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While  accelerated  computing  instances  providing  access  to  NVIDIATM GPUs  are  already
available  since  a  couple  of  years  in  commercial  public  clouds  like  Amazon  EC2,  the  EGI
Federated Cloud has put in production its first OpenStack-based site providing GPU-equipped
instances at  the end of 2015. However,  many EGI sites which are providing GPUs or MIC
coprocessors to enable high performance processing are not directly supported yet in a federated
manner by the EGI HTC and Cloud platforms. In fact, to use the accelerator cards capabilities
available at resource centre level, users must directly interact  with the local provider to get
information about the type of resources and software libraries available, and which submission
queues  must  be  used  to  submit  accelerated  computing  workloads.  EU-funded  project  EGI-
Engage since March 2015 has worked to implement the support to accelerated computing on
both its HTC and Cloud platforms addressing two levels: the information system, based on the
OGF  GLUE  standard,  and  the  middleware.  By  developing  a  common  extension  of  the
information  system  structure,  it  was  possible  to  expose  the  correct  information  about  the
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accelerated  computing  technologies  available,  both  software  and  hardware,  at  site  level.
Accelerator  capabilities  can  now  be  published  uniformly,  so  that  users  can  extract  all  the
information directly from the information system without interacting with the sites, and easily
use  resources  provided  by  multiple  sites.  On  the  other  hand,  HTC and  Cloud  middleware
support for accelerator cards has been extended, where needed, in order to provide a transparent
and uniform way to allocate these resources together with CPU cores efficiently to the users. In
this paper we describe the solution developed for enabling accelerated computing support in the
CREAM Computing Element for the most popular batch systems and, for what concerns the
information system, the new objects and attributes proposed for implementation in the version
2.1 of the GLUE schema. For what concerns the Cloud platform, we describe the solutions
implemented to enable GPU virtualisation on KVM hypervisor via PCI pass-through technology
on both OpenStack and OpenNebula based IaaS cloud sites, which are now part of the EGI
Federated  Cloud offer,  and  the  latest  developments  about  GPU direct  access  through LXD
container technology as a replacement of KVM hypervisor. Moreover, we showcase a number of
applications and best practices implemented by the structural biology and biodiversity scientific
user  communities that  already started to use the first  accelerated computing resources  made
available through the EGI  HTC and Cloud platforms.

International Symposium on Grids and Clouds 2017 -ISGC 2017-
5-10 March 2017
Academia Sinica, Taipei, Taiwan
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1. Introduction

The EGI infrastructure is a federation of 20 cloud providers and over 300 data centres,
spread across Europe and worldwide. As of November 2016, EGI offers more than 730,000
CPU-cores for High Throughput Compute, 6,600 cores for cloud compute, and more than 500
PB of  data  storage.  The  infrastructure  operations  have  been  supported  since  2010  by  two
European projects:  EGI-InSPIRE (2010-2014) and EGI-Engage (2015-2017). In 2012 a EGI
Working Group was set up to assess the interest of EGI community (both users and resource
providers) about General-Purpose Graphics Processing Units (GPGPUs, shortened to GPUs in
the rest of the article). A survey completed in September 2012 [1] showed that: 

• 92.9 % of  the  users  would be interested in  accessing remote GPU based resources
through a computing infrastructure

• 30.2 % of the resource centres were already providing GPU resources,  and 56.3 %
planned to do in the incoming 24 months.

In the following years Accelerated Computing has become increasingly popular. The term
refers  to  a  computing  model  used  in  scientific  and  engineering  applications  whereby
calculations  are  carried out  on specialized processors  (known as  accelerators)  coupled with
traditional CPUs to achieve faster real-world execution times. Nowadays accelerators are highly
specialized microprocessors designed with data parallelism in mind, and more in general other
than GPUs they include XeonTM PhiTM coprocessors, based on IntelTM Many Integrated Core
(MIC) architecture, and specialized Field Programmable Gate Array (FPGA) PCIe cards. They
allow to reduce execution times by offloading parallelizable computationally-intensive portions
of an application to the accelerators while the remainder of the code continues to run on the
CPU.

Unfortunately, in the current implementation of the EGI infrastructure, there is neither way
to describe/discover this kind of resources, nor to allocate them together with CPU cores to
efficiently execute user jobs. A dedicated task of the EGI-Engage project was therefore designed
to  address  these  issues,  with  the  ultimate  goal  to  provide  a  complete  new  Accelerated
Computing  platform  for  EGI.  The  task  activities  started  in  March  2015,  with  two  main
objectives: to implement accelerated computing support in the information system, based on the
OGF GLUE standard [2] schema evolution; to extend the current EGI HTC and Cloud platforms
introducing middleware support for accelerator cards. User communities, grouped within EGI-
Engage  in  entities  called  Competence  Centres  (CCs),  had  a  driving  role  in  setting  the
requirements and providing a number of use cases. In particular, LifeWatch CC captured the
requirements of the Biodiversity and Ecosystems research community for deploying GPU based
e-infrastructure services supporting data management, processing and modelling for Ecological
Observatories. It provided an Image Classification Deep Learning Tool as use case. MoBrain
CC instead captured the requirements of the Structural Biology scientific domain, aiming at
deploying  portals  for  bio-molecular  simulations  leveraging  GPU resources.  Their  use  cases
involved popular molecular dynamics packages like AMBER and GROMACS,  and 3D bio-
molecular structure model fitting software like PowerFit and DisVis.

The paper is organized as follows. Section 2 describes the development work carried out to
enhance the EGI HTC platform in order to fully exploit accelerator cards. Section 3 illustrates
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how  the  support  to  GPUs,  based  on  PCI  pass-through  virtualisation  technology,  has  been
introduced in the EGI Federated Cloud by properly configuring and tuning the OpenStack and
OpenNebula cloud frameworks. Section 4 shows a number of applications that firstly used the
accelerated platform to enhance their performance, and finally Section 5  provides a summary
and the future perspectives. 

2. The HTC Accelerated Platform

A snapshot of the EGI Grid Information System taken in October 2015 [1] has shown that
the 75% of the 567 Compute Elements (CEs) composing the EGI HTC platform is based on
CREAM (Computing Resource Execution And Management): a web service based CE for the
UMD/gLite grid middleware [3]. CREAM has been since years the most popular grid interface
in EGI for a number of Local Resource Management Systems (LRMS): TORQUE, LSF, SGE,
Slurm, HTCondor. Nowadays, most recent versions of these LRMS provide native support to
GPUs, MIC coprocessors and other accelerators, meaning that computing nodes hosting these
cards and managed by one of the above LRMS can be selected by specifying the proper LRMS
directives and parameters. This suggested the definition of a work plan to implement an HTC
Accelerated Platform based on an enhanced CREAM CE in the following steps:

1. Identification  of  the  relevant  GPU/MIC/FPGA related  parameters  supported  by  any
LRMS and abstract them to useful JDL attributes.

2. Implementation of the needed code changes in the relevant CREAM components.
3. Extension of the current version 2.1 draft GLUE schema for describing the accelerator

information.
4. Development  of  information  providers  according  to  the  extended  GLUE  2.1  draft

specifications.
5. Test and certification of the enhanced CREAM CE prototype.
6. Release of a CREAM CE updated version with full support for accelerators.

Considering that TORQUE is the most popular choice of LRMS in EGI for the CREAM
CE instances, we started to work with a testbed composed by 3 nodes, each one with 2 Intel TM

XeonTM E5-2620 v2 and 2 NVIDIATM TeslaTM K20m GPUs, and a server hosting TORQUE
4.2.10 (compiled with NVIDIATM NVML libraries) with MAUI 3.3.1 as scheduler. The testbed
was made available by CIRMMP team at the University of Florence, in Italy.

2.1 Job submission

User  job  submission  towards  EGI  HTC platform typically  happens  through  VO level
services like DIRAC [4] or gLite-WMS [5], which act as resource broker to select the best
suited CE where to execute the user job, according to job requirements specified in the JDL file.
The Job Description Language (JDL) is a high-level, user-oriented language based on Condor
classified advertisements (classads) for describing jobs to be submitted to a resource broker or
directly to the CREAM CE service. We’ll consider here only direct job submission to a CREAM

CE, through the glite-ce-job-* command line. Being the JDL an extensible language [6]

the user is allowed to use whatever attribute for the description of a request without incurring in
errors  from the JDL parser.  However,  only a  certain set  of  attributes,  that  we will  refer  as
“supported attributes” from now on, is taken into account by the CREAM CE service. Figure 1
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below shows  a  high  level  architecture  of  the  CREAM CE service.  It  is  essentially  a  grid
gateway with a Web Service interface to allow remote authorized (via VOMS service) users to
submit jobs to a cluster of compute nodes managed by one of the popular LRMS listed above.

Figure 1: High level architecture of CREAM CE service. Circles highlight the components to be
enhanced to support accelerated computing. 

The CREAM core is a Java component where JDL supported attributes are defined and
parsed  from  the  user  request.  The  BLAH  (Batch  Local  Ascii  Helper)  component  is  an
abstraction layer for submission and control of job requests to a local batch system [7].  It is a
daemon written in C language coupled to BASH scripts that allow to parse the JDL supported
attributes and translate them in the proper parameters to be used as input  arguments to the
specific directives corresponding to a given LRMS.

The testbed set  up at  CIRMMP was used to implement the first  prototype of a GPU-
enabled CREAM CE in December 2015. Starting from the local TORQUE/Maui job submission
specific syntax, like e.g. the one for a job requesting one node with one GPU:

$ qsub -l nodes=1 -W x='GRES:gpu@1'

the  new  JDL  attribute  “GPUNumber”  was  defined  and  the  CREAM  core  and  BLAH
components were patched in order to allow the CREAM CE to understand the new attribute and
properly  map  it  into  the  suitable  TORQUE/Maui  directive.  This  way  the  user  JDL  file
containing the line GPUNumber=1 would imply the job to be enqueued in the LRMS until a
worker node hosting at least one GPU card becomes available. Unfortunately, native support to
GPUs or other accelerator cards of TORQUE LRMS coupled with Maui [8], a popular open
source job scheduler whose support was discontinued in favour of its commercial successor
Moab, was found very limited and could not allow to abstract other interesting attributes at JDL
level.  On the other hand, the integration of CREAM CE with Moab, which implements full
support to accelerators was not in the scope of this activity.

A deeper  analysis  of  latest  versions  of  the  other  CREAM  supported  LRMS,  namely
HTCondor, LSF, Slurm and SGE, allowed instead to identify two additional JDL attributes that
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could be defined and implemented to exploit the more advanced native accelerator support of
these batch systems:

• The attribute “GPUModel” was defined to target worker nodes with a given model of
GPU card. 

• The attribute “MICNumber” was defined to target worker nodes with a given number of
MIC coprocessors.

The  implementation  and  test  of  a  new  CREAM  CE  prototype  supporting  the  two
additional attributes was carried out since March 2016 thanks to the collaboration of four EGI
resource centres that deployed the prototype besides their production CREAM CE on top of
their cluster managed respectively by HTCondor at GRIF/LLR data centre, Slurm at ARNES
data centre, LSF at INFN-CNAF data centre, SGE and Slurm at Queen Mary University of
London (QMUL) data centre. 

Figure 2 below shows an example of JDL file describing a structural biology job targeting
a worker node hosting at least one NVIDIATM TeslaTM K80 GPU. It was submitted to the QMUL
grid site where the CREAM CE prototype has been deployed as interface to their production
Slurm LRMS. Figure 3 displays an extract of its gres.conf and slurm.conf files showing that two
worker nodes among the ones forming the entire cluster are equipped respectively with 8 CPU
cores plus one NVIDIATM TeslaTM K40c, and 32 CPU cores plus four NVIDIATM TeslaTM K80
GPUs.

Figure 2: Example of JDL file targeting a worker node with one NVIDIATM TeslaTM K80 GPUs.

Figure 3: Excerpt of Slurm configuration files gres.conf and slurm.conf where GPU support is
implemented.

The implementation  of  GPU/MIC related  JDL attributes  assumed  that  the  local  batch
systems already configured the GPU/MIC support according with the official LRMS specific
documentation for HTCondor [9], LSF [10] and Slurm [11]. Of course, to let the user know if
QMUL grid site has GPUs on board,  and which vendor/model  is  available,  the information
system has to be properly extended. 

For what concerns the applications run in the worker node, the usual grid way to distribute
software via CVMFS tool could not be used because of the complex software dependencies. In
fact, GPU specific application software components generally depend on the drivers of a given
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GPU card, and different driver versions for the same card can be installed on different worker
nodes at the various resource centres. To avoid such conflicts the applications were built inside a
number of Docker containers, each one in turn built  with a different  NVIDIATM driver.  Six
containers with the latest six more recent NVIDIATM drivers were made available in the Docker
Hub for the structural biology applications in collaboration with INDIGO-DataCloud project
[12],  in  order  to  allow the exploitation  of  the  three  grid sites  hosting  NVIDIATM GPUs at
CIRMMP, QMUL and ARNES. To avoid security issues, and then releasing the requirement to
have the Docker engine installed and running on each worker node, the Udocker tool was used.
Udocker  is  a  basic  user  tool  developed  by  INDIGO-DataCloud  to  execute  simple  Docker
containers in user space without requiring root privileges. Figure 4 shows the script acting as
executable in the JDL file example of Figure 2. After landing on the worker node, the driver
information is collected and used through the Udocker tool to pull the right Docker image from
which to create the container. The application is then executed inside the container.

Figure  4:  Example of  script  for  running DisVis  application  on the grid  using  GPU driver
dependent Docker containers.

2.2 Information System

In order to introduce the concept of accelerator device in a Grid Computing Service an
enhancement of the GLUE 2.0 schema is required. The proposed changes, as encompassed in
the GLUE 2.1 draft, consist on:

• The definition of a new GLUE object, the Accelerator Environment, representing a set
of homogeneous accelerator devices.

• New  attributes  and  associations  for  existing  objects  such  as  Computing  Manager,
Computing Share and Execution Environment.

Two reasons lead to considering a new GLUE object instead of extending the Execution
Environment described in GLUE 2.0 [13]:

• Many accelerator types, each one with its own specific features, can be installed in or
linked  to  an  environment.  The  outcome  of  extending  the  environment  with  many
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complex attributes would have been cumbersome and very far from the inner meaning
of the GLUE specification.

• A many-to-many  relationship  between  accelerator  object  and  environment  must  be
taken into consideration in order to support external GPU appliances. In that case the
Accelerator Environment is completely decoupled, not only from the logical point of
view but also from the physical one, from an Execution Environment.

An Accelerator Environment reports the number of physical accelerators, the amount of
memory available and any detail about the hardware such as the vendor,  the model and the
clock  speed.  The  information  published  with  an  Accelerator  Environment  object  must  be
considered immutable or statically defined. It changes only if a hardware restructuring occurs.

Figure 5: UML diagram of GLUE 2.1 draft Computing Entities. In red the classes involved in 
the description of the accelerators

The main concept behind the new defined attributes in Computing Share and Computing
Manager is the accelerator slot. It represents the minimum amount of a GPU resource that can
be allocated to a job. Since a GPU can be efficiently shared among multiple processes, the
definition of accelerator slot may be quite complex. In accordance to the meaning of the related
JDL attribute, GPUNumber, previously described the accelerator device is considered to work in
“exclusive  execution  mode”.  Each  process  has  the  control  of  an  accelerator  device.  The
information published with the new attributes of Computing Share and Computing Manager can
vary according to the resource usage, for example the number of free accelerator slots for a
Computing Share, or the runtime configuration of a batch system, such as the total number of
accelerator slots for a Computing Manager.

The information about the accelerator driver or generally any related software tool can be
published through the Application Environment object, as declared in the GLUE 2.0 schema. It
is  not  necessary  to  modify  the  definition  of  Application  Environment  in  order  to  have  an
association  with  one  or  more  Accelerator  Environments.  Since  there  is  a  many-to-many
association between the Application Environment and the Execution Environment, the latter can
be used as a bridge for expressing the relationship between the driver and the device.
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The conceptual model of the Grid Computing Service with the accelerator information is
being defined in GLUE2.1 draft and shown in Figure 5.

The framework adopted by the EGI HTC platform for managing the information system is
the Berkeley Database Information Index (BDII) [14]. 

The BDII is structured as a hierarchy of nodes, with the “top BDII” one at the root level,
referencing all the information provided by the other nodes, and the “resource BDII” node at the
bottom, collecting data from the grid resources. Gathering information is  carried out  by the
resource BDII in two different ways:

• Reading statically defined descriptions of resources.
• Running a set of executables, called information providers, and catching the output.

The Accelerator Environment is published by the resource BDII using a statically defined
description.  For  a  CREAM  CE  node  such  a  description  is  built  by  the  deployment  and
configuration system, based on the Puppet suite. Figure 6 shows an excerpt from the Puppet
configuration file (hiera) which describes an accelerator device installed into a worker node.

creamce::hardware_table :
    environment_001 : {
        ce_cpu_model : XEON,
        ce_cpu_speed : 2500,
        # other definitions for the worker node 
        accelerators : {
            acc_device_001 : {
                type : GPU,
                log_acc : 2,
                phys_acc : 2,
                vendor : NVIDIA,
                model : "Tesla K20m",
                memory : 5119 
            }
        }
    }

Figure 6: Excerpt of a Puppet configuration file for a GPU installed in a worker node

Every attribute related to the accelerator slots and published within Computing Manager
and Computing Share objects is calculated by an information provider, executed by the resource
BDII.  Many  batch  systems  integrate  the  support  for  information  retrieval  from  popular
accelerator  devices  like  NVIDIATM GPU  devices.  The  TORQUE  management  system,  for
example, can identify the structure of the NVIDIATM devices installed in the worker nodes,  and
many parameters reporting the quality of service, GPU and memory usage. However in many
cases the support is not able to give the complete control over all the required details of an
accelerator device. Besides it is more advisable to avoid the development of many information
providers,  each  one  batch  system  specific,  if  a  common  solution  can  be  identified.  For
NVIDIATM devices the common solution consists on an information provider which is able to:

• Run the NVIDIATM System Management Interface (nvidia-smi) on each active worker
node.

• Aggregate the data harvested according to the GLUE 2.1 schema.
Since the executable does not depend on any batch system specific feature, the solution is

portable. The main drawback is that it requires a further configuration of both the resource BDII
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node and each worker node.  Any command of nvidia-smi  is  run through a secure channel,
established with openssh tools, and with normal user privileges, therefore accounts and public
keys must be distributed over the cluster.

2.3 Accounting

The APEL (Accounting Processor for Event Logs) [15] is the fundamental tool for the
CPU usage accounting infrastructure deployed within EGI. As a log processing application, it
interprets logs of CREAM CE and its underlying LRMS to produce CPU job accounting records
identified with grid user identities. APEL then publishes accounting records into a centralised
repository at a Grid Operations Centre (GOC) for access from the EGI Accounting Portal. The
functions of log files parsing, record generation and publication are implemented by the APEL
Parser, APEL Core, and APEL Publisher component respectively. The APEL developers were
therefore involved in the GPU accounting discussion. Their analysis concluded that a little effort
to modify APEL Parser and Core functions had been required if the LRMS would be able to
report the GPU usage attributable to each job in their log files. Unfortunately, a detailed analysis
of the job accounting records reported in the log files of TORQUE, LSF, Slurm, HTCondor and
SGE showed that they don’t contain GPU usage information. For the most recent NVIDIATM

GPUs, the NVIDIATM Management Library (NVML) allows through the NVIDIATM System
Management Interface (nvidia-smi) tool to enable per-process accounting of GPU usage using
Linux PID, as shown in the example output of Figure 7:

Figure 7: Per-process GPU utilization accounting example using nvidia-smi tool

Regrettably,  this functionality is not yet integrated in any of the considered LRMS. In
principle, developing suitable prologue/epilogue scripts for any given LRMS would allow to
implement  per-job  accounting  starting  from  the  per-process  GPU  accounting  provided  by
NVML. However, the estimated effort for developing and sustaining in the long term such kind
of  solution  was  considered not  affordable  by  the APEL team with their  current  and  future
planned  funds.  The  accounting  of  GPU  usage  in  the  EGI  HTC  platform  was  therefore
temporarily abandoned, pending its possible native support in future versions of the considered
LRMS.

3. The Cloud Accelerated Platform

KVM with PCI  pass-through virtualisation  technology for  GPUs is  rather  mature,  but
maximum one VM can be attached to one physical card, as shown on the left of Figure 8. Other
virtualisation technologies that allow to share the physical GPUs among many virtual machines
are available, e.g. NVIDIATM GRIDTM vGPU for XenServer and VMWare hypervisors, SR-IOV
based AMDTM MxGPU for VMWare hypervisors, and IntelTM GVT-G recently added to Linux
4.10 kernel.  However,  these  are  not  yet  supported by KVM, the most  popular open source
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hypervisor  deployed  in  the  large  majority  of  the  cloud  resource  centres  part  of  the  EGI
Federated Cloud.

Figure  8:  PCI  pass-through  virtualisation  of  GPUs  (left)  versus  sharing  virtual  GPU
technology (right).

3.1 Accelerated computing with OpenStack

As mentioned above, the technology for sharing virtual GPUs is not supported by KVM
for NVIDIATM Tesla cards, therefore PCI pass-through has been used. OpenStack has built-in
support for PCI pass-through from Grizzly release. That includes the following changes in the
OpenStack Nova:

• Implementation  of  support  for  PCI  pass-through  mechanism on  compute  nodes  for
configuring and creating VMs with PCI  pass-through enabled.  The PCI devices  for
pass-through  are  defined  in  the  configuration  file  of  OpenStack  Nova  as  whitelist
“pci_pass-through_whitelist = { "vendor_id": "8086", "product_id": "10fb" }”, its alias
will be assigned to VM flavour as properties.

• Implementation of scheduler supporting PCI pass-through to correctly  allocate VMs
with PCI pass-through enabled to compute nodes with available resources.  With the
support of scheduler, VMs with PCI pass-through can be mixed with normal VMs on
the same OpenStack deployment.

The first cloud computing testbed supporting GPU cards was integrated into EGI at IISAS
as the “IISAS-GPUCloud” site,  which comprises four IBM dx360 M4 servers each with 2x
IntelTM XeonTM E5-2650v2  (16  CPU cores),  64GB RAM,  1TB  storage  and  2x  NVIDIATM

TeslaTM K20m, running Ubuntu 14.04 LTS.
 The initial setup demonstrated that KVM PCI pass-through was not stable, compute nodes

crashed randomly. The VMs had direct access to PCI devices and every misconfiguration in
VMs could send NMI (non-maskable interrupt) signal to the hardware that can be propagated to
the host machine and caused the system crash. The workaround solution is to change BIOS
setting for isolating NMI of the pass-through device. However, a more consistent solution where
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the host operating system can retain control over hardware is critical for overall stability of the
system. A viable alternative is to use LXD [16] container hypervisor as replacement for KVM
hypervisor, as discussed in the next subsection 3.3.

3.2 Accelerated computing with OpenNebula

Since  version  4.14  the  OpenNebula  cloud  computing  framework  supports  PCI  pass-
through virtualisation including GPU accelerators. By default, PCI devices can be specified in
OS templates using vendor,  device and class PCI codes.  This approach requires the system
administrator to define special templates for every combination of virtual appliance images and
GPUs provided by worker nodes. It gets complicated if the site provides more than one type of
accelerator and worker nodes have more than one accelerator installed. Also, the integration of
GPU accelerators in the OpenStack cloud computing framework follows an approach where
GPU accelerators are requested using resource template, therefore for compatibility reasons the
rOCCI server for OpenNebula had to be modified by its developers to allow specification of
GPU device PCI codes inside resource templates. To test the integration of the OpenNebula
framework in the EGI Federated Cloud, an experimental configuration was set up at CESNET-
Metacloud site  in  May 2016,  and a  new IISAS-Nebula  cloud site  was  set  up and put  into
production in January 2017.

3.3 Accelerated computing with LXD containers

In the recent years, container technologies have been emerging as a viable alternative of
full virtualisation for cloud computing. From the point of view of applications running in the
cloud, the full containers like LXD have very similar behaviours like VMs: users can create and
log into containers, install/configure software, running applications and terminate the containers
when they are no longer needed. In comparison with full VMs managed by hypervisors like
KVM,  containers  have  much  faster  start,  lower  overheads,  and  easier  access  to  hardware
resources  via  device  mapping.  The  main  limitation  of  container  technologies  is  that  the
containers  must  share  the  same OS kernel  as  the  hosting  machine  and users  cannot  easily
change  kernel  configurations  (e.g.  loading  kernel  modules).  For  use  cases  with  accelerated
computing,  where  VMs  are  mostly  used  for  computational  tasks,  such  limitations  are  not
relevant.

There are several implementation of Nova driver for OpenStack. However, most of them
are still immature at the time of testing (2016). An experimental cloud site has been set up at
IISAS to enable GPU support with LXD hypervisor with OpenStack through nova-lxd driver.
Unfortunately, the support for configuring GPU device mapping in Nova configuration files of
the tested version of nova-lxd was not yet implemented. Thus, the devices had to be hard-coded
in the code for testing. The performance and stability of the LXD containers were outperforming
the VMs in KVM and practically reached native performance, that is very promising. However,
some critical features, mainly the supports for block devices, were still missing, that prevented
so far use of the experimental site in production.

12



P
o
S
(
I
S
G
C
2
0
1
7
)
0
2
0

EGI federated platforms supporting accelerated computing P. Andreetto et al.

3.4 Accelerated computing with Docker containers

Docker is another widely adopted container technology. Unlike LXD which is full OS-
level container technology and behave more like hypervisor, Docker containers are application
containers with the aim to run single application process inside. It wraps up application software
in a complete file system that contains everything it needs to run: code, runtime, system tools,
system libraries, therefore the application in Docker is highly portable and independent from the
hosting environment. 

Docker containers with GPU support  can be easily executed in  cloud sites  supporting
GPUs. Users can create a VM with GPU-enabled flavour and image, and run docker with proper

mapping to access GPUs via the --device option, as for example: 
$ docker run -it --device=/dev/nvidia0:/dev/nvidia0 \       
--device=/dev/nvidiactl:/dev/nvidiactl \

  --device=/dev/nvidia-uvm:/dev/nvidia-uvm IMAGE /bin/bash

3.5 Integration with EGI federated cloud

Like HTC Accelerated platform, the integration with EGI Federated Cloud will require
additional support for GPU in Information and Accounting systems.

The conceptual model for a generic Cloud Provider Site does not fit  correctly into the
GLUE 2.0 schema. The concepts of virtual machines, images and flavours are brand new from
the logical point of view. Extending the objects of a classical Computing Service is not enough,
it is necessary to redesign the entire schema and create a Cloud Compute Service.

Figure 9: UML diagram of GLUE 2.1 draft Cloud Computing Entities. In light red the classes
introduced  with  GLUE  2.1,  in  dark  red  the  ones  also  involved  in  the  description  of  the
accelerators.

The conceptual model of the Cloud Compute Service is being defined in GLUE 2.1 draft
specification,  as  depicted  in  Figure  9.  There’s  a  strong  similarity  between  classes  in  a
Computing Service and a Cloud Compute service.  The Cloud Compute Instance Type class
describes the hardware environment, or flavour, of the VM, like the Execution Environment
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does within a Computing Service. The Cloud Compute Manager, or hypervisor, corresponds to
the Computing Manager, or batch system manager, in the classical GLUE 2.0 schema.

In order to keep the similarity even for modelling “virtual  accelerator devices” a new
entity,  the  Cloud  Compute  Virtual  Accelerator,  has  been  defined.  It  describes  a  set  of
homogeneous virtual accelerator devices in terms of number of GPUs, amount of memory and
hardware details, like vendor and model. A many-to-many association ties the Cloud Compute
Instance  Type  to  the  Cloud  Compute  Virtual  Accelerator.  Since  with  PCI  pass-through
virtualisation  only  one  VM at  a  time  can  be  attached  to  one  or  more  physical  accelerator
devices,  it  does  not  make  sense  to  have  the  concept  of  accelerator  slot.  Within  the  Cloud
Compute Service an accelerator slot corresponds to the entire device.

GPU  accounting  is  also  easier  in  cloud  environment.  Considering  that  the  cloud
frameworks currently return wall clock time only to the APEL based accounting system, if the
wall clock for how long a GPU was attached to a VM is available then the GPU reporting would
be in line with cloud CPU time, i.e. wall clock time only. The APEL team has therefore been
involved to define an extended usage record and new views to display GPU usage in the EGI
Accounting Portal.

To facilitate the testing and development of accelerated applications in EGI, a dedicated
Virtual Organization “acc-comp.egi.eu” has been established. A dedicated VO allows to create a
separate set of virtual appliance images in the EGI Application Database [17] with pre-installed
drivers and libraries (e.g CUDA, OpenCL) and allows to limit the list of sites to the ones that
provide relevant hardware. Furthermore, the separated VO allows users to share and exchange
their knowledge and experiences related to accelerated computing easier than general-purpose
VOs like fedcloud.egi.eu. More information can be found in [18].

4. Applications

As pointed out in section 1, two EGI scientific communities organized respectively in the
MoBrain  (Structural  Biology)  and  LifeWatch  (Biodiversity  and  Ecosystems)  Competence
Centres were the early adopters of the EGI Accelerated Platform, setting the requirements and
providing a number of use cases exploiting the GPU hardware to enhance the performance of
their calculations. These applications are described in the next subsections.

4.1 Molecular dynamics

The Structural Biology user community participating to the MoBrain Competence Centre
provided several applications designed in highly parallel manner to profit of GPU architecture.
Some  of  them,  i.e.  DisVis,  implementing  visualisation  and  quantification  of  the  accessible
interaction  space  of  distance  restrained  binary  bio-molecular  complexes,  and  PowerFit,
implementing  automatic  rigid  body  fitting  of  bio-molecular  structures  in  Cryo-Electron
Microscopy densities,  have been already described in a recent publication [19] and will  not
reported here. Molecular Dynamics (MD) simulations with GROMACS and NAMD packages
exploiting  GPU resources  were  carried  out  by  the  CESNET team of  MoBrain  and  by  the
MolDynGrid Virtual Laboratory [20] team, from the National Academy of Sciences of Ukraine,
who have a long-standing collaboration with EGI.  
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MD simulations  with  the  PMEMD tool  of  the  AMBER package  (ambermd.org)  were
carried  out  by  the  CIRMMP team  and  will  be  described  in  more  detail  here.  CIRMMP
benchmarked two applications of MD simulations that are often performed with the AMBER
package:

1. Restrained MD (rMD), i.e. including experimental data that define the conformational
space available to the molecule.

2. Unrestrained, also called free, MD simulations.
The main application of rMD is the optimization of 3D structural models generated by

techniques  such  as  distance  geometry  or  molecular  modelling.  Optimized  models  can  be
deposited to the Protein Data Bank (PDB) [21]. Instead, free MD simulations have an extensive
range  of  biological  applications.  Besides  their  specific  research  purpose,  the  two  types  of
simulations differ in the input data required. For free MDs only the atomic coordinates of the
initial 3D structural model of the biological system of interest are needed. For rMD simulations,
the experimental data are required as an additional input, in a suitable format. rMD simulations
are enabled by the AMPS-NMR portal which was developed in the context of the WeNMR
project [22, 23]. For the rMD calculation a standardized simulation protocol consisting of a
constant-time simulation, where the solvated protein is initially heated, then allowed to move
for a predefined number of steps and then cooled again to 0 K was applied to a small protein
with publicly available experimental data (PDB entry 2KT0, DOI: 10.2210/pdb2kt0/pdb).

Figure 10: Calculation times for rMD simulations for PDB entry 2KT0 on a single-core CPU
(AMDTM OpteronTM 6366-HE) vs one GPU card (NVIDIATM TeslaTM K20). Note the logarithmic
scale of the y axis.

The acceleration factor under this real case scenario, as shown in Figure 10, is about 100.
Note that  rMD simulations do not scale well with the number of cores because of the way the
restraint potential is coded in the software. For the AMBER code, the CPU server does not
affect  the  GPU performance.  The agreement  between the refined structural  models  and the
experimental restraint data in the two simulations, as measured by the residual deviations of the
back-calculated data with respect to the input, was essentially identical. This proves that the use
of GPUs does not introduce numerical errors due to single precision. The GPU-enabled service
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is already available to users via the AMPS-NMR portal. A user commented “It was very fast.
About 40 minutes for 20 structures ! ”. Typical run times in the traditional CPU-based ITC grid
were of the order of 10 hours. 

To  benchmark  unrestrained  (free)  MD  simulations  we  used  a  more  challenging
macromolecular system than the system used for rMD, owing to its large total mass. The system
of  choice  was  the  M  homopolymer  ferritin  from  bullfrog  (PDB  entry  4DAS,  DOI:
10.2210/pdb4das/pdb). This system is composed by 24 identical protein chains, forming a single
macromolecular adduct, thus with an overall protein mass of 499,008 Da (with respect to 10,051
of 2KT0). After solvation, this corresponds to ca. 180,000 atoms in the system vs 1,440, so
about a factor 125 in size. The physiological role of ferritin is to store iron ions and release them
when needed by the cell. Molecular systems of the size of ferritin are not amenable to routine
structural studies by NMR and therefore their dynamic properties can be explored only by MD
simulations. In practice, the current setup constituted the basis for an extensive investigation of
the molecular mechanism of iron release, which will be published elsewhere. The acceleration
afforded by the GPU in our benchmark is depicted in Figure 11.

Figure 11: Extended comparison of the performance achieved using single/multi-core CPUs
(IntelTM XeonTM CPU E5-2620 and AMDTM OpteronTM 6366-HE) vs one GPU card (NVIDIATM

TeslaTM K20). The graph reports the nanoseconds of simulation that can be computed in one day
as a function of the number of cores used on each CPU type.

It appears that the correlation with the number of cores is actually less than optimal on
either CPU type. For the IntelTM CPU, the simulation performance (ns/day of simulation) as a
function of the number of cores used is 1:5.1:9.6, against a ratio of 1:6:12 cores; for the AMDTM

CPU the corresponding data are 1:11.2:32 against a ratio of 1:16:64 cores (Table 1, compare the
first and third columns). Thus, using a 64-core system constituted by four AMDTM OpteronTM

6366-HE CPUs (1.8GHz,  16C,  cache L2 16MB/L3 16MB, 32x4GB RDIMM LV dual  rank
memory) on a single blade provides about 50% of the expected increase in simulation length
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that can be computed per day with respect to a single core. The acceleration provided by a
single GPU card with respect to the full 64-core system is 4.7 (Table 1, last column).

Number
of cores

Simulation
performance in ns/day

Ratio vs.
single-core

GPU
acceleration

AMDTM OpteronTM

1 0.05 1.0 150.00x

4 0.18 3.6 41.70x

8 0.30 6.0 25.00x

16 0.56 11.2 13.40x

64 1.60 32.0 4.69x

IntelTM XeonTM CPU E5-2620

1 0.08 1.0 93.70x

6 0.41 5.1 18.30x

12 0.77 9.6 9.74x

GPU card

1 7.50 - -

Table 1: Benchmark results for AMBER, on unrestrained MD simulations for the ferritin system.
The table reports the performance achieved using only single/multi-core CPUs (IntelTM XeonTM

CPU  E5-2620  and  AMDTM OpteronTM 6366-HE)  vs  the  same  cores  plus  one  GPU  card
(NVIDIATM TeslaTM K20m), measured by the nanoseconds of simulation that can be computed in
one  day  for  the  various  hardware  configurations.  The  table  also  reports  the  scale  factor
resulting from the use of multiple cores vs. a single core as well as acceleration provided by the
GPU card.

With  the  above  configuration  we  could  thus  compute  multiple  100-ns  simulations
(reproducing different experimental conditions) of human ferritin, in less than two weeks each.
With a traditional system, each calculation would have taken about two months. The energy
consumed for one ns of simulation was also measured with the iDRAC monitoring utility for the
64-core AMDTM OpteronTM system and the IntelTM XeonTM system accelerated with the GPU.
The difference between the active power and the idle power (generally known as “dynamic
power”) of both systems was calculated. The dynamic power was considered because the two
systems had different base configurations, like power supplies and CPUs. It turned out that the
electric cost of one ns of simulation with the GPU is only the 8% of the cost when using the full
64-core AMDTM OpteronTM system.   
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4.2 Biodiversity

In March 2017 the European Commission granted the legal status of European Research
Infrastructure  Consortium  (ERIC)  to  LifeWatch:  the  e-Science  and  Technology  European
Infrastructure for Biodiversity and Ecosystem Research [24]. It aims to advance biodiversity
and  ecosystem  research  and  to  provide  major  contributions  to  address  big  environmental
challenges such as climate change by providing access through a pan-European distributed e-
infrastructure  to  large  sets  of  data,  services  and  tools  that  enable  the  creation  of  virtual
laboratories and decision-support applications. Within the EGI-Engage project, the LifeWatch
community,  organized  as  Competence  Centre,  explored  the  integration  and  deployment  of
assisted pattern recognition tools on EGI specific resources, including servers with GPUs on the
cloud. After a state-of-the-art research on computer vision and deep learning tools, the Caffe
framework was selected to build a prototype of classification service on flower species through
image recognition. Caffe is a deep learning framework using Convolutional Neural Networks
and can be deployed on the cloud. It provides two services: “train” and “classify”. The first one
is a compute intensive service allowing to train a new model. Its performance can be enhanced
using GPUs supporting CUDA. The speed-up using GPU versus CPU is a factor 9 using e.g.
AlexNet model, while with the most recent NVIDIATM Kepler or Maxwell GPU architectures
the use of  CuDNN v3 library allows  to  achieve a  factor  32.  The second service  allows to
classify user provided images according to the trained model. It is a I/O bounded task that can
be  run  efficiently  without  GPUs.  Starting  from  the  Caffe  framework,  the  LifeWatch  team
developed  a  demonstrator  service  to  help  users  to  train  a  web  based  image  classifier.  It
implements a two steps process: at first, the Neural Network is trained with the image datasets
and tags provided by the user; then, the trained Neural Network is connected with the web
service offering a API to be used with the provided web interface and android app. The user can
e.g. upload a flower image from his smart-phone through the demonstrator android app, and the
returned  result  will  be  a  ranked  list  of  the  potential  Latin  names  of  the  flower  with  their
accuracy. The service has been tested and validated on the EGI Federated Cloud site of IISAS
hosting the GPU servers, by using several datasets, including images from Portuguese flora and
Real Jardin Botanico of Madrid, as described in detail in [25].

5. Conclusions and future work

The  CREAM  GPU-enabled  prototype  was  tested  at  four  sites  hosting  the  following
LRMS: TORQUE, LSF, HTCondor, Slurm, and SGE. Three new JDL attributes were defined:
GPUNumber,  GPUModel,  MICNumber.  At three sites  the prototype is  run in  “production”:
QMUL  and  ARNES  (with  Slurm  LRMS)  and  CIRMMP  (with  TORQUE/Maui
LRMS/scheduler).  A  number  of  new  classes  and  attributes  describing  accelerators  were
proposed and included in  the  GLUE2.1  draft  latest  version,  after  discussion with the  OGF
Working Group. A major release of CREAM is almost ready with GPU/MIC support for the
LRMS listed above, with the GLUE2.1 draft  prototype implemented as information system.
Future official approval of GLUE 2.1 would occur after the specification is revised based on
prototype  lessons  learned.  The  major  release  of  CREAM will  support  CentOS 7  operating
system, in order to be included in the EGI UMD-4 distribution.
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For what concerns the Cloud Accelerated platform, three cloud sites hosting NVIDIATM

GPUs were put in production using PCI pass-through virtualisation with KVM hypervisor, and
integrated in the EGI Federated Cloud. An experimental cloud site was set up at IISAS to enable
GPU support with LXD hypervisor with OpenStack. LXD is a full container solution supported
by Linux that is expected to provide better performance and stability than KVM (faster start-up
time, better integration with OS), especially in terms of GPU support (simpler site setup, more
stable than KVM PCI pass-through).
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