of equal mass is [10]

y2 =

(
x2− 1

64
Λ

4
)
(x−u)+

1
4

M2
Λ

2 x− 1
32

M2
Λ

4 . (3.7)

The prepotential F (a) can then be obtained from the formula

aD =
∂F

∂a
. (3.8)

where a and aD are defined as period integrals of the meromorphic one-form

λ =−
√

2
4π

ydx

x2− Λ4

64

. (3.9)

This determines a and aD in terms u (see below).
By a shift x→ x+u/3, we can write the curve (3.7) in the Weierstrass form

y2 = (x− e1)(x− e2)(x− e3) , (3.10)

with

e1 =
u
6
− Λ2

16
+

1
2

√
u+

Λ2

8
+ΛM

√
u+

Λ2

8
−ΛM ,

e2 = −u
3
+

Λ2

8
,

e3 =
u
6
− Λ2

16
− 1

2

√
u+

Λ2

8
+ΛM

√
u+

Λ2

8
−ΛM . (3.11)
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It has singularities at the zeroes of the discriminant

∆ =
1

216 Λ
4 (

Λ
2 +8M2−8u

)2
((

Λ
2 +8u

)2−64Λ
2M2

)
, (3.12)

i.e. at

u1 =−MΛ− Λ2

8
, u2 = MΛ− Λ2

8
, u3 = M2 +

Λ2

8
. (3.13)

The periods a and aD for this curve were explicitly computed in [11]. aD is defined as an integral
over the cycle γ2 surrounding e1 and e2, whereas a on the cycle γ1 surrounding e2 and e3. The cycle
γ1 picks also a pole of the one-form λ whose residue is M/

√
2.

One of the salient aspects of this theory is the occurrence of an Argyres-Douglas [12] super-
conformal fixed point [13]. This arises when some zeroes of ∆ coincide. Then, at the singularity,
e1, e2 and e3 get together and the Riemann surface develops a cusp. From (3.13), we see that this
occurs at

Λ = 2M . (3.14)

As shown below, this represents nothing but the critical point of a second-order phase transition.

Strong coupling phase Λ > 2M

The saddle-point equation is

∂S(a,M)

∂a
= 0 −→ Im

(
∂F

∂a

)
= Im(aD) = 0 . (3.15)

The behavior of aD was examined in detail in [11] and can be understood by looking at the above
expressions for e1, e2, e3. In the integration region, aD is purely imaginary. The equation aD = 0
then requires that e1→ e2. This is the singularity with

u3 = M2 +
1
8

Λ
2 . (3.16)

More precisely, this gives e1 = e2 provided Λ > 2M.
The behavior of the saddle-point a at the singularity, e1 = e2 is shown in fig. 1b. We have

used the exact expressions in terms of elliptic integrals given in [11] (this picks the specific branch
where a(u3) is real). Importantly,

lim
M→Λ

2

a =
M√

2
. (3.17)

This is a consequence of the fact that at this point e2→ e3 and the period integral over γ1 vanishes.
When M→ Λ/2, the integral defining the partition function is dominated by a saddle point located
precisely at the point where a component of the hypermultiplet becomes massless. From fig. 1b we
see that the value of a increases from a non-zero value a = Λ√

2π
at M = 0, until it hits the singularity

at M → Λ/2. As long as M < Λ/2, the free energy will be given by F = −R2Re
(
4πiF (a∗)

)
,

where a∗ is the value of a at u = u3. At the critical point, the theory is described by an interacting
superconformal theory, whose spectrum of scaling dimensions was discussed in [13].

The free energy is thus completely determined in the strong coupling phase Λ > 2M in terms
of the prepotential as a function of M/Λ, computed by sitting on the u = u3 singularity.

5
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Figure 1: a)−iaD as a function of M/Λ at the singularity u=M2+ 1
8 Λ2. It vanishes identically for M <Λ/2,

showing that, in this regime, the singularity u = u3 corresponds to a saddle point in the partition function. b)
a as a function of M/Λ at the same singularity.

Weak coupling phase Λ < 2M

When Λ < 2M, then, at u = u3 one has e2 = e3 and aD 6= 0. Figure 1a shows a plot of −iaD as
a function of Λ/M, which confirms that aD 6= 0 when M > Λ/2. This means that the singular point
u = u3 no longer represents a saddle-point of the integral in the weak coupling regime Λ < 2M.

Is there any saddle-point dominating the partition function integral in the weak coupling phase
Λ < 2M? Above we were looking for saddle-points occurring in the region where a is real and
aD is purely imaginary (this was also the assumption in the discussion of [4], which only found
the saddle point that computes the integral in the strong coupling phase). In this case, the saddle-
point equation Im(aD) = 0 implies aD = 0, and we found that there is no saddle with aD = 0 when
Λ < 2M. Let us now consider more general solutions to the equation

Im
(

∂F

∂a

)
= Im(aD) = 0 . (3.18)

In the weak coupling phase, Λ < 2M, one finds that this is satisfied at the singular point

u→ u2 = MΛ− Λ2

8
(3.19)

At this point, e1→ e3. This represents the dyon singularity

a− M√
2
−aD = 0 . (3.20)

Substituting u→ u2 in the action, we determine the free energy in the weak coupling phase Λ< 2M.

Free energy and critical behavior

We can now compute the free energy and its derivatives in the full range 0 < Λ/M < ∞. The
free energy is obtained as F = −R2Re

(
4πiF

)
, where the prepotential can be computed from the

integral

F (u)−F (u0) =
∫ u

u0

du aD(u)∂ua(u) . (3.21)

6
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where u0 is any generic point on the real line. For a(u), aD(u) one may use the expressions in terms
of elliptic functions given in [11]. However, here we do not need the explicit expressions. Here we
are interested in the critical behavior of the free energy near the critical point Λ = 2M. Thus we are
interested in the possible discontinuities of the derivatives of the free energy at the critical point.
Consider the difference

∆F ≡ F
∣∣∣
Λ=2M+ε

−F
∣∣∣
Λ=2M−ε

, ε > 0, ε << M . (3.22)

This is obtained as
∆F =−R2Re(4πi(F (u3)−F (u2)))

with
F (u3)−F (u2) =

∫ u3

u0

du aD(u)∂ua(u)−
∫ u2

u0

du aD(u)∂ua(u) ,

where the first term is understood to be evaluated at Λ= 2M+ε and the second term, at Λ= 2M−ε .
Note that u2→ u3 as Λ→ 2M. Then

∂ΛF (u3)−∂ΛF (u2) =
(
∂Λu3

)
aD(u3)∂ua(u)

∣∣∣
u=u3
−
(
∂Λu2

)
aD(u2)∂ua(u)

∣∣∣
u=u2

+
∫ u3

u0

du ∂Λ(aD(u)∂ua(u))−
∫ u2

u0

du ∂Λ(aD(u)∂ua(u)) .

Hence

∂ΛF (u3)−∂ΛF (u2) = −M
2

(
a(u2)−

M√
2

)
∂ua(u)

∣∣∣
u=u2

+
∫ u3

u0

du ∂Λ(aD(u)∂ua(u))−
∫ u2

u0

du ∂Λ(aD(u)∂ua(u)) (3.23)

where we used aD(u3) = 0 in the first term (which is to be evaluated at Λ = 2M+ ε) and aD(u2) =

a(u2)− M√
2

in the second term (evaluated at Λ = 2M−ε). Since, as Λ→ 2M, u2→ u3, a→M/
√

2
and ∂ua, aD are regular at the critical point, we find that

(∂ΛF (u3)−∂ΛF (u2))

∣∣∣∣
ε→0
→ 0 . (3.24)

Therefore the first derivative of the free energy with respect to the coupling Λ is continuous at
Λ = 2M. Computing the jump in the second derivative of the prepotential, we now find a non-
vanishing contribution

(
∂

2
ΛF (u3)−∂

2
ΛF (u2)

)∣∣∣∣
ε→0

=−M
2

∂Λa(u2)∂ua(u)
∣∣∣
u=u2
6= 0 (3.25)

From the explicit expressions, we also find Im
[
∂Λa(u2)∂ua(u)

]∣∣∣
u=u2
6= 0 at Λ = 2M− ε . Thus, at

the critical point Λ = 2M, the free energy has a discontinuity in the second derivative, implying a
second-order phase transition.

This may be compared with the analogous phase transition occurring in the large N SQCD
model, [14, 15], which is, instead, third order. This large N phase transition can also be described
in terms of the Seiberg-Witten curve [16].

7
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In conclusion, the SQCD SU(2) theory with two flavors has a phase transition of a similar
nature as the large N phase transition found in SQCD with N f < 2N flavors discussed in [14, 15].
Just as in the transitions of [14, 15], the discontinuous behavior is related to the contribution of
massless hypermultiplets to the free energy at the critical point. Unlike the large N phase tran-
sitions of [14, 15], where instantons are suppressed and played no role, here the phase transition
is dominated by instantons. We also note that the Argyres-Douglas superconformal point of [13]
represents the critical point of these transitions.

4. Large N limit of superconformal field theories

4.1 N = 4 SU(N) SYM on S4

The partition function for this theory is particularly simple because instantons do not contribute
and the one-loop determinant cancels completely between the N = 2 vector multiplet and the
N = 2 adjoint hypermultiplet. The resulting partition function is described by the Gaussian matrix
model:

ZN =4 =
∫

dN−1a∏
i< j

(ai−a j)
2 e
− 8π2

g2 ∑i a2
i ,

N

∑
i=1

ai = 0 . (4.1)

In the large N limit, this integral can be computed by saddle-point techniques. The saddle-point
equations ∂aiS = 0 lead to the system of coupled N−1 algebraic equations

8π2

g2 = ∑
j 6=i

(a j−ai)
−1 . (4.2)

The large N limit can be conveniently described as usual by going to the continuum limit by intro-
ducing the eigenvalue density

ρ(x) =
1
N

N

∑
i=1

δ (x−ai) . (4.3)

Then the saddle-point equations are replaced by the singular integral equation:

−
∫

µ

−µ

dy
ρ(y)
x− y

=
8π2

λ
x . (4.4)

The solution is given by

ρ(x) =
8π

λ

√
λ

4π2 − x2 . (4.5)

Thus eigenvalues have a semi-circular distribution (the Wigner semi-circle). This can be proved
by choosing a contour around the cut from −µ to µ and computing the residue at infinity. Having
the eigenvalue density, we can compute the VEV of the 1/2 supersymmetric circular Wilson loop
operator:

W (C) = TrP exp
[∫

C
ds
(
Aµ(x)ẋµ + iΦ|ẋ|

)]
. (4.6)

This localizes to

〈W 〉= 〈
N

∑
j=1

e2πa j〉=
∫

µ

−µ

dxρ(x)e2πx =
2√
λ

I1(
√

λ ) . (4.7)

This represents the leading result in the 1/N expansion [17, 18].

8
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4.2 Correlation functions of chiral primary operators

A particularly interesting sector of N = 2 superconformal theories (SCFT’s) is that originated
from primary operators annihilated by all supercharges of one chirality, known as chiral primary
operators (CPO’s). In superspace language, the scaling dimension ∆ of chiral primaries are bottom
components of N = 2 chiral superfields. The case of ∆ = 2 is particularly interesting, as the
integrated top component of the multiplet defines an exactly marginal operator. Hence, chiral
superfields with ∆ = 2 parametrize the conformal manifold associated to the SCFT. Moreover,
the 2-point function of such top components defines the Zamolodchikov metric on the conformal
manifold. Because of supersymmetry, it turns out that such metric can be read from the correlators
of the CPO’s. One may choose a basis where the 2-point functions of CPO’s on R4 are of the form

〈On(x)Om(0)〉R4 =
Gnm

|x|2∆n
δ∆n∆m . (4.8)

The metric Gnm encodes all the essential data and it is the main object of interest. These correlation
functions can be computed exactly in any N = 2 superconformal gauge theory by a construction
based on localization recently developed by [5]. The idea exploits the fact that scaling dimension
of chiral primaries are bottom components of N = 2 chiral superfields. This permits to deform
the action by preserving N = 2 superconformal invariance. The method can be used to compute
correlators of the form

〈On1(x1) · · ·Onn(xn)O′m(y)〉R4

Furthermore, due to supersymmetry, correlators on R4 satisfy that [19]

〈On1(x1) · · ·Onn(xn)O′m(y)〉R4 = 〈On(x1)O′m(y)〉R4 ,

On(x1)≡On1(x1) · · ·Onn(xn)

for any number of chiral primary operators and one anti-chiral primary.
To compute these correlators, the idea is to add a source τn for all CPO’s, obtaining in this

way a deformed partition function. In [6], correlators in N = 4 super Yang-Mills theory have
been computed by solving the deformed matrix model in the large N limit. We now describe this
calculation. In this limit, the set of CPO’s dramatically simplifies as only single-trace operators
contribute. Thus, the operators in the chiral ring are of the form OR4

n = Trφ n, being φ one of the
complex scalars in the theory (the scalar field of the vector multiplet when the theory is viewed as
an N = 2 theory). Localization sets Trφ n = ∑

N
i=1 an

i . Thus, for N = 4 U(N) super Yang-Mills
theory, one has to consider the deformed matrix model

Z =
∫

dNa ∏
i< j

(ai−a j)
2
∣∣∣ei∑

N
n=1 πn/2 τn ∑i(ai)

n
∣∣∣2 , (4.9)

where τ2 = τ is the Yang-Mills coupling (2.10).
Two-point correlators are then computed by

1
Z (τn,τn)

∂τn∂τmZ (τn,τn) =
∫
S4

d4x
√

g(x)
∫
S4

d4y
√

g(y)〈On(x)Om(y)〉S4 . (4.10)

9
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Due to the conformal anomaly, on the S4 there is a highly non-trivial operator mixture. This
is expected, since the S4 theory preserves the supergroup osp(2|4), which contains the SU(2)R

symmetry but breaks the U(1)R symmetry. Thus, mixtures among different CPO’s are possible.
Indeed, denoting by R the radius of the S4, a given operator O∆ of dimension ∆ on R4, when
mapped into S4, generically mixes with all operators with lower dimensions in steps of 2, that is

OR4

∆ → OS4

∆ +α
(2)
∆

1
R2 OS4

∆−2 +α
(4)
∆

1
R4 OS4

∆−4 + · · · . (4.11)

In mapping the S4 computation back into the R4, the operator mixture must be disentangled. This
can be accomplished by a Gram-Schmidt orthogonalization procedure. This method was recently
used to compute large N correlation functions in superconformal field theories in [6, 7, 20]. In what
follows we set R = 1.

Returning to the calculation of correlation functions, we need to solve a matrix model with a
potential. Consider, for example, the calculation of correlation function for even operators Trφ 2n.
By virtue of (4.11), they do not mix with odd operators. Including only even deformations, it is
useful to redefine the potential as

V =
n0

∑
n=1

g2nx2n , n0 ≡ [N/2] . (4.12)

Since the potential is invariant under reflection symmetry, we can assume that eigenvalues will
condense in a cut (−µ,µ). The solution for the large N eigenvalue distribution of a matrix model
with an arbitrary even potential is well known,

ρ(z) =
1

4π2

√
µ2− z2−

∫
µ

−µ

dx
V ′(x)√

µ2− x2(z− x)
. (4.13)

In the present case, we get

ρ(z) =
1

2π2

√
µ2− z2

n0

∑
n=1

ng2n−
∫

µ

−µ

dx
x2n−1√

µ2− x2(z− x)
. (4.14)

The integral can be computed by choosing a contour that surrounds the cut (−µ,µ) and computing
the residue at infinity. This gives the formula

−
∫

µ

−µ

dx
x2n−1√

µ2− x2(z− x)
= 2π

n−1

∑
k=0

bkz2n−2k−2
µ

2k . (4.15)

Therefore, we obtain

ρ(x) =

(
n0−1

∑
k=0

qkz2k

)√
µ2− z2 , (4.16)

with

qk =
1
π

n0

∑
n=k+1

nbn−k−1g2nµ
2n−2k−2 , (4.17)

bk ≡
1√
π

Γ(k+1/2)
k!

. (4.18)
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Let us now consider the normalization condition,∫
µ

−µ

dx ρ(x) = 1 .

Again, by residues ∫
µ

−µ

dz z2k
√

µ2− z2 = πσk+1µ
2k+2 , (4.19)

where

σk ≡
1

2
√

π

Γ(k−1/2)
k!

. (4.20)

Hence, normalization implies

π

n0−1

∑
k=0

qkσk+1µ
2k+2 = 1 . (4.21)

Using the expression for ck, this becomes

n0

∑
n=1

nbng2nµ
2n = 1 . (4.22)

where we used the identity
n−1

∑
k=0

σk+1bn−k−1 = bn . (4.23)

In order to compute the connected correlators, we need to compute the g2n derivatives of F =− lnZ.
In particular, for two point functions, we need to compute the matrix of second derivatives of F .
We begin with the formula

∂g2nF =
∫

µ

−µ

dz z2n
ρ(z) . (4.24)

This gives

∂g2nF = π

n0−1

∑
k=0

qkσk+n+1µ
2k+2n+2 =

n0

∑
m=1

dm,ng2mµ
2m+2n , (4.25)

with

dm,n ≡ m
m−1

∑
k=0

bm−k−1σk+n+1 =
(2m)!Γ(n+ 1

2)

4m
√

π(m+n)n!(m−1)!2 . (4.26)

Before taking the second derivative, we note that from this formula we can already obtain the VEV
of the Trφ 2n. We must set g2n = 0, with n > 1 and

g2 =
8π2

λ
.

This gives

〈Trφ 2r〉S4 = ∂g2r F
∣∣∣∣
g2r=0,r>1

= N
(

λ

4π2

)r Γ(r+ 1
2)√

π (r+1)!
= N

(
λ

4π2

)r (2r)!
4rr!(r+1)!

, (4.27)

for r = 1,2, .... Similarly, one can obtain that 〈Trφ 2r+1〉S4 = 0.
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Next, we compute the second derivative of the free energy,

∂g2m∂g2nF =
n0

∑
k=1

(2k+2n)dk,ng2kµ
2k+2n−1 dµ

dg2m
+dm,nµ

2m+2n . (4.28)

To compute dµ/dg2m, we use the normalization condition. After differentiation, we must set all
g2n = 0, with n > 1. We get

dµ

dg2k
=−kbkµ2k−1

g2
=−1

2
kbkµ

2k+1 , (4.29)

where we used

µ
2 =

2
g2

=
λ

(2π)2 . (4.30)

Therefore

∂g2m∂g2nF
∣∣∣∣
g2k>2=0

=
(
dm,n− (2+2n)d1,nmbm

)
µ

2m+2n . (4.31)

After some simple algebra, we obtain

〈O2mŌ2n〉S4 = ∂g2m∂g2nF =−
(

λ

4π2

)m+n
Γ(m+ 1

2)Γ(n+
1
2)

π(m+n)Γ(m)Γ(n)
, (4.32)

where we have defined the VEV-less operators,

OS4

n = Trφ n|S4−〈Trφ n〉S4 1 . (4.33)

The correlators (4.32) look very different from the result obtained by explicit calculation by Feyn-
man diagrams. Due to a non-renormalization theorem, in N = 4 SYM one finds the exact result
[21]

〈OR4

n (0)OR4

m (x)〉R4 =
δnm

|x|2∆n

∆n λ ∆n

(2π)2∆n
. (4.34)

Instead, we are getting non-vanishing two-point functions between operators of different dimen-
sions, whereas the explicit calculation shows that the 2-point function (4.34) vanishes unless the
operators have the same dimension. The key point is the mixture that occurs on S4. By running
the Gram-Schmidt procedure (and including also the odd-odd correlators), we find the orthogonal
basis

OS4

1 ;

OS4

2 ;

OS4

3 −
3λ

(4π)2 OS4

1 ;

OS4

4 −
4λ

(4π)2 OS4

2 ;

OS4

5 −
5λ

(4π)2 OS4

3 +
5λ 2

(4π)4 OS4

1 ;

OS4

6 −
6λ

(4π)2 OS4

4 +
9λ 2

(4π)4 OS4

2 ;

· · · (4.35)
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In the new basis, we find the expected result (4.34).
Here we have checked up to O6. Clearly, it would be desirable to find the new orthogonal basis

by extending (4.35) to all operators, to fully disentangle the operator mixing on S4. By inspection
(and luck), we find the remarkable formula,

OR4

n = 2
(

λ

(4π)2

) n
2

Tr
[
Tn
( 2π√

λ
φ
)]

, n 6= 2 ,

OR4

2 =
λ

(4π)2

(
2Tr
[
T2
( 2π√

λ
φ
)]

+1
)

; (4.36)

Using this formula, one can easily prove in full generality (4.34) from the matrix model on S4 [7].

4.3 Correlation functions involving Wilson loop operators

Having found a closed analytic formula for the operator mixing on S4, we can now compute
other correlation functions. Consider first the VEV of the 1/2 BPS circular Wilson loop operator:
Expanding the exponential, it follows that

〈W 〉S4 =
∞

∑
k=0

(2π)n

n!
〈Trφ n〉 . (4.37)

Substituting (4.27) into (4.37), we find

〈W 〉S4 =
2√
λ

I1
(√

λ
)
, (4.38)

where In denotes, as usual, the modified Bessel function of the first kind. This reproduces the
familiar formula [17, 18] for the VEV of the circular Wilson loop discussed in section 4.1.

Next, consider

〈OR4

n W 〉S4 =
∞

∑
r=0

(2π)r

r!
〈OR4

n Trφ r〉S4 . (4.39)

This has been computed by Giombi and Pestun from a two-matrix model proposal [22]. Here we
shall rederive this result by writing OR4

n in terms of Trφ n and using our general formula given by
the Chebyshev polynomials. Using the explicit expansion of the Chebyshev polynomial, after some
algebra, we find

〈OR4

2n W 〉S4 = 2n
(

λ

8π

)2n ∞

∑
r=0

1
r!(r+2n)!

(
λ

4

)r

= 2n
(

λ

(4π)2

)n
I2n(
√

λ ) , (4.40)

which is in exact agreement with the results of Giombi and Pestun [22], this time obtained from
first principles, namely by direct evaluation of the correlators on S4 using localization and then
going to the orthogonal basis.
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4.4 N = 2 Superconformal QCD

The previous method to compute correlators can be extended to other N = 2 superconformal
field theories. In perturbation theory, one can express correlators of any N = 2 SCF in terms of
correlators of the N = 4 theory. As an example, consider N = 2 superconformal QCD, that is
N = 2 SYM with gauge group SU(N) and 2N fundamental (flavor) hypermultiplets. The deformed
partition function is given by

ZN =2 =
∫

dN−1a ∆(a)
∏i< j H(ai−a j)

2

∏i H(ai)2N |e−2πImτY M ∑a2
i | Zinst , (4.41)

H(x) =
∞

∏
n=1

(
1+

x2

n2

)n2

e−
x2
n .

We shall consider the perturbative expansion in the zero instanton number sector, so we set Zinst→
1. Perturbation series is obtained by expanding the one-loop factor in powers of ai. We use

lnH(x) =−
∞

∑
n=2

(−1)n ζ (2n−1)
n

x2n . (4.42)

Now we can expand ZN =2 as

ZN =2 = ZN =4

{
1−3ζ (3)〈Trφ 2Trφ 2〉N =4

S4 (4.43)

−2
3

ζ (5)
(

10〈Trφ 3Trφ 3〉N =4
S4 −15〈Trφ 4Trφ 2〉N =4

S4

)
+ · · ·

}
;

where ZN =4 is the SU(N) N = 4 SYM partition function and 〈Trφ nTrφ m〉N =4
S4 refers to the 2-

point function of the Trφ n, Trφ m operators in the N = 4 SYM matrix model on the S4. In this
way we write the partition function for N = 2 superconformal QCD solely in terms of quantities
in N = 4 SYM at arbitrary N.

Let us now consider correlators for CPO’s. The special case of correlators for Trφ 2 is simple,
as these insertions arise from derivatives of the YM coupling τY M. One finds [7]

〈Trφ 2Trφ 2〉N =2,SU(N)

R4 =
2(N2−1)
π2Imτ2

Y M
− 9ζ (3)(N2−1)(N2 +1)

2π4Imτ4
Y M

+ · · · , (4.44)

In the particular case of SU(2) gauge group, this formula reproduces an earlier result given in [19]
(see also [5]) and, for SU(3), SU(4), the formula (4.44) also reproduces the expressions given in
[23, 5].

5. Conclusions

• Finite N : One can show the existence of phase transitions in massive N = 2 theories by
combining the Seiberg-Witten curve and saddle-point techniques. Extending the results of
[4], we showed that four-dimensional N = 2 SU(2) SQCD with two massive flavors has a
second-order quantum phase transition. Saddle-points occur at singularities of the Seiberg-
Witten curve. As the coupling is increased, it crosses a critical value Λ = 2M after which
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the saddle-point jumps to another value, producing a discontinuity in the second derivative
of the free energy.

• From the free energy in the weak-coupling phase one could compute the weak-coupling
OPE expansion for the full model including instanton contributions, by expanding the free
energy in powers of Λ/M. In particular, this would be interesting in order to have a bet-
ter understanding of a long-standing question in QCD, concerning the precise manner by
which instanton and non-instanton power-like corrections contribute, and how they can be
distinguished.

• It would be interesting to understand the phase structure of N = 2∗ SU(N) theory using
the Seiberg-Witten curve, as we here did for SU(2) SQCD. Some hints of a finite N phase
transition have been recently found in [24].

• Correlation functions of chiral primaries in N = 2 superconformal theories can be calculated
using a suitably deformed matrix model.

• For the N = 4 theory, the operator mixing on S4 is given by the compact formula (4.36) in
terms of Chebyshev polynomials.

• An interesting challenge is to compute the operator mixing coefficients using holographic
duality to AdS5×S5.

• The method can be applied to compute correlator functions for other operators, e.g. 〈WW 〉,
in many other SCF, including quivers.
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