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1. Phenomenological Analyses of High-Energy Heavy-Ion Collisions

At present to gain insight into Quark-Gluon Plasma (QGP), high-energy heavy-ion collision
experiments are performed at Relativistic Heavy Ion Collider (RHIC) and LHC (Large Hadron
Collider). The QGP is a new state of matter of quarks and gluons at extremely high temperature
and/or density. One of the most important outcomes in QGP physics is that the strongly interacting
QGP (sQGP) was created at RHIC [1]. The discovery of the sQGP brought us a chance to look
into a new aspect of the QGP, because the QGP had been expected to be a gas, weakly interacting
QGP, before the RHIC operation. At that time, the sQGP production at RHIC is confirmed from
both experimental and theoretical studies: success of relativistic hydrodynamics for explaining
strong elliptic flow, quark number scaling in elliptic flow which is understood by a recombination
model, jet quenching mechanism for the suppression of nuclear modification factor and color class
condensate for initial state [1]. In particular, since then a relativistic hydrodynamic model has been
one of promising dynamical models for description of space-time evolution of hot and dense matter
created after high-energy heavy-ion collisions.

In this decade, development of hydrodynamic model itself is remarkable [2]. First a (2+1)
dimensional relativistic viscous hydrodynamic model appeared. They focused on physics around
the mid rapidity and solved the relativistic viscous hydrodynamic equation only on transverse plane,
using Israel-Stewart theory. Inclusion of viscosity into the relativistic hydrodynamic equation is not
easy task. If viscosities are included in the first order of gradient, then acausality happens. Other
than the Israel-Stewart theory, several possible relativistic viscous hydrodynamic equations in the
second order of gradient have been proposed. Here the problem is that we do not reach a conclusion
which relativistic viscous hydrodynamic equation is suitable for description of high-energy heavy
ion collisions.

Now higher harmonics as well as direct and elliptic flows attracts a lot of interest, because it
gives as a clue to understand the detailed QGP bulk property such as shear and bulk viscosities
from comparison between experimental results and theoretical calculations. The origin of higher
harmonics is considered as existence of fluctuations in initial state and development of it depends on
hydrodynamic expansion. Therefore the numerical calculation with high precision is indispensable
to evaluate correctly the higher harmonics. However the importance of numerical algorithm for the
solving relativistic viscous hydrodynamic equation has not been paid attention.

Here we construct a state-of-the-art numerical algorithm with the Riemann solver based on the
two shock approximation [5, 6]. We check the correctness of our relativistic hydrodynamics code
from comparison with several analytical solutions. We also confirm the energy and momentum
conservation in one-dimensional expansion of high-energy heavy ion collisions. Using our hydro-
dynamic model, we investigate possible existence of Kelvin-Helmholtz instability in high-energy
heavy ion collisions [7]. Finally we perform numerical hydrodynamic calculation with realistic
initial condition to Pb+Pb collisions at LHC.
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2. Relativistic Hydrodynamic Model

2.1 A New Relativistic Hydrodynamics Code

A relativistic hydrodynamic code is developed for solving the conservation equations

Nµ
;µ = 0, (2.1)

T µν
;µ = 0, (2.2)

where Nµ is the net charge current and T µν is the energy-momentum tensor. Choosing the Landau
frame, we decompose the net charge current and the energy-momentum tensor of the viscous fluid
as

Nµ = nuµ +nµ , (2.3)

T µν = euµuν − (p+Π)(gµν −uµuν)+πµν , (2.4)

where nµ is the charge diffusion current, Π is the bulk pressure, and πµν is the shear tensor.
We develop the relativistic hydrodynamics code in the Milne coordinates which are suitable

for description of strong longitudinal expansion at RHIC and LHC. In our algorithm, we split the
conservation equations Eq. (2.1) and Eq. (2.2) into two parts, an ideal part and a viscous part using
the Strang splitting method [8]. For the ideal part we use a Riemann solver with the two shock
approximation [3]. In the viscous part, if the relaxation times are much shorter than the fluid time
scale, we utilize the Piecewise Exact Solution (PES) method [4] to save the computational time.

We check the correctness of our code in several test problems [6, 7]. Here we show highlights
of them: the conservation property of our code and the Israle-Stewart theroy in the Gubser flow
regime. First we check the conservation property of our hydrodynamics codes, using a fluctuating
initial condition in the η direction. In this calculation we switch off viscosity effect to know how
large the numerical viscosity itself exists in our algorithm.

e(τ0,η) = eflat(τ0,η)×

(
1+

10

∑
n=0

δencos
(

n
2π(η −ηe

n)

L

))
, (2.5)

wη(τ0,η) =
10

∑
n=0

δwη
n cos

(
n

2π(η −ηv
n)

L

)
, (2.6)

values of ηe
n and ηv

n are chosen between η =−Yb and Yb at random and eflat(τ0,η) is given by

eflat(τ0,η) = e0exp

[
−(|ηs|−ηflat/2)2

σ2
η

θ(|η |−ηflat/2)

]
×θ(Yb −|η |). (2.7)

Here Yb = 5.3 is the beam rapidity, ση = 2.1 and ηflat = 2.6 show the size of the flat structure of the
initial energy density distribution in the rapidity and e0 = 30 GeV/fm3 is the maximum value of the
energy density. We choose a typical parameter set which is tuned for the RHIC collision energy [6].
We carry out numerical calculations with the grid size ∆η = 0.2 which is often chosen in calculation
of high-energy heavy-ion collisions. We set the time-step size to ∆τ = 0.1τ0∆η . In Fig.1 the energy
density and velocity distributions at τ = 10 fm with and without the source terms are shown. At
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the mid-rapidity the energy density and the flow distributions of numerical calculations with and
without the source terms are consistent with each other. In the region of |η | > 4, however, the
differences between them are observed in the small structure of both distributions. The growth
of the velocity to the vacuum |η | ∼ 8 gives a difficulty of numerical calculation and becomes the
reasons for the differences.

The deviation from the energy and momentum conservation is listed in Tab.1. For both cases,
we find that they are around ten times as large as those with the smoothed initial condition. Never-
theless, the code based on the conservative form keeps conservation property with high accuracy.
On the other hand, in the code with the source terms a few % deviation from the energy and mo-
mentum conservation appears, which is still acceptable.
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Figure 1: The numerical results for longitudinal expansion with the fluctuating initial condition at τ = 10
fm. Left: The energy distributions from the codes with the conservative form and with the source terms. The
dotted line stands for the initial energy distribution. Right: The velocity distribution from the codes with the
conservative form and with the source terms. The dotted line stands for the initial velocity distribution.

εE εM

conservative 1.38E-09 8.59E-09
with souce 1.27E-02 5.61E-02

Table 1: The violation of the total energy and momentum conservation with fluctuating initial conditions. .

Next we show comparison between our numerical calculation and analytical solution of the
Israel-Stewart theory in the Gubser flow regime. A semi-analytic solution of the Israel-Stewart the-
ory in the Gubser flow regime is discussed in Ref.[9], based on the symmetry arguments developed
by Gubser [10, 11]. The numerical calculation is performed on the space-grid size (∆x,∆y,∆η) =

(0.05 fm,0.05 fm,0.1) with the time-step size ∆τ = 0.1∆x. The shear viscosity and the relaxation
time are set to η/s = 0.2 and τη = 5η/(T s), respectively.

Figure 2 shows the time evolution of the temperature and x component of fluid velocity as a
function of x from the numerical results and the semi-analytic solutions. In the case of the inviscid
fluid, the numerical calculation follows the analytical solution until τ = 7 fm [6], whereas in the
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viscous fluid the difference between numerical results and the semi-analytic solution appears after
τ = 4 fm. We show the time evolution of shear tensors in Fig.3. The shear tensors πxx, πyy and πηη

in our numerical calculations show good agreement with the semi-analytic solutions. However, in
πxy the deviation from the semi-analytic solution starts to appear at τ = 2 fm and grows at later
time. Furthermore we find that the second-order terms in πµν give us a clue of choice of numerical
scheme for evaluation of the convection term in the Israle-Stewart theroy [7].
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Figure 2: The time evolution of temperature T (left panel) and the x component of fluid velocity vx (right
panel) distribution as a function of x. The solid lines stand for the semi-analytic solutions and the pluses
stand for numerical results.

2.2 Toward Analyses of High-Energy Heavy-Ion Collisions

We apply our relativistic viscous hydrodynamics code to analyses of high-energy heavy-ion
collisions. First we need to prepare an appropriate initial condition which can reproduce the ex-
perimental data. We employ a parametric initial-condition model "TRENTO (the Reduced Thick-
ness Event-by-event Nuclear Topology model)" based on eikonal entropy deposition via "reduced-
thickness" function [12]. In the model, entropy density is proportion to

s ∝
(

T p
A +T p

B

2

)1/p

, (2.8)

where T p
A and T p

B are the thickness functions,

T p
A,B(x,y) = wA,B

∫
dzρA,B(x,y,z) (2.9)

with independent random weights wA,B sampled from a gamma distribution [12]. The interesting
feature of the initial condition is that it mimics current proposed initial conditions changing the
parameter p. For example, if p = 1, the entropy is proportion to s ∝ TA +TB which corresponds to
the wounded nuclear model. On the other hand, if p = 0, the entropy follows s ∝

√
TATB which is

similar to entropy density of IP-Glasma and EKRT model.
Left panel of Figs.4 and 5 show the initial temperature distributions for

√
sNN = 2.76 GeV

Pb+Pb central collisions (b ∼ 1 fm) on the x− y plane and x−η plane produced by TRENTO.
We transform the entropy density distributions from the TRENTO to the temperature distributions
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Figure 3: The time evolution of shear tensors πxx (top left), πyy (top right), τ2πηη (bottom left) and πxy

(bottom right) from the Gubser fliow as a function of x. The solid lines stand for the semi-analytic solutions
and the pluses stand for numerical results.

using the equation of state (EoS) of the Lattice QCD [14]. In the left panel of Fig.4 we can see the
granularity structure whose size is around 2 fm. The highest temperature of them is ∼600 MeV.
The absolute value of the entropy density is one of parameters of TRENTO. We need to fix the
parameter from comparison with experimental data like transverse momentum distributions and
rapidity distributions. On the other hand, the initial temperature on the x−η plane has several
string-like structures, which suggests a consequence of the existence of strong expansion in the
longitudinal direction.

The right figures of Figs.4 and 5 show the temperature distributions on the x− y and the x−η
planes at τ = 10 fm. In the calculation we use the lattice QCD EoS and set the shear viscosity
to η/s = 0.2. In the right panel of Fig.4, the initial granularity structure is smeared but there is
still a rough structure which seems to contain superposition of harmonics, v1, v2, v3 and more.
Whereas in the temperature distribution on the x−η plane, string-like structures are almost gone
and smoothed distributions remain.

In Fig.6 we make a comparison between the temperature distribution with ideal gas EoS and
that with lattice QCD EoS at τ = 5 and 8 fm. In the comparison we use the same initial en-
tropy density distribution from TRENTO. We can see the difference of EoS affects not only initial
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Figure 4: The temperature distributions on the x-y plane at τ = 1 fm (left) and at τ = 10 fm (right).
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Figure 5: The temperature distributions on the x-η plane at τ = 1 fm (left) and at τ = 10 fm (right).

temperature distribution but also hydrodynamic expansion. Generally the value of temperature
distribution with lattice QCD EoS is higher than that with ideal gas EoS, which suggests that the
lifetime of QGP fluid with lattice QCD EoS is longer than that with ideal gas EoS.

Figure 7 shows the freezeout hypersurface as a function of x fm (left) and η (right). Here
we assume that the freezeout process occurs if the temperature of the fluid cell is below Tf = 155
MeV. Using the information of temperature and fluid velocity on the freezeout hypersurface, we
calculate the particle distribution which is an initial condition for hadron based event generator such
as UrQMD. We leave further calculation to a future project. Here we confirm that our numerical
algorithm is stable and solid even with realistic fluctuating initial condition for high-energy heavy
ion collisions. Now we are ready for analyses of experimental data at RHIC and LHC.
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Figure 6: The temperature distributions as a function of x (fm) (y = η = 0) at τ = 5 and 8 fm in the case of
lattice QCD EoS (the red points) and ideal gas EoS (the blue points).
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3. Summary

We have developed the state-of-the-art numerical algorithm for solving the relativistic viscous
hydrodynamic equation, using the Riemann solver based on two-shock approximation. Our hy-
drodynamics code showed the good property in the total energy and momentum conservation even
with fluctuating initial condition, which is very important feature for analyses of higher harmonics
at RHIC and LHC. Furthermore we have shown comparison between our numerical calculation and
analytical solution of the Israel-Stewart theory in the Gubser flow regime. Not only time evolution
of temperature and velocity but also that of the shear tensors in our numerical calculations show
good agreement with the semi-analytic solutions. Finally we performed numerical hydrodynamic
calculation with the realistic fluctuating initial condition of high-energy heavy-ion collisions pro-
duced by TRENTO. We found that our numerical hydrodynamics code with the initial conditions
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is stable enough to follow the entire time evolution of system until the temperature of the all fluid
cells becomes below the freezeout temperature. We showed the time evolution of temperature dis-
tributions on x− y and x−η planes with lattice QCD EoS. We investigated the EoS dependence
of time evolution of temperature distributions. In the case of lattice QCD EoS, the life time of the
QGP fluid is longer than that with the ideal gas EoS: the values of initial temperature distributions
are higher than those with the ideal gas EoS and temperature decreasing rate is slower. We pre-
sented the freezeout hypersurfaces which are used for calculation of particle yields. Now further
calculation is proceeding for comparison with experimental data at RHIC and LHC.
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