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1. Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying systems
with strongly coupled dynamics, it should be able to describe at the same time particle physics
and cosmology, which are phenomena that involve very different scales from the microscopic four-
dimensional (4d) quantum gravity length of 10733 cm to large macroscopic distances of the size of
the observable Universe ~ 102 ¢cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different physics corre-
sponding to the electroweak, dark energy and inflation. These scales might be related via the scale
of the underlying fundamental theory, such as string theory, or they might be independent in the
sense that their origin could be based on different and independent dynamics. An example of the
former constraint and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a four-dimensional
braneworld forming our Universe [1]. In this case, the 4d Planck mass is emergent from the funda-
mental string scale and inflation should also happen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that all three scales
have an independent dynamical origin. Moreover, we will assume the presence of low energy su-
persymmetry that allows for an elegant solution of the mass hierarchy problem, a unification of
fundamental forces as indicated by low energy data and a natural dark matter candidate due to an
unbroken R-parity. The assumption of independent scales implies that supersymmetry breaking
should be realized in a metastable de Sitter vacuum with an infinitesimally small (tunable) cosmo-
logical constant independent of the supersymmetry breaking scale that should be in the TeV region.
In a recent work [3], we studied a simple N = 1 supergravity model having this property and moti-
vated by string theory. Besides the gravity multiplet, the minimal field content consists of a chiral
multiplet with a shift symmetry promoted to a gauged R-symmetry using a vector multiplet. In
the string theory context, the chiral multiplet can be identified with the string dilaton (or an appro-
priate compactification modulus) and the shift symmetry associated to the gauge invariance of a
two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The shift symmetry fixes
the form of the superpotential and the gauging allows for the presence of a Fayet-Iliopoulos (FI)
term, leading to a supergravity action with two independent parameters that can be tuned so that the
scalar potential possesses a metastable de Sitter minimum with a tiny vacuum energy (essentially
the relative strength between the F- and D-term contributions). A third parameter fixes the Vacuum
Expectation Value (VEV) of the string dilaton at the desired (phenomenologically) weak coupling
regime. An important consistency constraint of our model is anomaly cancellation which has been
studied in [5] and implies the existence of additional charged fields under the gauged R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which is manifestly
anomaly free without additional charged fields and allows to couple in a straight forward way a vis-
ible sector containing the minimal supersymmetric extension of the Standard Model (MSSM) and
studied the mediation of supersymmetry breaking and its phenomenological consequences. It turns
out that an additional ‘hidden sector’ field z is needed to be added for the matter soft scalar masses
to be non-tachyonic; although this field participates in the supersymmetry breaking and is similar
to the so-called Polonyi field, it does not modify the main properties of the metastable de Sitter
(dS) vacuum. All soft scalar masses, as well as trilinear A-terms, are generated at the tree level and
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are universal under the assumption that matter kinetic terms are independent of the ‘Polonyi’ field,
since matter fields are neutral under the shift symmetry and supersymmetry breaking is driven by
a combination of the U(1) D-term and the dilaton and z-field F-term. Alternatively, a way to avoid
the tachyonic scalar masses without adding the extra field z is to modify the matter kinetic terms
by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use a field representation
in which the gauged shift symmetry corresponds to an ordinary U(1) and not an R-symmetry. The
two representations differ by a Kéhler transformation that leaves the classical supergravity action
invariant. However, at the quantum level, there is a Green-Schwarz term generated that amounts
an extra dilaton dependent contribution to the gauge kinetic terms needed to cancel the anomalies
of the R-symmetry. This creates an apparent puzzle with the gaugino masses that vanish in the first
representation but not in the latter. The resolution to the puzzle is based to the so called anomaly
mediation contributions [7, 8] that explain precisely the above apparent discrepancy. It turns out
that gaugino masses are generated at the quantum level and are thus suppressed compared to the
scalar masses (and A-terms).

This model has the necessary ingredients to be obtained as a remnant of moduli stabilisation
within the framework of internal magnetic fluxes in type I string theory, turned on along the com-
pact directions for several abelian factors of the gauge group. All geometric moduli can in principle
be fixed in a supersymmetric way, while the shift symmetry is associated to the 4d axion and its
gauging is a consequence of anomaly cancellation [9, 10].

We then make an attempt to connect the scale of inflation with the electroweak and supersym-
metry breaking scales within the same effective field theory, that at the same time allows the exis-
tence of an infinitesimally small (tuneable) positive cosmological constant describing the present
dark energy of the universe. We thus address the question whether the same scalar potential can
provide inflation with the dilaton playing also the role of the inflaton at an earlier stage of the
universe evolution [11]. We show that this is possible if one modifies the Kihler potential by a
correction that plays no role around the minimum, but creates an appropriate plateau around the
maximum. In general, the Kihler potential receives perturbative and non-perturbative corrections
that vanish in the weak coupling limit. After analysing all such corrections, we find that only those
that have the form of (Neveu-Schwarz) NS5-brane instantons can lead to an inflationary period
compatible with cosmological observations. The scale of inflation turns out then to be of the or-
der of low energy supersymmetry breaking, in the TeV region. On the other hand, the predicted
tensor-to-scalar ratio is too small to be observed.

2. Conventions

Throughout this paper we use the conventions of [12]. A supergravity theory is specified (up to
Chern-Simons terms) by a Kéhler potential .7, a superpotential W, and the gauge kinetic functions
faB(z). The chiral multiplets z%, y* are enumerated by the index o and the indices A, B indicate the
different gauge groups. Classically, a supergravity theory is invariant under Kéhler tranformations,
viz.

H(2,2) — H (2,2) +J(2) +J(2),



Moduli stabilization, de Sitter vacua and supersymmetry breaking 1. Antoniadis

W) — e *@w(z), 2.1)

where K is the inverse of the reduced Planck mass, m, = k! =2.4 x 10" TeV. The gauge transfor-
mations of chiral multiplet scalars are given by holomorphic Killing vectors, i.e. 6z% = OAkX‘ (2),
where 64 is the gauge parameter of the gauge group A. The Kihler potential and superpotential
need not be invariant under this gauge transformation, but can change by a Kahler transformation

SH =04 [ra(2) +7a(2)], (2.2)

provided that the gauge transformation of the superpotential satisfies SW = —84k?r4(z)W. One
then has from 6W = W, 6z%
Wok¥ = —12raW, (2.3)

where Wy, = doW and « labels the chiral multiplets. The supergravity theory can then be described
by a gauge invariant function
G = K> H +log(KSWW). (2.4)

The scalar potential is given by

V=Vr+Vp
Vi = eKZJi/ (—3K2WW+Van“ﬁ?BW>

1 _
Vo = 5 (Ref) VAB o, g, (2.5)

where W appears with its Kdhler covariant derivative
VoW = 9qW (2) + k(90 )W (2). (2.6)
The moment maps &4 are given by
Py =i(k§0qH —ra). 2.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for which r4(z)
is given by an imaginary constant r4(z) = ik 2&. In this case, k2 is a Fayet-Tliopoulos [13]
constant parameter.

3. The model

The starting point is a chiral multiplet S and a vector multiplet associated with a shift symmetry
of the scalar component s of the chiral multiplet S

0s = —icH, @3.D

and a string-inspired Kéhler potential of the form —plog(s+ §). The most general superpotential

3 3aePs (where a and b are

is either a constant W = kK~ ~a or an exponential superpotential W = x~
constants). A constant superpotential is (obviously) invariant under the shift symmetry, while an
exponential superpotential transforms as W — We ® as in eq. (2.3). In this case the shift

symmetry becomes a gauged R-symmetry and the scalar potential contains a Fayet-Iliopoulos term.
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Note however that by performing a Kihler transformation (2.1) with J = k~2bs, the model can be
recast into a constant superpotential at the cost of introducing a linear term in the Kéhler potential
0K = b(s+5). Even though in this representation, the shift symmetry is not an R-symmetry, we
will still refer to it as U(1)g. The most general gauge kinetic function has a constant term and a
term linear in s, f(s) = 8 + Bs.

To summarise,

H (s,5) = —plog(s+35)+b(s+5),
W(s) = a,
£(s) = 8+ Bs, (3.2)

where we have set the mass units k¥ = 1. The constants a and b together with the constant ¢ in eq.
(3.1) can be tuned to allow for an infinitesimally small cosmological constant and a TeV gravitino
mass. For b > 0, there always exists a supersymmetric AdS (anti-de Sitter) vacuum at (s+35) = b/p,
while for » = 0 (and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a compactification modulus
or the universal dilaton and (for negative ) the exponential superpotential may be generated by
non-perturbative effects.
The scalar potential is given by:

V =Vr+Vp
: 1
VF:aze?lP—z{(pz—b)z—yQ} 1=1/(s+7%)
p
I
Vp =¢? [—b)? 3.3
D= g P Y) G-

In the case where S is the string dilaton, Vpp can be identified as the contribution of a magnetized
D-brane, while Vi for b = 0 and p = 2 coincides with the tree-level dilaton potential obtained
by considering string theory away its critical dimension [14]. For p > 3 the scalar potential V
is positive and monotonically decreasing, while for p < 3, its F-term part V is unbounded from
below when s 4§ — 0. On the other hand, the D-term part of the scalar potential Vp, is positive
and diverges when s+ § — 0 and for various values for the parameters an (infinitesimally small)
positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts p =2 or p =1
when f(s) = s, or p = 1 when the gauge kinetic function is constant. For p =2 and f(s) = s, the
minimization of V' yields:

b/l = —py~ —0.183268 , p=2 (3.4)
a’ A

where A is the value of V' at the minimum (i.e. the cosmological constant), —pg is the negative root
of the polynomial —x> 4 7x* — 10x> — 22x% 4 40x + 8 compatible with (3.5) for A = 0 and A («),

Un superfields the shift symmetry (3.1) is given by 8S = —icA, where A is the superfield generalization of the gauge
parameter. The gauge invariant Kihler potential is then given by ¢ (S,$) = —pk~2log(S+ S+ cVg) + x 2b(S+ S+
cVR), where Vg is the gauge superfield of the shift symmetry.
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B, () are given by

g —4+do—o? a’e

A(o)=2e"—""""=" . Ba)=2————
2a) =2e o’ —4a’ -2 2(e) o?—4a—2

(3.6)

It follows that by carefully tuning @ and ¢, A can be made positive and arbitrarily small indepen-
dently of the supersymmetry breaking scale. A plot of the scalar potential for certain values of the
parameters is shown in figure 1.
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Figure 1: A plot of the scalar potential for p=2,b=—1, § =0, B = 1 and a given by equation (3.5) for
¢ = 1 (black curve) and ¢ = 0.7 (red curve).

At the minimum of the scalar potential, for nonzero a and b < 0, supersymmetry is broken
by expectation values of both an F and D-term. Indeed the F-term and D-term contributions to the
scalar potential are

1,5 2\?
Vr| g = —abe py(l+—) >0,

stS=—p 2 Po
b3c? 2\?
VD’S+§:7TPO = _E <1+p0> > 0. (37)
The gravitino mass term is given by
252
ab” _
(m3n)? =¥ = —-eP. (3.8)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by the gauge field,
which acquires a mass. On the other hand, the Goldstino, which is a linear combination of the
fermion of the chiral multiplet ¥ and the gaugino A gets eaten by the gravitino. As a result, the
physical spectrum of the theory consists (besides the graviton) of a massive scalar, namely the



Moduli stabilization, de Sitter vacua and supersymmetry breaking 1. Antoniadis

dilaton, a Majorana fermion, a massive gauge field and a massive gravitino. All the masses are of
the same order of magnitude as the gravitino mass, proportional to the same constant a (or ¢ related
by eq. (3.5) where b is fixed by eq. (3.4)), which is a free parameter of the model. Thus, they vanish
in the same way in the supersymmetric limit a — 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric ground state
at infinity in the s-field space (zero coupling). It turns out however that it is extremely long lived
for realistic perturbative values of the gauge coupling / ~ 0.02 and TeV gravitino mass and, thus,
practically stable; its decay rate is [5]:

F~e B with B~103°, (3.9)

4. Coupling a visible sector

The guideline to construct a realistic model keeping the properties of the toy model described
above is to assume that matter fields are invariant under the shift symmetry (3.1) and do not partic-
ipate in the supersymmetry breaking. In the simplest case of a canonical Kéhler potential, MSSM-
like fields ¢ can then be added as:

H = —K‘zlog(s+§)+K_zb(SvLS_)-l-Z(P@
W = k3a+ Wyssu, @.1)

where Wyssp (@) is the usual MSSM superpotential. The squared soft scalar masses of such a
model can be shown to be positive and close to the square of the gravitino mass (TeV?). On the
other hand, for a gauge kinetic function with a linear term in s, B # 0 in eq. (3.2), the Lagrangian
is not invariant under the shift symmetry

5.2 = 6P evor, p,, “2)

and its variation should be canceled. As explained in Ref. [5], in the 'frame’ with an exponential
superpotential the R-charges of the fermions in the model can give an anomalous contribution to
the Lagrangian. In this case the ‘Green-Schwarz’ term ImsFF can cancel quantum anomalies.
However as shown in [5], with the minimal MSSM spectrum, the presence of this term requires the
existence of additional fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a constant gauge kinetic
function. In this case the only (integer) possibility? is p = 1. The scalar potential is given by (3.3)
with B =0, 8 = p = 1. The minimization yields to equations similar to (3.4), (3.5) and (3.6) with
a different value of pp and functions A| and B given by:

b(s+35) = —py ~ —0.233153

bc? A
= Ai(—po) + B (—po)% ~ —0.359291+ O(A) (4.3)
_ g (@1 _ 2
Al(a) =2e"a ((X—l)2 ) B](Ol)— (06—1)27

2If f(s) is constant, the leading contribution to Vp when s+ § — 0 is proportional to 1/(s + )2, while the leading
contribution to Vr is proportional to 1/(s+ 5). It follows that p < 2; if p > 2, the potential is unbounded from below,
while if p = 2, the potential is either positive and monotonically decreasing or unbounded from below when s+ 35— 0
depending on the values of the parameters.
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where —py is the negative root of —3 + (p — 1)?(2 — p?/2) = 0 close to —0.23, compatible with
the second constraint for A = 0. However, this model suffers from tachyonic soft masses when
it is coupled to the MSSM, as in (4.1). To circumvent this problem, one can add an extra hidden
sector field which contributes to (F-term) supersymmetry breaking. Alternatively, the problem of
tachyonic soft masses can also be solved if one allows for a non-canonical K#hler potential in the
visible sector, which gives an additional contribution to the masses through the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to the so-called Polonyi
field [15]). The Kéhler potential, superpotential and gauge kinetic function are given by

W = —K*210g(s+s')+K72b(s+s_>+zz+zq)¢7
W =k 3a(l +vKkz) + Wamssm (@),
fs) =1, fa=1/g, 4

where A labels the Standard Model gauge group factors and ¥ is an additional constant parameter.
The existence of a tuneable dS vacuum with supersymmetry breaking and non-tachyonic scalar
masses implies that Y must be in a narrow region:

05<SYS 1.7, 4.5)

In the above range of y the main properties of the toy model described in the previous section
remain, while Rez and its F-auxiliary component acquire non vanishing VEVs. All MSSM soft
scalar masses are then equal to a universal value mg of the order of the gravitino mass, while the
By Higgs mixing parameter is also of the same order:

[ Y+i+y)
[ +1+y2
Ao = mj3), (Gs+3)+t(y1+y2/t)} )
+1+7°
By = ms o (Gs+2)+tw:| R (46)

where 6, = —3+ (p +1)? with p = —b(s+35) and ¢t = (Rez) determined by the minimization
conditions as functions of y. Also, Ag is the soft trilinear scalar coupling in the standard notation,
satisfying the relation [16]

Ao =Bo+my),. 4.7)

On the other hand, the gaugino masses appear to vanish at tree-level since the gauge kinetic
functions are constants (see (4.4)). However, as mentioned in Section 3, this model is classically
equivalent to the theory?

H = —k *log(s+3) +ZZ+Z(P(P,
¢

W = (K_3a(1+z)+WMSSM((p)) ebs7 (4.8)

3This statement is only true for supergravity theories with a non-vanishing superpotential where everything can be
defined in terms of a gauge invariant function G = x2.# 4 log(kSWW) [17].
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obtained by applying a Kihler transformation (2.1) with J = —k~2bs. All classical results remain
the same, such as the expressions for the scalar potential and the soft scalar masses (4.6), but now
the shift symmetry (3.1) of s became a gauged R-symmetry since the superpotential transforms as
W — We <8 Therefore, all fermions (including the gauginos and the gravitino) transform* as
well under this U(1)g, leading to cubic U (1)3 and mixed U (1) x Gmssm anomalies. These anoma-
lies are cancelled by a Green-Schwarz (GS) counter term that arises from a quantum correction to
the gauge kinetic functions:

fA(S) = l/gf\ +ﬁAS with BA = % (TRA — TGA) , (49)
where T is the Dynkin index of the adjoint representation, normalized to N for SU(N), and Tk is
the Dynkin index associated with the representation R of dimension dg, equal to 1/2 for the SU(N)
fundamental. An implicit sum over all matter representations is understood. It follows that gaugino
masses are non-vanishing in this representation, creating a puzzle on the quantum equivalence of
the two classically equivalent representations. The answer to this puzzle is based on the fact that
gaugino masses are present in both representations and are generated at one-loop level by an effect
called Anomaly Mediation [7, 8]. Indeed, it has been argued that gaugino masses receive a one-loop
contribution due to the super-Weyl-Kéhler and sigma-model anomalies, given by [8]:

2

8
Min =16z

T,
(3T —Tr)ms o + (T — Tg) HoF* + Zd—R(logdetji/]R " oaF*|. (4.10)
R

The expectation value of the auxiliary field F%, evaluated in the Einstein frame is given by
Fo = o 2g0B 5. (4.11)

Clearly, for the Kéhler potential (4.4) or (4.8) the last term in eq. (4.10) vanishes. However, the
second term survives due to the presence of Planck scale VEVs for the hidden sector fields s and
z. Since the Kihler potential between the two representations differs by a linear term b(s + 5), the
contribution of the second term in eq. (4.10) differs by a factor

g3

~ l6n2

which exactly coincides with the ‘direct’ contribution to the gaugino masses due to the field de-

Smy (Tg — Tr)be™ 2B 5w 4.12)

pendent gauge kinetic function (4.9) (taking into account a rescaling proportional to gf‘ due to the
non-canonical Kinetic terms).

We conclude that even though the models (4.4) and (4.8) differ by a (classical) Kéhler transfor-
mation, they generate the same gaugino masses at one-loop. While the one-loop gaugino masses
for the model (4.4) are generated entirely by eq. (4.10), the gaugino masses for the model (4.8)
after a Kihler transformation have a contribution from eq. (4.10) as well as from a field dependent
gauge kinetic term whose presence is necessary to cancel the mixed U(1)g x G anomalies due to
the fact that the extra U(1) has become an R-symmetry giving an R-charge to all fermions in the
theory. Using (4.10), one finds:

2

M1/2 = —ﬁmwz (3TG— TR) — (TG - TR) <(p + 1)2+t

2
VH*WN' 4.13)

1+t

“4The chiral fermions, the gauginos and the gravitino carry a charge bc/2, —bc/2 and —bc/2 respectively.
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For U(1)y we have T = 0 and Tg = 11, for SU(2) we have Tg =2 and Tz = 7, and for SU(3) we
have T = 3 and Tk = 6, such that for the different gaugino masses this gives (in a self-explanatory
notation):

2
R 5% B , ty+i+y)
My = 111671-2””3/2 [1 (p+1) 1+ :|7
YA S PR TSN L Vo et )
2= Jem2 ™2 p Tty )
2 2
_ 2.8 o, Hy+i+y)
M; = 316n2m3/2 [1+(p+1) + i } (4.14)

5. Phenomenology

The results for the soft terms calculated in the previous section, evaluated for different values
of the parameter y are summarised in Table 1. For every 7, the corresponding ¢ and p are calculated
by imposing a vanishing cosmological constant at the minimum of the potential. The scalar soft
masses and trilinear terms are then evaluated by eqgs. (4.6) and the gaugino masses by eqs. (4.14).
Note that the relation (4.7) is valid for all y. We therefore do not list the parameter By.

Yy |t p mg Ao M, M, M; tanfB(u >0) tanfB(u <O0)
0.6 | 0.446 0.175 | 0475 1.791 0.017 0.026 0.027
1 0.409 0.134 | 0.719 1.719 0.015 0.025 0.026
1.1 | 0386 0.120 | 0.772 1.701 0.015 0.024 0.026 46 29
1.4 1 0390 0.068 | 0.905 1.646 0.014 0.023 0.026 40 23
1.7 | 0414 0.002 | 0.998 1.588 0.013 0.022 0.025 36 19

Table 1: The soft terms (in terms of m3 ;) for various values of y. If a solution to the RGE exists, the value
of tan 3 is shown in the last columns for ¢ > 0 and u < 0 respectively.

In most phenomenological studies, By is substituted for tan 3, the ratio between the two Higgs
VEVs, as an input parameter for the renormalization group equations (RGE) that determine the
low energy spectrum of the theory. Since By is not a free parameter in our theory, but is fixed by
eq. (4.7), this corresponds to a definite value of tan 3. For more details see [18] (and references
therein). The corresponding tan 3 for a few particular choices for y are listed in the last two columns
of table 1 for u > 0 and u < 0 respectively. No solutions were found for y < 1.1, for both signs
of t. The lighest supersymmetric particle (LSP) is given by the lightest neutralino and since
M < M, (see table 1) the lightest neutralino is mostly Bino-like, in contrast with a typical mAMSB
(minimal anomaly mediation supersymmetry breaking) scenario, where the lightest neutralino is
mostly Wino-like [19].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in Figure 2 as a func-
tion of the gravitino mass for y = 1.1 and u > 0 (for ¢ < 0 the bound is higher). The experimental
limit on the gluino mass forces mj 2 15 TeV. In this limit the stop mass can be as low as 2 TeV. To
conclude, the lower end mass spectrum consists of (very) light charginos (with a lightest chargino
between 250 and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP (80 — 230

10
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TeV
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Figure 2: The masses (in TeV) of the sbottom (yellow), stop (black), gluino (red), lightest chargino (green)
and lightest neutralino (blue) as a function of mj3 /, for y = 1.1 and for u > 0. No solutions to the RGE were
found when mj3, 2 45 TeV. The lower bound corresponds to a gluino mass of 1 TeV.

GeV), which would distinguish this model from the mAMSB where the LSP is mostly Wino-like.
These upper limits on the LSP and the lightest chargino imply that this model could in principle
be excluded in the next LHC run. In order for the gluino to escape experimental bounds, the lower
limit on the gravitino mass is about 15 TeV. The gluino mass is then between 1-3 TeV. This however
forces the squark masses to be very high (10 — 35 TeV), with the exception of the stop mass which
can be relatively light (2 — 15 TeV).

6. Non-canonical Kihler potential for the visible sector

As mentioned already in Section 4, an alternative way to avoid tachyonic soft scalar masses for
the MSSM fields in the model (4.1), instead of adding the extra Palonyi-type field z in the hidden
sector, is by introducing non-canonical kinetic terms for the MSSM fields, such as:

H = —x 2log(s+35)+ Kk 2b(s+5)+ (s+3)7"Y 00,
W = k a+Wuyssu,
fs) =1, fals)=1/gi, ©6.1)
where v is an additional parameter of the theory, with v = 1 corresponding to the leading term
in the Taylor expansion of —log(s+§— @@). Since the visible sector fields appear only in the

combination @@, their VEVs vanish provided that the scalar soft masses squared are positive.
Moreover, for vanishing visible sector VEVs, the scalar potential and is minimization remains the

11
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same as in egs. (refbsalpha). Therefore, the non-canonical Kédhler potential does not change the fact
that the F-term contribution to the soft scalar masses squared is negative. On the other hand, the
visible fields enter in the D-term scalar potential through the derivative of the Kéhler potential with
respect to s. Even though this has no effect on the ground state of the potential, the ¢-dependence
of the D-term scalar potential does result in an extra contribution to the scalar masses squared

which become positive

e*(os+1a
———— —x26. 6.2
Ala)(1—a) 62)

The soft MSSM scalar masses and trilinear couplings in this model are:

m3 = K2a® <b> (e"‘(os+1)+vA(aa)(l —(x)>

V> -

o
Ag = my(s+35)"7* (05 +3) (6.3)
By = m3/2(s+§)v/2((fs+2)

where o is defined as in (4.6), eq. (4.4) has been used to relate the constants a and ¢, and cor-
rections due to a small cosmological constant have been neglected. A field redefinition due to a
non-canonical kinetic term gy = (s+5) " is also taken into account. The main phenomenological
properties of this model are not expected to be different from the one we analyzed in section 5 with
the parameter Vv replacing y. Gaugino masses are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not repeat the phenomenological analysis for this
model.

7. Identifying the dilaton with the inflaton

In the following, we study the possibility to identify the dilaton with the inflaton. We will
show first that the above model does not allow slow roll inflation.

Indeed, the kinetic terms in the model (3.2-3.3) for the scalar ¢ = s+ 5= 1/I are given by
pk2 1

Eampa#q). (7.1)

The canonically normalised field y therefore satisfies y = k! \/g log ¢, where we re-introduce

Zi)e = —gss0usots = —

the gravitational coupling k.
The slow roll parameters are given by

e L (V/ax) 1
22 1% - 2K2

Lav dx)
Vdo \do ’
V') 1 L@V (dx\ TP dvdiy (dx\ 72)
T=% v ~ev | \dp dod¢>* \do) |’ '

It can be shown that, when the conditions (3.4) and (3.5) are satisfied, the slow roll parameters and

the potential depend only on p = —b¢; indeed

K*V(p) e P (Ax(a)p (p>+4p —2) —2¢P(p +2)?)
bt 2p3 ’

(7.3)

12
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where A;(a) &~ —50.66 as in eq. (3.5). In Fig. 3, a plot is shown of "‘Z‘VJCFQ

The minimum of the potential is at ppi, ~ 0.1832 (see eq. (3.4)), while the potential has a local

as a function of p.

maximum at Ppax ~ 0.4551. A plot of the slow roll parameter 1 (also in Fig. 3) shows that || < 1
is not satisfied. This result holds for any parameters a, b, ¢ satisfying eqs. (3.4) and (3.5). A similar

K*V

b c?
100 [
80 | 5t

60 |

40|

20 ¢

0.2 0.4 0.6 0.8 1.0

4
Figure 3: A plot of — Kb‘;c(f ) as a function of p = —b¢ (left), and a plot of the slow roll parameter 1 as a

function of p (right). The slow roll condition || < 1 is not satisfied for any value of the parameters a, b, c.

analysis to the one above can be performed for p = 1, showing that the slow roll condition n < 1
can not be satisfied.

8. Extensions of the model that satisfy the slow roll conditions

In the previous section we showed that the slow roll conditions can not be satisfied in the
minimal versions of the model. In this section we modify the above model by modifying the
Kihler potential. While the superpotential is uniquely fixed (up to a Kihler transformation), the
Kihler potential admits corrections that can always be put in the form

H = —pk*log <s+s-+ EF(S—}—f)) +x72b(s+3), 8.1)
while the superpotential, the gauge kinetic function and moment map are given by
W = K73a,
f(s) = 8+ Bs,
1+ SF,
P =Kk b—pibg , (8.2)
s+5+3F

where & is the U(1) moment map (2.7) and Fy; = d;F (s +5). The scalar potential is given by
(@ =5+5)

V =Vr+Vp,

S e 1 (b(bp+EF)—p(b+ERy))’

' (9+%F)” p&Fog (b9 +&F) = (b+EF)* |

Ve — 4 b2c? 1+%F¢ ? 2.3
b= 5 4pe || horEF &

13



Moduli stabilization, de Sitter vacua and supersymmetry breaking 1. Antoniadis

As was discussed above, we take = 1,3 =0forp=1and 6 =0, =1 for p =2.

Identifying Re(s) with the inverse string coupling, the function F may contain perturbative
contributions that can be expressed as power series of 1/(s+ §), as well as non-perturbative cor-
rections which are exponentially suppressed in the weak coupling limit. The later can be either of

a2 .
—A(s+5) in the case

the form e 2619 for A > 0 in the case of D-brane instantons, or of the form e
of (Neveu-Schwarz) NS5-brane instantons (since the closed string coupling is the square of the
open string coupling). We have considered a generic contribution of these three different types of
corrections and we found that only the last type of contributions can lead to an inflationary plateau
providing sufficient inflation. The other corrections can be present but do not modify the main
properties of the model (as long as weak coupling description holds). In the following section, we
analyse in detailed a function F describing a generic NS5-brane instanton correction to the Kéhler

potential.

9. Slow-roll Inflation

9.1 p=2 case

‘We now consider the case with

F(9) = exp(ab*¢?), 9.1)

where b < 0 and oo < 0. F(¢) vanishes asymptotically at large ¢. In this case, we obtain

2
Vp = kb3t | bo —2+ éeabzd)z(] —4abg) ©.2)
bo b + Eeo? ’ |
and
242 2
k4 |a|2b2eb? (b6 +&ea¢" (1~ 4abg) ~2)
. +6]. 9.3)

2(Een0’ 1 pg) | 2@ (2ab39 + Ee®P P —bg) — |

There are four parameters in this model namely «, &, b and c¢. The first two parameters o and
& control the shape of the potential. There are some regions in the parameter space of o and &
that the potential satisfies the slow-roll conditions i.e. € < 1 and |n| < 1. In order to obtain the
potential with flat plateau shape which is suitable for inflation and in agreement with Planck ’15
data, we choose

o~—4.84 and & ~0.025 (9.4)

Note that in the case of £ =0 and b < 0, we can find the Minkowski minimum by solving the
equations V(@uin) = 0 and dV (@pin)/d¢ = 0, where @min = Smin + Smin is the value of ¢ at the
minimum of the potential. In the case of & # 0, we can not solve the equations analytically and the

relations (3.4), (3.5) are not valid. We can always assume that they are modified into
2
bmin = —p(E,a) and % = —50.66 x A(E, 0, A)>, 9.5)
c

where A takes positive values and satisfies |4 — 1| < 1. For any given value of parameters &, o
and the cosmological constant A, one can numerically fix the value of p and A. By fine-tuning the

14
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cosmological constant A to be very close to zero, we can numerically solve the equations V = 0
and dV /d¢ = 0 for the value of p and A in (9.5) as:

p ~ 0.18, (9.6)
A~ 1.017 9.7)

From eq. (9.5), we can see that the third parameter, b, controls the vacuum expectation value
Omin. This can be shown in Fig. 4 where we compare the scalar potential for different values of
b. Motivated by string theory, we have the identification ¢ ~ 1/g; . We can choose the value of
the parameter b such that ¢,,;, is of the order of 10 to make sure that we are in the perturbative
regime in g;. The last parameter, ¢, controls the overall scale of the potential but does not change
its minimum and its shape. In the following, we will fix b and ¢ by using the cosmological data.

1.x10°8
8.x107 |
6.><10‘7;
4.x107 |

2.x107 |

Figure 4: A plot of the scalar potential for p = 2, with b = —0.020, b = —0.015 and » = —0.012. Note that
we choose the parameters o and & as in eq. (9.4) with ¢ = 0.06.

In order to compare the predictions of our models with Planck *15 data, we choose the follow-
ing boundary conditions:

Oine = 27.32 Oena = 22.68 (9.8)

The initial conditions are chosen very near the maximum on the (left) side, so that the field rolls
down towards the electroweak minimum. Any initial condition on the right of the maximum may
produce also inflation, but the field will roll towards the SUSY vacuum at infinity. The results are
therefore very sensitive to the initial conditions (9.8) of the inflaton field.

The slow roll parameters are given as in equation (7.2). The total number of e-folds N can be

KtV L A 2
N=x? / —dy = «* — (=% do. .
. Xend aXV X . ¢end a¢v <d¢ > ¢ (9 9)

determined by
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ng r Ag

0.965 | 2.969 x 1072 | 2.259 x 10~?

Table 2: The theoretical predictions for p =2, with b = —0.0182 and ¢ = 0.61 x 10~!3, where & and & are
given in eq. (9.4).

Note that we choose |1 (Xena)| = 1. We can compare the theoretical predictions of our model to
the experimental results via the power spectrum of scalar perturbations of the CMB, namely the
amplitude A; and tilt ng, and the relative strength of tensor perturbations, i.e. the tensor-to-scalar
ratio r. In terms of slow roll parameters, these are given by

K*V,
Ay = ——— 9.10
N 2477:28*’ ( )
ng = 14+2n, — 6&,, 9.11)
r = 16¢,, (9.12)

where all parameters are evaluated at the field value ;.
In order to satisfy Planck ’15 data, we choose the parameters b = —0.0182, ¢ = 0.61 x 10713,
The value of the slow-roll parameters at the beginning of inflation are

£(Pi) ~1.86x1072* and N (¢in) ~ —1.74x 1072, 9.13)

The total number of e-folds N, the scalar power spectrum amplitude Ay, the spectral index of
curvature perturbation ng and the tensor-to-scalar ratio r are calculated and summarised in Table 2,
in agreement with Planck *15 data [20]. Fig. 5 shows that our predictions for n, and r are within
1o C.L. of Planck "15 contours with the total number of e-folds N ~ 1075. Note that N is the
total number of e-folds from ¢;,, to ¢.,;. However the number of e-folds associated with the CMB
observation corresponds to a period between the time of horizon crossing and the end of inflation,
which is much smaller than 1075. According to general formula in [20], the number of e-folds
between the horizon crossing and the end of inflation is roughly estimated to be around 50-60.

We would like to remark that the parameter ¢ also controls the gravitino mass at the minimum
of the potential around O(10) TeV. Indeed, the gravitino mass is written as

b6 /2
_ 2oy _ L[ _abe™m 9.14
s = Ke K<b¢+§F(¢> 9.14)

For b = —0.0182, we get @nyin ~ 9.91134 and the gravitino mass at the minimum of the potential
(m3),) ~ 14.98 TeV. (9.15)
The Hubble parameter during inflation (evaluated at ¢, = @) is
H,=1x/V,/3=1.38 TeV. (9.16)

This shows that our predicted scale for inflation is of the order of TeV. The mass of gravitino
during the inflation m} = 4.15 TeV is higher than the inflation scale, and the gauge boson mass
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is Mj{u =3.12 TeV.’ In fact, the gauge boson acquires a mass due to a Stueckelberg mechanism by
eating the imaginary component of s, where its mass at the minimum of the potential is given by

(Ma,) = 15.48TeV. 9.17)

As a result, the model essentially contains only one scalar field Re(s), which is the inflaton. This is

in contrast with other supersymmetric models of inflation, which usually contain at least two real
scalars [21].6

0.20
—— 10 Planck15
a=-4.84112
520.02535 —— 20 Planck15
b=-0.01820
015 ¢c=0.61x107" 1
N ,
Re)
[
5
S 0.10} ]
el
S
7]
c
(0]
= L
0.05+ J
N =1075.41
000 L L L L L L L L L L L L L L L L L . L L L L L
0.94 0.95 0.96 0.97 0.98 0.99

Primordial tilt (ng)

Figure 5: We plot the theoretical predictions for the case p = 2, shown in Table 2, in the 7, - r plane together
with the Planck *15 results for TT, TE, EE, + lowP and assuming ACDM + r [20].

9.2 p=1 case

In this case, we obtain

2
J_ K0P [b6 =1+ £ (1 —20b9) 0.18)
D 2 b(}) + geabzd)z i .
and ?
c4aPpere | (b9 +EO (1 —2ab9) 1)
. 13 (9.19)

£ L pg | 20Ee® 0 (206393 + Ee —bg) — |

5The gauge boson mass is given by ma, =/ 2gs5¢% /Re(s).
OThis is because a chiral multiplet contains a complex scalar.
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ng r Ag

0.959 | 4.143 x 10722 | 2.205x 10~?

Table 3: The theoretical predictions for p = 1 case with b = —0.0234, ¢ = 1 x 10713, ¢ = —0.781 and
& =0.3023.

The potential has similar properties with the p = 2 case although it may give different phenomeno-
logical results at low energy. Similar to the previous case, the relations (4.4) are not valid when
& # 0 and we assume that they are modified into

2
bOin=—p(E, ) and l;iz ~ —0.359 x A (&, 0, A) 2. (9.20)

By choosing a = —0.781 and £ = 0.3023 and tuning the cosmological constant A to be very close
to zero, we can numerically fix p ~ 0.56 and A ~ 1.29 for this case. The gravitino mass for p =1

bo /2
myy = K2 W = ! (“Mbe> : 9.21)

K\ Vb +EF(9)

By choosing the parameters b = —0.0234, ¢ = 1 x 10~!3, the gravitino mass at the minimum of the
potential is

case can be written as

with @nin =~ 21.53, and
<MA”> =36.18 TeV. (9.23)

By choosing appropriate boundary conditions, we find
Gy = 64.53 and  @ppg = 50.99 9.24)

As summarised in Table 3, the predictions for the p = 1 case are similar to those of p = 2, in
agreement with Planck *15 data with the total number of e-folds N ~ 888. In this case, the Hubble
parameter during inflation is

H,=x/V./3=5.09 TeV. (9.25)

Note that for the p = 1 case, the mass of the gauge boson is MZ“ =6.78 TeV, and the mass of the
gravitino during inflation is = 4.72 TeV.

9.3 SUGRA spectrum

The above model can be coupled to MSSM, as described in section 4:

H =K (s+3)+) 00,
W = Wi(s) + Wmisswm -

(9.27)
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The soft supersymmetry breaking terms can then be calculated as follows

m = & (<2 Wi()Wals) + K¢ VW)
AO — K.Ze;cZ%/ngEKs (‘/T]E-l_ K.ZKSW) ,
By = k2712 (¢VK, (We+ KPKW) — W) . (9.28)

For p = 2 the Lagrangian contains a Green-Schwarz term eq. (4.2), and the theory is not gauge
invariant (without the inclusion of extra fields that are charged under the U (1)). We therefore focus
on p = 1. The soft terms can be written in terms of the gravitino mass (see eq. (9.14))

mi = m§/2 [-2+¢],
Ag =m3) C,
B() = A() —I?’I3/2, (9.29)

where
(—ge“b2¢2 +b (4a§e°‘b2¢2 . 1) +2>2
4026205707 — 4abE pe®P 9’ 4 Bo2H3E p3e®h 0’ — 2
O=0min
Using the parameters presented in section 9.2, we find mj3,, = 18.36 TeV and 4" = 1.53. For
& = 0 the model reduces to the one analysed in section 4, where one has ¢’ = 1.52 and mj3/, =

(9.30)

17.27 TeV (with ¢, = 9.96). Moreover, the scalar soft mass is tachyonic. This can be solved
either by introducing an extra Polonyi-like field, or by allowing a non-canonical Kéhler potential
for the MSSM-like fields ¢. The resulting low energy spectrum is expected to be similar to the one
described in sections 4 and 5. We do not perform this analysis, but only summarise the results.

Since the tree-level contribution to the gaugino masses vanishes, their mass is generated at one-
loop by the so-called ‘Anomaly Mediation’ contribution (4.10). As a result, the spectrum consists
of very light neutralinos (O(10?) GeV), of which the lightest (a mostly Bino-like neutralino) is the
LSP dark matter candidate, slightly heavier charginos and a gluino in the 1 —3 TeV range. The
squarks are of the order of the gravitino mass (~ 10 TeV), with the exception of the stop squark
which can be as light as 2 TeV.
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