
P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated
computing

Paolo Andreetto
INFN, Sezione di Padova

Via Marzolo 8, 35131 Padova, Italy
E-mail: Paolo.Andreetto@pd.infn.it

Jan Astalos
Institute of Informatics Slovak Academy of Sciences

Bratislava, Slovakia
E-mail: Jan.Astalos@savba.sk

Miroslav Dobrucky
Institute of Informatics Slovak Academy of Sciences
Bratislava, Slovakia

E-mail: Miroslav.Dobrucky@savba.sk

Andrea Giachetti
CERM Magnetic Resonance Center
CIRMMP and University of Florence, Italy

E-mail: giachetti@cerm.unifi.it

David Rebatto
INFN, Sezione di Milano

Via Celoria 16, 20133 Milano, Italy
E-mail: David.Rebatto@mi.infn.it

Antonio Rosato
CERM Magnetic Resonance Center

CIRMMP and University of Florence, Italy
E-mail: rosato@cerm.unifi.it

Viet Tran
Institute of Informatics Slovak Academy of Sciences
Bratislava, Slovakia

E-mail: viet.ui@savba.sk

Marco Verlato1

INFN, Sezione di Padova
Via Marzolo 8, 35131 Padova, Italy

E-mail: Marco.Verlato@pd.infn.it

Lisa Zangrando
INFN, Sezione di Padova

Via Marzolo 8, 35131 Padova, Italy
E-mail: Lisa.Zangrando@pd.infn.it

While accelerated computing instances providing access to NVIDIATM GPUs are already
available since a couple of years in commercial public clouds like Amazon EC2, the EGI
Federated Cloud has put in production its first OpenStack-based site providing GPU-equipped
instances at the end of 2015. However, many EGI sites which are providing GPUs or MIC
coprocessors to enable high performance processing are not directly supported yet in a federated
manner by the EGI HTC and Cloud platforms. In fact, to use the accelerator cards capabilities
available at resource centre level, users must directly interact with the local provider to get
information about the type of resources and software libraries available, and which submission
queues must be used to submit accelerated computing workloads. EU-funded project EGI-
Engage since March 2015 has worked to implement the support to accelerated computing on
both its HTC and Cloud platforms addressing two levels: the information system, based on the
OGF GLUE standard, and the middleware. By developing a common extension of the
information system structure, it was possible to expose the correct information about the

1Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

accelerated computing technologies available, both software and hardware, at site level.
Accelerator capabilities can now be published uniformly, so that users can extract all the
information directly from the information system without interacting with the sites, and easily
use resources provided by multiple sites. On the other hand, HTC and Cloud middleware
support for accelerator cards has been extended, where needed, in order to provide a transparent
and uniform way to allocate these resources together with CPU cores efficiently to the users. In
this paper we describe the solution developed for enabling accelerated computing support in the
CREAM Computing Element for the most popular batch systems and, for what concerns the
information system, the new objects and attributes proposed for implementation in the version
2.1 of the GLUE schema. For what concerns the Cloud platform, we describe the solutions
implemented to enable GPU virtualisation on KVM hypervisor via PCI pass-through technology
on both OpenStack and OpenNebula based IaaS cloud sites, which are now part of the EGI
Federated Cloud offer, and the latest developments about GPU direct access through LXD
container technology as a replacement of KVM hypervisor. Moreover, we showcase a number of
applications and best practices implemented by the structural biology and biodiversity scientific
user communities that already started to use the first accelerated computing resources made
available through the EGI HTC and Cloud platforms.

International Symposium on Grids and Clouds 2017 -ISGC 2017-
5-10 March 2017
Academia Sinica, Taipei, Taiwan

2

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

1. Introduction

The EGI infrastructure is a federation of 20 cloud providers and over 300 data centres,
spread across Europe and worldwide. As of November 2016, EGI offers more than 730,000
CPU-cores for High Throughput Compute, 6,600 cores for cloud compute, and more than 500
PB of data storage. The infrastructure operations have been supported since 2010 by two
European projects: EGI-InSPIRE (2010-2014) and EGI-Engage (2015-2017). In 2012 a EGI
Working Group was set up to assess the interest of EGI community (both users and resource
providers) about General-Purpose Graphics Processing Units (GPGPUs, shortened to GPUs in
the rest of the article). A survey completed in September 2012 [1] showed that:

• 92.9 % of the users would be interested in accessing remote GPU based resources
through a computing infrastructure

• 30.2 % of the resource centres were already providing GPU resources, and 56.3 %
planned to do in the incoming 24 months.

In the following years Accelerated Computing has become increasingly popular. The term
refers to a computing model used in scientific and engineering applications whereby
calculations are carried out on specialized processors (known as accelerators) coupled with
traditional CPUs to achieve faster real-world execution times. Nowadays accelerators are highly
specialized microprocessors designed with data parallelism in mind, and more in general other
than GPUs they include XeonTM PhiTM coprocessors, based on IntelTM Many Integrated Core
(MIC) architecture, and specialized Field Programmable Gate Array (FPGA) PCIe cards. They
allow to reduce execution times by offloading parallelizable computationally-intensive portions
of an application to the accelerators while the remainder of the code continues to run on the
CPU.

Unfortunately, in the current implementation of the EGI infrastructure, there is neither way
to describe/discover this kind of resources, nor to allocate them together with CPU cores to
efficiently execute user jobs. A dedicated task of the EGI-Engage project was therefore designed
to address these issues, with the ultimate goal to provide a complete new Accelerated
Computing platform for EGI. The task activities started in March 2015, with two main
objectives: to implement accelerated computing support in the information system, based on the
OGF GLUE standard [2] schema evolution; to extend the current EGI HTC and Cloud platforms
introducing middleware support for accelerator cards. User communities, grouped within EGI-
Engage in entities called Competence Centres (CCs), had a driving role in setting the
requirements and providing a number of use cases. In particular, LifeWatch CC captured the
requirements of the Biodiversity and Ecosystems research community for deploying GPU based
e-infrastructure services supporting data management, processing and modelling for Ecological
Observatories. It provided an Image Classification Deep Learning Tool as use case. MoBrain
CC instead captured the requirements of the Structural Biology scientific domain, aiming at
deploying portals for bio-molecular simulations leveraging GPU resources. Their use cases
involved popular molecular dynamics packages like AMBER and GROMACS, and 3D bio-
molecular structure model fitting software like PowerFit and DisVis.

The paper is organized as follows. Section 2 describes the development work carried out to
enhance the EGI HTC platform in order to fully exploit accelerator cards. Section 3 illustrates

3

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

how the support to GPUs, based on PCI pass-through virtualisation technology, has been
introduced in the EGI Federated Cloud by properly configuring and tuning the OpenStack and
OpenNebula cloud frameworks. Section 4 shows a number of applications that firstly used the
accelerated platform to enhance their performance, and finally Section 5 provides a summary
and the future perspectives.

2. The HTC Accelerated Platform

A snapshot of the EGI Grid Information System taken in October 2015 [1] has shown that
the 75% of the 567 Compute Elements (CEs) composing the EGI HTC platform is based on
CREAM (Computing Resource Execution And Management): a web service based CE for the
UMD/gLite grid middleware [3]. CREAM has been since years the most popular grid interface
in EGI for a number of Local Resource Management Systems (LRMS): TORQUE, LSF, SGE,
Slurm, HTCondor. Nowadays, most recent versions of these LRMS provide native support to
GPUs, MIC coprocessors and other accelerators, meaning that computing nodes hosting these
cards and managed by one of the above LRMS can be selected by specifying the proper LRMS
directives and parameters. This suggested the definition of a work plan to implement an HTC
Accelerated Platform based on an enhanced CREAM CE in the following steps:

1. Identification of the relevant GPU/MIC/FPGA related parameters supported by any
LRMS and abstract them to useful JDL attributes.

2. Implementation of the needed code changes in the relevant CREAM components.
3. Extension of the current version 2.1 draft GLUE schema for describing the accelerator

information.
4. Development of information providers according to the extended GLUE 2.1 draft

specifications.
5. Test and certification of the enhanced CREAM CE prototype.
6. Release of a CREAM CE updated version with full support for accelerators.

Considering that TORQUE is the most popular choice of LRMS in EGI for the CREAM
CE instances, we started to work with a testbed composed by 3 nodes, each one with 2 Intel TM

XeonTM E5-2620 v2 and 2 NVIDIATM TeslaTM K20m GPUs, and a server hosting TORQUE
4.2.10 (compiled with NVIDIATM NVML libraries) with MAUI 3.3.1 as scheduler. The testbed
was made available by CIRMMP team at the University of Florence, in Italy.

2.1 Job submission

User job submission towards EGI HTC platform typically happens through VO level
services like DIRAC [4] or gLite-WMS [5], which act as resource broker to select the best
suited CE where to execute the user job, according to job requirements specified in the JDL file.
The Job Description Language (JDL) is a high-level, user-oriented language based on Condor
classified advertisements (classads) for describing jobs to be submitted to a resource broker or
directly to the CREAM CE service. We’ll consider here only direct job submission to a CREAM

CE, through the glite-ce-job-* command line. Being the JDL an extensible language [6]

the user is allowed to use whatever attribute for the description of a request without incurring in
errors from the JDL parser. However, only a certain set of attributes, that we will refer as
“supported attributes” from now on, is taken into account by the CREAM CE service. Figure 1

4

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

below shows a high level architecture of the CREAM CE service. It is essentially a grid
gateway with a Web Service interface to allow remote authorized (via VOMS service) users to
submit jobs to a cluster of compute nodes managed by one of the popular LRMS listed above.

Figure 1: High level architecture of CREAM CE service. Circles highlight the components to be
enhanced to support accelerated computing.

The CREAM core is a Java component where JDL supported attributes are defined and
parsed from the user request. The BLAH (Batch Local Ascii Helper) component is an
abstraction layer for submission and control of job requests to a local batch system [7]. It is a
daemon written in C language coupled to BASH scripts that allow to parse the JDL supported
attributes and translate them in the proper parameters to be used as input arguments to the
specific directives corresponding to a given LRMS.

The testbed set up at CIRMMP was used to implement the first prototype of a GPU-
enabled CREAM CE in December 2015. Starting from the local TORQUE/Maui job submission
specific syntax, like e.g. the one for a job requesting one node with one GPU:

$ qsub -l nodes=1 -W x='GRES:gpu@1'

the new JDL attribute “GPUNumber” was defined and the CREAM core and BLAH
components were patched in order to allow the CREAM CE to understand the new attribute and
properly map it into the suitable TORQUE/Maui directive. This way the user JDL file
containing the line GPUNumber=1 would imply the job to be enqueued in the LRMS until a
worker node hosting at least one GPU card becomes available. Unfortunately, native support to
GPUs or other accelerator cards of TORQUE LRMS coupled with Maui [8], a popular open
source job scheduler whose support was discontinued in favour of its commercial successor
Moab, was found very limited and could not allow to abstract other interesting attributes at JDL
level. On the other hand, the integration of CREAM CE with Moab, which implements full
support to accelerators was not in the scope of this activity.

A deeper analysis of latest versions of the other CREAM supported LRMS, namely
HTCondor, LSF, Slurm and SGE, allowed instead to identify two additional JDL attributes that

5

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

could be defined and implemented to exploit the more advanced native accelerator support of
these batch systems:

• The attribute “GPUModel” was defined to target worker nodes with a given model of
GPU card.

• The attribute “MICNumber” was defined to target worker nodes with a given number of
MIC coprocessors.

The implementation and test of a new CREAM CE prototype supporting the two
additional attributes was carried out since March 2016 thanks to the collaboration of four EGI
resource centres that deployed the prototype besides their production CREAM CE on top of
their cluster managed respectively by HTCondor at GRIF/LLR data centre, Slurm at ARNES
data centre, LSF at INFN-CNAF data centre, SGE and Slurm at Queen Mary University of
London (QMUL) data centre.

Figure 2 below shows an example of JDL file describing a structural biology job targeting
a worker node hosting at least one NVIDIATM TeslaTM K80 GPU. It was submitted to the QMUL
grid site where the CREAM CE prototype has been deployed as interface to their production
Slurm LRMS. Figure 3 displays an extract of its gres.conf and slurm.conf files showing that two
worker nodes among the ones forming the entire cluster are equipped respectively with 8 CPU
cores plus one NVIDIATM TeslaTM K40c, and 32 CPU cores plus four NVIDIATM TeslaTM K80
GPUs.

Figure 2: Example of JDL file targeting a worker node with one NVIDIATM TeslaTM K80 GPUs.

Figure 3: Excerpt of Slurm configuration files gres.conf and slurm.conf where GPU support is
implemented.

The implementation of GPU/MIC related JDL attributes assumed that the local batch
systems already configured the GPU/MIC support according with the official LRMS specific
documentation for HTCondor [9], LSF [10] and Slurm [11]. Of course, to let the user know if
QMUL grid site has GPUs on board, and which vendor/model is available, the information
system has to be properly extended.

For what concerns the applications run in the worker node, the usual grid way to distribute
software via CVMFS tool could not be used because of the complex software dependencies. In
fact, GPU specific application software components generally depend on the drivers of a given

6

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

GPU card, and different driver versions for the same card can be installed on different worker
nodes at the various resource centres. To avoid such conflicts the applications were built inside a
number of Docker containers, each one in turn built with a different NVIDIATM driver. Six
containers with the latest six more recent NVIDIATM drivers were made available in the Docker
Hub for the structural biology applications in collaboration with INDIGO-DataCloud project
[12], in order to allow the exploitation of the three grid sites hosting NVIDIATM GPUs at
CIRMMP, QMUL and ARNES. To avoid security issues, and then releasing the requirement to
have the Docker engine installed and running on each worker node, the Udocker tool was used.
Udocker is a basic user tool developed by INDIGO-DataCloud to execute simple Docker
containers in user space without requiring root privileges. Figure 4 shows the script acting as
executable in the JDL file example of Figure 2. After landing on the worker node, the driver
information is collected and used through the Udocker tool to pull the right Docker image from
which to create the container. The application is then executed inside the container.

Figure 4: Example of script for running DisVis application on the grid using GPU driver
dependent Docker containers.

2.2 Information System

In order to introduce the concept of accelerator device in a Grid Computing Service an
enhancement of the GLUE 2.0 schema is required. The proposed changes, as encompassed in
the GLUE 2.1 draft, consist on:

• The definition of a new GLUE object, the Accelerator Environment, representing a set
of homogeneous accelerator devices.

• New attributes and associations for existing objects such as Computing Manager,
Computing Share and Execution Environment.

Two reasons lead to considering a new GLUE object instead of extending the Execution
Environment described in GLUE 2.0 [13]:

• Many accelerator types, each one with its own specific features, can be installed in or
linked to an environment. The outcome of extending the environment with many

7

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

complex attributes would have been cumbersome and very far from the inner meaning
of the GLUE specification.

• A many-to-many relationship between accelerator object and environment must be
taken into consideration in order to support external GPU appliances. In that case the
Accelerator Environment is completely decoupled, not only from the logical point of
view but also from the physical one, from an Execution Environment.

An Accelerator Environment reports the number of physical accelerators, the amount of
memory available and any detail about the hardware such as the vendor, the model and the
clock speed. The information published with an Accelerator Environment object must be
considered immutable or statically defined. It changes only if a hardware restructuring occurs.

Figure 5: UML diagram of GLUE 2.1 draft Computing Entities. In red the classes involved in
the description of the accelerators

The main concept behind the new defined attributes in Computing Share and Computing
Manager is the accelerator slot. It represents the minimum amount of a GPU resource that can
be allocated to a job. Since a GPU can be efficiently shared among multiple processes, the
definition of accelerator slot may be quite complex. In accordance to the meaning of the related
JDL attribute, GPUNumber, previously described the accelerator device is considered to work in
“exclusive execution mode”. Each process has the control of an accelerator device. The
information published with the new attributes of Computing Share and Computing Manager can
vary according to the resource usage, for example the number of free accelerator slots for a
Computing Share, or the runtime configuration of a batch system, such as the total number of
accelerator slots for a Computing Manager.

The information about the accelerator driver or generally any related software tool can be
published through the Application Environment object, as declared in the GLUE 2.0 schema. It
is not necessary to modify the definition of Application Environment in order to have an
association with one or more Accelerator Environments. Since there is a many-to-many
association between the Application Environment and the Execution Environment, the latter can
be used as a bridge for expressing the relationship between the driver and the device.

8

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

The conceptual model of the Grid Computing Service with the accelerator information is
being defined in GLUE2.1 draft and shown in Figure 5.

The framework adopted by the EGI HTC platform for managing the information system is
the Berkeley Database Information Index (BDII) [14].

The BDII is structured as a hierarchy of nodes, with the “top BDII” one at the root level,
referencing all the information provided by the other nodes, and the “resource BDII” node at the
bottom, collecting data from the grid resources. Gathering information is carried out by the
resource BDII in two different ways:

• Reading statically defined descriptions of resources.
• Running a set of executables, called information providers, and catching the output.

The Accelerator Environment is published by the resource BDII using a statically defined
description. For a CREAM CE node such a description is built by the deployment and
configuration system, based on the Puppet suite. Figure 6 shows an excerpt from the Puppet
configuration file (hiera) which describes an accelerator device installed into a worker node.

creamce::hardware_table :
 environment_001 : {
 ce_cpu_model : XEON,
 ce_cpu_speed : 2500,
 # other definitions for the worker node
 accelerators : {
 acc_device_001 : {
 type : GPU,
 log_acc : 2,
 phys_acc : 2,
 vendor : NVIDIA,
 model : "Tesla K20m",
 memory : 5119
 }
 }
 }

Figure 6: Excerpt of a Puppet configuration file for a GPU installed in a worker node

Every attribute related to the accelerator slots and published within Computing Manager
and Computing Share objects is calculated by an information provider, executed by the resource
BDII. Many batch systems integrate the support for information retrieval from popular
accelerator devices like NVIDIATM GPU devices. The TORQUE management system, for
example, can identify the structure of the NVIDIATM devices installed in the worker nodes, and
many parameters reporting the quality of service, GPU and memory usage. However in many
cases the support is not able to give the complete control over all the required details of an
accelerator device. Besides it is more advisable to avoid the development of many information
providers, each one batch system specific, if a common solution can be identified. For
NVIDIATM devices the common solution consists on an information provider which is able to:

• Run the NVIDIATM System Management Interface (nvidia-smi) on each active worker
node.

• Aggregate the data harvested according to the GLUE 2.1 schema.
Since the executable does not depend on any batch system specific feature, the solution is

portable. The main drawback is that it requires a further configuration of both the resource BDII

9

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

node and each worker node. Any command of nvidia-smi is run through a secure channel,
established with openssh tools, and with normal user privileges, therefore accounts and public
keys must be distributed over the cluster.

2.3 Accounting

The APEL (Accounting Processor for Event Logs) [15] is the fundamental tool for the
CPU usage accounting infrastructure deployed within EGI. As a log processing application, it
interprets logs of CREAM CE and its underlying LRMS to produce CPU job accounting records
identified with grid user identities. APEL then publishes accounting records into a centralised
repository at a Grid Operations Centre (GOC) for access from the EGI Accounting Portal. The
functions of log files parsing, record generation and publication are implemented by the APEL
Parser, APEL Core, and APEL Publisher component respectively. The APEL developers were
therefore involved in the GPU accounting discussion. Their analysis concluded that a little effort
to modify APEL Parser and Core functions had been required if the LRMS would be able to
report the GPU usage attributable to each job in their log files. Unfortunately, a detailed analysis
of the job accounting records reported in the log files of TORQUE, LSF, Slurm, HTCondor and
SGE showed that they don’t contain GPU usage information. For the most recent NVIDIATM

GPUs, the NVIDIATM Management Library (NVML) allows through the NVIDIATM System
Management Interface (nvidia-smi) tool to enable per-process accounting of GPU usage using
Linux PID, as shown in the example output of Figure 7:

Figure 7: Per-process GPU utilization accounting example using nvidia-smi tool

Regrettably, this functionality is not yet integrated in any of the considered LRMS. In
principle, developing suitable prologue/epilogue scripts for any given LRMS would allow to
implement per-job accounting starting from the per-process GPU accounting provided by
NVML. However, the estimated effort for developing and sustaining in the long term such kind
of solution was considered not affordable by the APEL team with their current and future
planned funds. The accounting of GPU usage in the EGI HTC platform was therefore
temporarily abandoned, pending its possible native support in future versions of the considered
LRMS.

3. The Cloud Accelerated Platform

KVM with PCI pass-through virtualisation technology for GPUs is rather mature, but
maximum one VM can be attached to one physical card, as shown on the left of Figure 8. Other
virtualisation technologies that allow to share the physical GPUs among many virtual machines
are available, e.g. NVIDIATM GRIDTM vGPU for XenServer and VMWare hypervisors, SR-IOV
based AMDTM MxGPU for VMWare hypervisors, and IntelTM GVT-G recently added to Linux
4.10 kernel. However, these are not yet supported by KVM, the most popular open source

10

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

hypervisor deployed in the large majority of the cloud resource centres part of the EGI
Federated Cloud.

Figure 8: PCI pass-through virtualisation of GPUs (left) versus sharing virtual GPU
technology (right).

3.1 Accelerated computing with OpenStack

As mentioned above, the technology for sharing virtual GPUs is not supported by KVM
for NVIDIATM Tesla cards, therefore PCI pass-through has been used. OpenStack has built-in
support for PCI pass-through from Grizzly release. That includes the following changes in the
OpenStack Nova:

• Implementation of support for PCI pass-through mechanism on compute nodes for
configuring and creating VMs with PCI pass-through enabled. The PCI devices for
pass-through are defined in the configuration file of OpenStack Nova as whitelist
“pci_pass-through_whitelist = { "vendor_id": "8086", "product_id": "10fb" }”, its alias
will be assigned to VM flavour as properties.

• Implementation of scheduler supporting PCI pass-through to correctly allocate VMs
with PCI pass-through enabled to compute nodes with available resources. With the
support of scheduler, VMs with PCI pass-through can be mixed with normal VMs on
the same OpenStack deployment.

The first cloud computing testbed supporting GPU cards was integrated into EGI at IISAS
as the “IISAS-GPUCloud” site, which comprises four IBM dx360 M4 servers each with 2x
IntelTM XeonTM E5-2650v2 (16 CPU cores), 64GB RAM, 1TB storage and 2x NVIDIATM

TeslaTM K20m, running Ubuntu 14.04 LTS.
 The initial setup demonstrated that KVM PCI pass-through was not stable, compute nodes

crashed randomly. The VMs had direct access to PCI devices and every misconfiguration in
VMs could send NMI (non-maskable interrupt) signal to the hardware that can be propagated to
the host machine and caused the system crash. The workaround solution is to change BIOS
setting for isolating NMI of the pass-through device. However, a more consistent solution where

11

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

the host operating system can retain control over hardware is critical for overall stability of the
system. A viable alternative is to use LXD [16] container hypervisor as replacement for KVM
hypervisor, as discussed in the next subsection 3.3.

3.2 Accelerated computing with OpenNebula

Since version 4.14 the OpenNebula cloud computing framework supports PCI pass-
through virtualisation including GPU accelerators. By default, PCI devices can be specified in
OS templates using vendor, device and class PCI codes. This approach requires the system
administrator to define special templates for every combination of virtual appliance images and
GPUs provided by worker nodes. It gets complicated if the site provides more than one type of
accelerator and worker nodes have more than one accelerator installed. Also, the integration of
GPU accelerators in the OpenStack cloud computing framework follows an approach where
GPU accelerators are requested using resource template, therefore for compatibility reasons the
rOCCI server for OpenNebula had to be modified by its developers to allow specification of
GPU device PCI codes inside resource templates. To test the integration of the OpenNebula
framework in the EGI Federated Cloud, an experimental configuration was set up at CESNET-
Metacloud site in May 2016, and a new IISAS-Nebula cloud site was set up and put into
production in January 2017.

3.3 Accelerated computing with LXD containers

In the recent years, container technologies have been emerging as a viable alternative of
full virtualisation for cloud computing. From the point of view of applications running in the
cloud, the full containers like LXD have very similar behaviours like VMs: users can create and
log into containers, install/configure software, running applications and terminate the containers
when they are no longer needed. In comparison with full VMs managed by hypervisors like
KVM, containers have much faster start, lower overheads, and easier access to hardware
resources via device mapping. The main limitation of container technologies is that the
containers must share the same OS kernel as the hosting machine and users cannot easily
change kernel configurations (e.g. loading kernel modules). For use cases with accelerated
computing, where VMs are mostly used for computational tasks, such limitations are not
relevant.

There are several implementation of Nova driver for OpenStack. However, most of them
are still immature at the time of testing (2016). An experimental cloud site has been set up at
IISAS to enable GPU support with LXD hypervisor with OpenStack through nova-lxd driver.
Unfortunately, the support for configuring GPU device mapping in Nova configuration files of
the tested version of nova-lxd was not yet implemented. Thus, the devices had to be hard-coded
in the code for testing. The performance and stability of the LXD containers were outperforming
the VMs in KVM and practically reached native performance, that is very promising. However,
some critical features, mainly the supports for block devices, were still missing, that prevented
so far use of the experimental site in production.

12

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

3.4 Accelerated computing with Docker containers

Docker is another widely adopted container technology. Unlike LXD which is full OS-
level container technology and behave more like hypervisor, Docker containers are application
containers with the aim to run single application process inside. It wraps up application software
in a complete file system that contains everything it needs to run: code, runtime, system tools,
system libraries, therefore the application in Docker is highly portable and independent from the
hosting environment.

Docker containers with GPU support can be easily executed in cloud sites supporting
GPUs. Users can create a VM with GPU-enabled flavour and image, and run docker with proper

mapping to access GPUs via the --device option, as for example:
$ docker run -it --device=/dev/nvidia0:/dev/nvidia0 \
--device=/dev/nvidiactl:/dev/nvidiactl \

 --device=/dev/nvidia-uvm:/dev/nvidia-uvm IMAGE /bin/bash

3.5 Integration with EGI federated cloud

Like HTC Accelerated platform, the integration with EGI Federated Cloud will require
additional support for GPU in Information and Accounting systems.

The conceptual model for a generic Cloud Provider Site does not fit correctly into the
GLUE 2.0 schema. The concepts of virtual machines, images and flavours are brand new from
the logical point of view. Extending the objects of a classical Computing Service is not enough,
it is necessary to redesign the entire schema and create a Cloud Compute Service.

Figure 9: UML diagram of GLUE 2.1 draft Cloud Computing Entities. In light red the classes
introduced with GLUE 2.1, in dark red the ones also involved in the description of the
accelerators.

The conceptual model of the Cloud Compute Service is being defined in GLUE 2.1 draft
specification, as depicted in Figure 9. There’s a strong similarity between classes in a
Computing Service and a Cloud Compute service. The Cloud Compute Instance Type class
describes the hardware environment, or flavour, of the VM, like the Execution Environment

13

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

does within a Computing Service. The Cloud Compute Manager, or hypervisor, corresponds to
the Computing Manager, or batch system manager, in the classical GLUE 2.0 schema.

In order to keep the similarity even for modelling “virtual accelerator devices” a new
entity, the Cloud Compute Virtual Accelerator, has been defined. It describes a set of
homogeneous virtual accelerator devices in terms of number of GPUs, amount of memory and
hardware details, like vendor and model. A many-to-many association ties the Cloud Compute
Instance Type to the Cloud Compute Virtual Accelerator. Since with PCI pass-through
virtualisation only one VM at a time can be attached to one or more physical accelerator
devices, it does not make sense to have the concept of accelerator slot. Within the Cloud
Compute Service an accelerator slot corresponds to the entire device.

GPU accounting is also easier in cloud environment. Considering that the cloud
frameworks currently return wall clock time only to the APEL based accounting system, if the
wall clock for how long a GPU was attached to a VM is available then the GPU reporting would
be in line with cloud CPU time, i.e. wall clock time only. The APEL team has therefore been
involved to define an extended usage record and new views to display GPU usage in the EGI
Accounting Portal.

To facilitate the testing and development of accelerated applications in EGI, a dedicated
Virtual Organization “acc-comp.egi.eu” has been established. A dedicated VO allows to create a
separate set of virtual appliance images in the EGI Application Database [17] with pre-installed
drivers and libraries (e.g CUDA, OpenCL) and allows to limit the list of sites to the ones that
provide relevant hardware. Furthermore, the separated VO allows users to share and exchange
their knowledge and experiences related to accelerated computing easier than general-purpose
VOs like fedcloud.egi.eu. More information can be found in [18].

4. Applications

As pointed out in section 1, two EGI scientific communities organized respectively in the
MoBrain (Structural Biology) and LifeWatch (Biodiversity and Ecosystems) Competence
Centres were the early adopters of the EGI Accelerated Platform, setting the requirements and
providing a number of use cases exploiting the GPU hardware to enhance the performance of
their calculations. These applications are described in the next subsections.

4.1 Molecular dynamics

The Structural Biology user community participating to the MoBrain Competence Centre
provided several applications designed in highly parallel manner to profit of GPU architecture.
Some of them, i.e. DisVis, implementing visualisation and quantification of the accessible
interaction space of distance restrained binary bio-molecular complexes, and PowerFit,
implementing automatic rigid body fitting of bio-molecular structures in Cryo-Electron
Microscopy densities, have been already described in a recent publication [19] and will not
reported here. Molecular Dynamics (MD) simulations with GROMACS and NAMD packages
exploiting GPU resources were carried out by the CESNET team of MoBrain and by the
MolDynGrid Virtual Laboratory [20] team, from the National Academy of Sciences of Ukraine,
who have a long-standing collaboration with EGI.

14

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

MD simulations with the PMEMD tool of the AMBER package (ambermd.org) were
carried out by the CIRMMP team and will be described in more detail here. CIRMMP
benchmarked two applications of MD simulations that are often performed with the AMBER
package:

1. Restrained MD (rMD), i.e. including experimental data that define the conformational
space available to the molecule.

2. Unrestrained, also called free, MD simulations.
The main application of rMD is the optimization of 3D structural models generated by

techniques such as distance geometry or molecular modelling. Optimized models can be
deposited to the Protein Data Bank (PDB) [21]. Instead, free MD simulations have an extensive
range of biological applications. Besides their specific research purpose, the two types of
simulations differ in the input data required. For free MDs only the atomic coordinates of the
initial 3D structural model of the biological system of interest are needed. For rMD simulations,
the experimental data are required as an additional input, in a suitable format. rMD simulations
are enabled by the AMPS-NMR portal which was developed in the context of the WeNMR
project [22, 23]. For the rMD calculation a standardized simulation protocol consisting of a
constant-time simulation, where the solvated protein is initially heated, then allowed to move
for a predefined number of steps and then cooled again to 0 K was applied to a small protein
with publicly available experimental data (PDB entry 2KT0, DOI: 10.2210/pdb2kt0/pdb).

Figure 10: Calculation times for rMD simulations for PDB entry 2KT0 on a single-core CPU
(AMDTM OpteronTM 6366-HE) vs one GPU card (NVIDIATM TeslaTM K20). Note the logarithmic
scale of the y axis.

The acceleration factor under this real case scenario, as shown in Figure 10, is about 100.
Note that rMD simulations do not scale well with the number of cores because of the way the
restraint potential is coded in the software. For the AMBER code, the CPU server does not
affect the GPU performance. The agreement between the refined structural models and the
experimental restraint data in the two simulations, as measured by the residual deviations of the
back-calculated data with respect to the input, was essentially identical. This proves that the use
of GPUs does not introduce numerical errors due to single precision. The GPU-enabled service

15

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

is already available to users via the AMPS-NMR portal. A user commented “It was very fast.
About 40 minutes for 20 structures ! ”. Typical run times in the traditional CPU-based ITC grid
were of the order of 10 hours.

To benchmark unrestrained (free) MD simulations we used a more challenging
macromolecular system than the system used for rMD, owing to its large total mass. The system
of choice was the M homopolymer ferritin from bullfrog (PDB entry 4DAS, DOI:
10.2210/pdb4das/pdb). This system is composed by 24 identical protein chains, forming a single
macromolecular adduct, thus with an overall protein mass of 499,008 Da (with respect to 10,051
of 2KT0). After solvation, this corresponds to ca. 180,000 atoms in the system vs 1,440, so
about a factor 125 in size. The physiological role of ferritin is to store iron ions and release them
when needed by the cell. Molecular systems of the size of ferritin are not amenable to routine
structural studies by NMR and therefore their dynamic properties can be explored only by MD
simulations. In practice, the current setup constituted the basis for an extensive investigation of
the molecular mechanism of iron release, which will be published elsewhere. The acceleration
afforded by the GPU in our benchmark is depicted in Figure 11.

Figure 11: Extended comparison of the performance achieved using single/multi-core CPUs
(IntelTM XeonTM CPU E5-2620 and AMDTM OpteronTM 6366-HE) vs one GPU card (NVIDIATM

TeslaTM K20). The graph reports the nanoseconds of simulation that can be computed in one day
as a function of the number of cores used on each CPU type.

It appears that the correlation with the number of cores is actually less than optimal on
either CPU type. For the IntelTM CPU, the simulation performance (ns/day of simulation) as a
function of the number of cores used is 1:5.1:9.6, against a ratio of 1:6:12 cores; for the AMDTM

CPU the corresponding data are 1:11.2:32 against a ratio of 1:16:64 cores (Table 1, compare the
first and third columns). Thus, using a 64-core system constituted by four AMDTM OpteronTM

6366-HE CPUs (1.8GHz, 16C, cache L2 16MB/L3 16MB, 32x4GB RDIMM LV dual rank
memory) on a single blade provides about 50% of the expected increase in simulation length

16

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

that can be computed per day with respect to a single core. The acceleration provided by a
single GPU card with respect to the full 64-core system is 4.7 (Table 1, last column).

Number
of cores

Simulation
performance in ns/day

Ratio vs.
single-core

GPU
acceleration

AMDTM OpteronTM

1 0.05 1.0 150.00x

4 0.18 3.6 41.70x

8 0.30 6.0 25.00x

16 0.56 11.2 13.40x

64 1.60 32.0 4.69x

IntelTM XeonTM CPU E5-2620

1 0.08 1.0 93.70x

6 0.41 5.1 18.30x

12 0.77 9.6 9.74x

GPU card

1 7.50 - -

Table 1: Benchmark results for AMBER, on unrestrained MD simulations for the ferritin system.
The table reports the performance achieved using only single/multi-core CPUs (IntelTM XeonTM

CPU E5-2620 and AMDTM OpteronTM 6366-HE) vs the same cores plus one GPU card
(NVIDIATM TeslaTM K20m), measured by the nanoseconds of simulation that can be computed in
one day for the various hardware configurations. The table also reports the scale factor
resulting from the use of multiple cores vs. a single core as well as acceleration provided by the
GPU card.

With the above configuration we could thus compute multiple 100-ns simulations
(reproducing different experimental conditions) of human ferritin, in less than two weeks each.
With a traditional system, each calculation would have taken about two months. The energy
consumed for one ns of simulation was also measured with the iDRAC monitoring utility for the
64-core AMDTM OpteronTM system and the IntelTM XeonTM system accelerated with the GPU.
The difference between the active power and the idle power (generally known as “dynamic
power”) of both systems was calculated. The dynamic power was considered because the two
systems had different base configurations, like power supplies and CPUs. It turned out that the
electric cost of one ns of simulation with the GPU is only the 8% of the cost when using the full
64-core AMDTM OpteronTM system.

17

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

4.2 Biodiversity

In March 2017 the European Commission granted the legal status of European Research
Infrastructure Consortium (ERIC) to LifeWatch: the e-Science and Technology European
Infrastructure for Biodiversity and Ecosystem Research [24]. It aims to advance biodiversity
and ecosystem research and to provide major contributions to address big environmental
challenges such as climate change by providing access through a pan-European distributed e-
infrastructure to large sets of data, services and tools that enable the creation of virtual
laboratories and decision-support applications. Within the EGI-Engage project, the LifeWatch
community, organized as Competence Centre, explored the integration and deployment of
assisted pattern recognition tools on EGI specific resources, including servers with GPUs on the
cloud. After a state-of-the-art research on computer vision and deep learning tools, the Caffe
framework was selected to build a prototype of classification service on flower species through
image recognition. Caffe is a deep learning framework using Convolutional Neural Networks
and can be deployed on the cloud. It provides two services: “train” and “classify”. The first one
is a compute intensive service allowing to train a new model. Its performance can be enhanced
using GPUs supporting CUDA. The speed-up using GPU versus CPU is a factor 9 using e.g.
AlexNet model, while with the most recent NVIDIATM Kepler or Maxwell GPU architectures
the use of CuDNN v3 library allows to achieve a factor 32. The second service allows to
classify user provided images according to the trained model. It is a I/O bounded task that can
be run efficiently without GPUs. Starting from the Caffe framework, the LifeWatch team
developed a demonstrator service to help users to train a web based image classifier. It
implements a two steps process: at first, the Neural Network is trained with the image datasets
and tags provided by the user; then, the trained Neural Network is connected with the web
service offering a API to be used with the provided web interface and android app. The user can
e.g. upload a flower image from his smart-phone through the demonstrator android app, and the
returned result will be a ranked list of the potential Latin names of the flower with their
accuracy. The service has been tested and validated on the EGI Federated Cloud site of IISAS
hosting the GPU servers, by using several datasets, including images from Portuguese flora and
Real Jardin Botanico of Madrid, as described in detail in [25].

5. Conclusions and future work

The CREAM GPU-enabled prototype was tested at four sites hosting the following
LRMS: TORQUE, LSF, HTCondor, Slurm, and SGE. Three new JDL attributes were defined:
GPUNumber, GPUModel, MICNumber. At three sites the prototype is run in “production”:
QMUL and ARNES (with Slurm LRMS) and CIRMMP (with TORQUE/Maui
LRMS/scheduler). A number of new classes and attributes describing accelerators were
proposed and included in the GLUE2.1 draft latest version, after discussion with the OGF
Working Group. A major release of CREAM is almost ready with GPU/MIC support for the
LRMS listed above, with the GLUE2.1 draft prototype implemented as information system.
Future official approval of GLUE 2.1 would occur after the specification is revised based on
prototype lessons learned. The major release of CREAM will support CentOS 7 operating
system, in order to be included in the EGI UMD-4 distribution.

18

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

For what concerns the Cloud Accelerated platform, three cloud sites hosting NVIDIATM

GPUs were put in production using PCI pass-through virtualisation with KVM hypervisor, and
integrated in the EGI Federated Cloud. An experimental cloud site was set up at IISAS to enable
GPU support with LXD hypervisor with OpenStack. LXD is a full container solution supported
by Linux that is expected to provide better performance and stability than KVM (faster start-up
time, better integration with OS), especially in terms of GPU support (simpler site setup, more
stable than KVM PCI pass-through).

Acknowledgments

This work is supported by European Union’s Horizon 2020 Framework Programme e-
Infrastructure grants (EGI-Engage, Grant No. 654142; INDIGO-DataCloud, Grant No. 653549;
West-Life Grant No. 675858). Andrea Sartirana (GRIF/LLR), Daniel Traynor (QMUL), Barbara
Krasovec (ARNES) and Stefano Dal Pra (INFN-CNAF) are acknowledged for having supported
the deployment of the GPU/MIC enabled CREAM CE prototype on their resource centres. Boris
Parak (CESNET) is acknowledged for having implemented PCI pass-through support for GPUs
on CESNET-Metacloud OpenNebula site of the EGI Federated Cloud.

References

[1] John Walsh, Accelerated computing on computational grid infrastructures, [thesis], Trinity
College (Dublin, Ireland). School of Computer Science & Statistics, 2016, pp 187

[2] S. Andreozzi et al., Towards GLUE 2: evolution of the computing element information model,
Journal of Physics: Conference Series 119 (2008) 062009

[3] P. Andreetto et al., Status and Developments of the CREAM Computing Element Service, Journal of
Physics: Conference Series 331 (2011) 062024

[4] A.Casajus et al., DIRAC Pilot Framework and the DIRAC Workload Management System, Journal
of Physics: Conference Series 219 (2010) 062049

[5] F.Giacomini et al., The gLite Workload Management System, Journal of Physics: Conference Series
119 (2008) 062007

[6] CREAM JDL guide, https://wiki.italiangrid.it/twiki/bin/view/CREAM/JdlGuide

[7] M.Mezzadri et al., Job submission and control on a generic batch system: the BLAH experience,
Journal of Physics: Conference Series 331 (2011) 062039

[8] Maui scheduler, http://www.adaptivecomputing.com/products/open-source/maui/

[9] GPU/MIC support in HTCondor, https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=HowToManageGpus

[10] GPU/MIC support in LSF,
https://www.ibm.com/support/knowledgecenter/it/SSETD4_9.1.2/lsf_admin/define_gpu_mic_resour
ces.html

[11] GPU/MIC support in Slurm, https://slurm.schedmd.com/gres.html

[12] D. Salomoni et al., INDIGO-Datacloud: foundations and architectural description of a Platform as
a Service oriented to scientific computing, arXiv:1603.09536v3 [cs.SE]

19

https://slurm.schedmd.com/gres.html
https://www.ibm.com/support/knowledgecenter/it/SSETD4_9.1.2/lsf_admin/define_gpu_mic_resources.html
https://www.ibm.com/support/knowledgecenter/it/SSETD4_9.1.2/lsf_admin/define_gpu_mic_resources.html
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToManageGpus
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToManageGpus
http://www.adaptivecomputing.com/products/open-source/maui/
https://wiki.italiangrid.it/twiki/bin/view/CREAM/JdlGuide

P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

[13] S. Andreozzi, S. Burke, L. Field, G. Galang, B. Konya, M. Litmaath, P. Millar, J. P. Navarro, GLUE
Specification Version 2.0, OGF Document Series, GFD.147, 2009

[14] L Field and M W Schulz, Grid deployment experiences: The path to a production quality ldap based
grid information system, Proc. Int. Conf. on Computing in High Energy and Nuclear Physics (2004)

[15] Ming Jiang et al., An APEL Tool Based CPU Usage Accounting Infrastructure for Large Scale
Computing Grids, Data Driven e-Science, Springer New York, 2011, pp. 175–186

[16] Sapan Gupta, Deepanshu Gera, A Comparison of LXD, Docker and Virtual Machine, International
Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016

[17] EGI AppDB, https://appdb.egi.eu/

[18] Accelerated computing Virtual Organization, https://wiki.egi.eu/wiki/Accelerated_computing_VO

[19] G.C.P. van Zundert et al., The DisVis and PowerFit Web Servers: Explorative and Integrative
Modeling of Biomolecular Complexes, Journal of Molecular Biology, 2017, 429 (3) pp. 399-407

[20] MolDynGrid Virtual Laboratory, http://moldyngrid.org

[21] Berman H, Henrick K, Nakamura H, Markley JL, The worldwide Protein Data Bank (wwPDB):
ensuring a single, uniform archive of PDB data, Nucleic Acids Res. 2007 Jan, 35(Database
issue):D301-3

[22] Wassenaar et al., WeNMR: Structural Biology on the Grid, J. Grid. Comp., 2012, 10:743-767

[23] Bertini I, Case DA, Ferella L, Giachetti A, Rosato A, A Grid-enabled web portal for NMR structure
refinement with AMBER, Bioinformatics 2011 Sep 1, 27(17):2384-90

[24] A. Basset, W. Los, Biodiversity e Science: LifeWatch, the European infrastructure on biodiversity ‐
and ecosystem research, Plant Biosystems - An International Journal Dealing with all Aspects of
Plant Biology, 2012, 146:4, 780-782

[25] Eduardo Lostal, Francisco Sanz, Jesus Marco, Integration of assisted pattern recognition tools,
https://documents.egi.eu/document/2647

20

https://documents.egi.eu/document/2647
http://moldyngrid.org/
https://wiki.egi.eu/wiki/Accelerated_computing_VO
https://appdb.egi.eu/

