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1. Introduction

The strong CP problem [1] is a naturalness problem of the Standard Model (SM) of particle
physics, associated with the CP violation in the model. The SM involves two CP violating angle
parameters: (i) the QCD angle θ̄ = θQCD + arg(yuyd) which can cause CP violation in the strong
interactions, where θQCD is the bare QCD angle and yu,yd are the 3×3 Yukawa coupling matrices
of the up and down-type quarks, and (ii) the Kobayashi-Maskawa phase δKM which explains the
observed CP violation in the weak interactions. Although θ̄ and δKM share the origin from the
quark Yukawa couplings, their values are so different. |θ̄ | is required to be smaller than 10−10 to
be consistent with the non-observation of the neutron electric dipole moment, while δKM ∼ 1 to
explain the CP-violating decays of the K and B mesons. To understand this puzzle, many ideas
have been proposed so far. Perhaps the simplest solution would be that one of the light quarks,
e.g. the up-quark, is massless, rendering θ̄ to be dynamically relaxed to zero by the condensation
of the up quark field [2]. However recent lattice calculations suggest that a massless up-quark is
inconsistent with low energy hadron data [3]. Another solution, which is still viable, is that CP is
an exact symmetry of the underlying theory, but spontaneously broken in a way to yield δKM ∼ 1,
while keeping θQCD suppressed enough [4] . The third, perhaps the most compelling, solution is
to introduce an anomalous global U(1) symmetry, the Peccei-Quinn (PQ) symmetry, which is non-
linearly realized even at high scales above the weak scale [5]. This solution predicts a very weakly
coupled light pseudo-Nambu-Goldstone boson, the QCD axion, whose vacuum expectation value,
which can be identified as θ̄ , is determined to be vanishing by the axion potential generated by the
QCD anomaly [6, 7, 8].

One of the most interesting consequence of the PQ solution of the strong CP problem is that
the predicted axions can constitute the observed dark matter in our universe [9]. In this talk, I
discuss some basics features of the QCD axion, while focusing on the cosmological implications
and the prospect for axion dark matter.

2. Axion solution of the strong CP problem

The PQ solution of the strong CP problem assumes a global U(1)PQ symmetry which is explic-
itly broken dominantly by the QCD anomaly. To be consistent with low energy phenomenology,
the PQ symmetry should be non-linearly realized in low energy limit, with an axion decay constant
fa well above the weak scale. At scales below fa, one can always make a proper field redefinition
to make only the axion field a(x) transforms under U(1)PQ, while all other fields are invariant [10]:

U(1)PQ :
a
fa
→ a

fa
+ constant, Φ → Φ

(
a
fa
≡ a

fa
+2π

)
, (2.1)

where Φ stands for all light degrees of freedom at scales below fa other than the axion, and fa is
defined as the periodicity of the canonically normalized axion field. Generically this non-linear PQ
symmetry can be broken explicitly by various forms of non-derivative couplings of the axion field,
including the coupling to the QCD anomaly. At leading order in the derivative expansion, generic
Wilsonian effective lagrangian of the axion field can be written as

Leff =
1
2

∂µa∂
µa+

∂µa
fa

J̃µ +
1

32π2
a
fa

∑
i

ciF iµν F̃ i
µν +∆L , (2.2)
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where

J̃µ = ∑
ψ

cψ ψ̄σ
µ

ψ + i∑
φ

cφ

(
φ

†Dµ
φ − (Dµ

φ)†
φ
)

for ψ and φ denoting the Weyl fermions and complex scalar fields in the model at scales under
consideration, F i

µν (i = 3,2,1) are the field strength of the SM gauge fields of SU(3)c×SU(2)W ×
U(1)Y , and the last term stands for non-derivative axion couplings other than the couplings to
F iµν F̃ i

µν . In our convention, ci (i = 1,2,3) are rational numbers, in particular both c3 and c2 are
integer-valued parameters. The Nöether current of the PQ symmetry (2.1) is given by

Jµ

PQ = fa
δLeff

δ∂µa
= fa∂

µa+ J̃µ (2.3)

with a divergence determined as

∂µJµ

PQ = fa
δLeff

δa
=

1
32π2 ∑

i
ciF iµν F̃ i

µν + fa
δ∆Leff

δa
. (2.4)

With the above explicit breaking of the PQ symmetry, a nonzero axion potential is developed,
taking the following form:

Vaxion =VQCD +∆V =− f 2
π m2

π

√
m2

u +m2
d +2mumd cos(c3a/ fa)

mu +md
+∆V, (2.5)

where VQCD is the axion potential induced by the axion coupling to the QCD anomaly F3µν F̃3
µν ,

and ∆V is the additional potential originating from ∆L . In the above discussion, we already chose
the field basis for which the QCD angle parameter θ̄ can be identified as the vacuum value of
c3a/ fa. One then finds

θ̄ ≡ c3〈
a
fa
〉 ∼ ∆V

f 2
π m2

π

(2.6)

for |∆V | . f 2
π m2

π . Obviously one needs two condition to solve the strong CP problem with a PQ
symmetry: (i) c3 6= 0, i.e. U(1)PQ should be explicitly broken by the QCD anomaly, and (ii) PQ
symmetry breaking other than the QCD anomaly, which are encoded in ∆L , should be negligible
enough to yield

|∆V |. 10−10 f 2
π m2

π . (2.7)

As for a more detailed feature of the QCD axion, there can be two distinctive type of models.
One is the KSVZ-type model [7] with cψ = 0 at tree level for the SM fermions ψ , and the other
is the DFSZ-type model [8] with cψ = O(1). Regardless of this detail, the QCD axion has the
following mass and couplings (to the photon and nucleons), which can be characterized by the
single parameter fa:

ma ∼ 5×10−6 (1012GeV/ fa
)

eV,

1
2

gaγγa~E ·~B with gaγγ ∼ 10−15 (1012GeV/ fa
)

GeV−1,

gaNN∂µaN̄γ
µ

γ5N with gaNN ∼ 10−12 (1012GeV/ fa
)

GeV−1. (2.8)
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Among the many constraints on the QCD axion, the most stringent one comes from the astrophys-
ical consideration of the star cooling by axion emission [1], implying

fa & 4×108 GeV. (2.9)

An immediate consequence of this lower bound on the axion decay constant is that the QCD axion
is very light and very weakly coupled, so that its lifetime is much longer than the age of the universe.
As a result, once the QCD axions were produced in the early universe, they constitute (part of) the
dark matter in the present universe [9].

3. Production of axion dark matter

There are two independent mechanisms to produce the QCD axions in the early universe. One
is the so-called misalignment mechanism [9], which is based on the observation that the axion mass
in the early universe well before the QCD phase transition is negligible compared to the Hubble
expansion rate, and therefore generically there can be a misalignment between the initial value
of the axion field and the present vacuum value minimizing the axion potential (2.5). The other
possible source of axion dark matter is the collapsing network of axionic strings and domain walls
[11]. In the pre-inflation scenario that the last PQ phase transition took place before the primordial
inflation is over, all axionic strings were inflated away, and therefore there is no network of axionic
strings and domain walls within the horizon of visible universe. In such case, axions are produced
mostly by the misalignment mechanism. On the other hand, in the post-inflation scenario in which
the last PQ phase transition took place after the inflation is over, it turns out that the network of
axionic strings and walls provide the dominant source of the axion dark matter.

Let us first consider the axion production by misalignment. Classical evolution of the spatially
homogeneous axion field in the early universe is governed by

ä+3Hȧ+
∂V
∂a

= 0, (3.1)

where H is the Hubble expansion rate. For simplicity, we take the harmonic approximation for the
axion potential:

V ≈ 1
2

m2
a(t)a

2(t), (3.2)

where the temperature dependence of the axion mass in the early universe can be approximated as

ma(T ) ∝
1
fa

(
ΛQCD

T

)n

, (3.3)

with n = 0 for T � ΛQCD and n≈ 4 for T � ΛQCD for the QCD scale ΛQCD = O(100) MeV. The
corresponding energy and pressure densities of the homogeneous axion field are given by

ρa =
1
2
(
ȧ2 +m2

aa2) , pa =
1
2
(
ȧ2−m2

aa2) , (3.4)

and the axion energy density evolves as

ρ̇a =−3Hȧ2 + ṁamaa2
(

ṁa

ma
≈−n

Ṫ
T
≈ nH

)
. (3.5)
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During the early universe well before the QCD phase transition, one has H(t)�ma(t), and then the
axion field is effectively a constant over the Hubble time scale ∆t ∼ 1/H. On the other hand, after
the QCD phase transition, H�ma and the axion field enters into the regime of damped oscillation,
with the oscillation time scale δ t ∼ 1/ma shorter than ∆t ∼ 1/H. In this regime, it is convenient to
take an average over the oscillation period δ t, and focus on the slow dynamics over the time scale
longer than the Hubble time. One then finds

〈ȧ2(t)〉
〈m2

a(t)a2(t)〉
= 1+O(H2/m2

a), (3.6)

where the brackets mean the average over the oscillation period, and we used ṁa/ma . O(H) to
get the above result. This shows that axions are pressureless up to small corrections of O(H2/m2

a),
i.e. 〈pa〉= O(H2/m2

a), and the averaged axion energy density 〈ρa〉 ≈ 〈ȧ2〉 ≈ 〈m2
a(t)a

2(t)〉 follows
the evolution equation:

d
dt
〈ρa〉=

(
−3H +

ṁa

ma

)
〈ρa〉. (3.7)

One then finds that the effective axion number density defined as follow has a simple cosmic
evolution:

na ≡
〈ρa〉(t)
ma(t)

∝
1

R3(t)
, (3.8)

where R is the scale factor of the expanding universe. In other words, during the regime of H�ma,
na evolves like the number density of pressureless non-relativistic particles.

With the above results, one can estimate the relic axion mass density ρa(t0) in the present
universe. For this, let us examine the parametric dependence of ρa(t0) on fa and the initial mis-
alignment of the axion field. We first note that the axion fields enters into the damped oscillation
regime around the time tosc when

ma(tosc)≈ 3H(tosc). (3.9)

Using na ∝ 1/R3, we find

ρa(t0)
ma(t0)

≈ ρa(tosc)

ma(tosc)

(
R(tosc)

R(t0)

)3

=
ρa(tosc)

ma(tosc)

s(t0)
s(tosc)

, (3.10)

where s(t) denotes the entropy density, and t0 is the present time. The axion energy density at tosc

is given by

ρa(tosc)≈ m2
a(tosc)a2

i ≡ m2
a(tosc) f 2

a θ
2
mis, (3.11)

where ai denotes the value of the axion field right before the axion enters into the damped oscillation
regime at t ∼ tosc, and we introduce the misalignment angle θmis ≡ ai/ fa for later convenience.
From (3.3) and (3.9), one easily finds that the temperature at tosc has the following dependence on
the axion decay constant:

Tosc ∝ 1/ f 1/(n+2)
a . (3.12)
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From (3.10), one finds also

ρa(t0) = ma(t0)ma(tosc) f 2
a θ

2
mis

(
s(t0)

s(tosc)

)
∼ m2

a(t0) f 2
a

(
ma(tosc)

ma(t0)

)(
T0

Tosc

)3

θ
2
mis ∝

θ 2
mis

T n+3
osc

,(3.13)

which results in the following parametric dependence of the relic axion mass density at present:

ρa(t0) ∝ f (n+3)/(n+2)
a θ

2
mis. (3.14)

For fa . O(1017) GeV, which is the range of the axion decay constant of our interest, we have
Tosc >ΛQCD, and then one can approximate the temperature-dependent axion mass (3.3) at tosc with
n ≈ 4. Finally one can do a bit more detailed analysis to fix the numerical coefficient to find the
following relic axion mass density at present in the unit of the critical energy density ρc = 3M2

PH2:

Ωa(misalignment)≡ ρa(t0)
ρc(t0)

∼ 0.2
(

fa

1012 GeV

)7/6

θ
2
mis. (3.15)

Whatever its origin is, if there were a fluctuation of the axion field at t ∼ tosc, axion dark
matter from misalignment generates an isocurvature perturbation in the power spectrum of the
cosmic microwave background (CMB) [12]. A naive estimate of the resulting CMB isocurvature
perturbation is as follows. First, a simple scaling argument suggests(

δT
T

)
iso
∼ (δρDM)iso

ρDM
∼ δρa

ρDM
after the matter domination, (3.16)

where ρDM denotes the total dark matter mass density. One finds also

δρa

ρDM
∼ Ωa

ΩDM

δρa

ρa
∼ Ωa

ΩDM

δθ

θmis
∼
(

Ωa

ΩDM

)1/2( fa

1012 GeV

)7/12

δθ (3.17)

where δθ denotes the axion fluctuation in angle unit, and we have used (3.15) for the last expres-
sion. In the pre-inflation scenario, axion field experiences a de-Sitter quantum fluctuation, yielding

δθ ∼ H(tinf)

2π fa(tinf)
, (3.18)

where H(tinf) and fa(tinf) denote the Hubble expansion rate and the axion decay constant, respec-
tively, during the inflationary period. Note that, depending upon the mechanism to determine the
axion scale [13], fa(tinf) can be very different from the present axion decay constant fa [14]. Even
when one makes a more detailed analysis [12], it turns out that the resulting CMB isocurvature
perturbation is quite close to the above naive estimate, yielding(

δT
T

)
iso
∼
(

Ωa

ΩDM

)1/2( fa

1012 GeV

)7/12( H(tinf)

2π fa(tinf)

)
< 10−5, (3.19)

where we have imposed the recent PLANCK bound on the CMB isocurvature fluctuation [15].
In the post-inflation scenario, axionic strings with a tension µstring∼ f 2

a are produced during the
PQ phase transition, which can give rise to an important cosmological consequence. Those strings
eventually form a network of strings and domain walls, in which each string is attached by NDW

5



P
o
S
(
K
M
I
2
0
1
7
)
0
2
1

Short Title for header Kiwoon Choi

domain walls with a tension σwall ∼ma f 2
a , which are formed during the QCD phase transition. The

number of attached domain walls are determined to be the integer-valued model parameter c3, i.e.
NDW = c3, which was defined in the axion effective lagrangian (2.2) and the PQ current divergence
(2.4). One then finds that axionic strings and domain walls collapse efficiently, while radiating
axions, only when NDW = 1. In the other case with NDW ≥ 2, the network of axionic strings and
domain walls cause a disastrous domain wall problem, and therefore in the post-inflation scenario,
the axion model should have NDW = c3 = 1 in order to be cosmologically viable.

To determine the density of relic axions produced by axionic strings and domain walls, one
needs to examine the complicate evolution of axionic strings and domain walls [11]. Yet, one can
notice without such analysis that the resulting axion mass density has the same dependence on fa

as the axion mass density from misalignment, i.e.

Ω(strings/walls) ∝ f (n+3)/(n+2)
a . (3.20)

This is because axions are produced dominantly around the time tcoll when the network of strings
and domain walls begin to collapse, which took place soon after the Hubble expansion rate becomes
comparable to the axion mass:

H(tcoll)∼ ma(tcoll), (3.21)

and the produced axions are nearly non-relativistic as their momenta are comparable to H. Around
tcoll, axionic strings and walls follow a simple scaling behavior, yielding

ρstring(tcoll)∼ µstringH2(tcoll)∼ m2
a(tcoll) f 2

a ,

ρwall(tcoll)∼ σwallH(tcoll)∼ m2
a(tcoll) f 2

a . (3.22)

The resulting axion number density at t ∼ tcoll is roughly given by

na(tcoll)∼ H(tcoll)×
(

ρstring +ρwall

ωa

)
∼ ma(ttall) f 2

a , (3.23)

where ωa ∼H(tcoll)∼ma(tcoll) is the typical energy of the axions produced by strings and walls at
t ∼ tcoll. As the produced axions are mostly non-relativistic at t > tcoll, na evolves as R−3. Again
this leads to

ρa(t0) = ma(t0)na(t0)∼ ma(tcoll)na(tcoll)

(
R(tcoll)

R(t0)

)3

∼ m2
a(t0) f 2

a

(
ma(tcoll)

ma(t0)

)(
T0

Tcoll

)3

(3.24)

and therefore

Ωa(string/wall) ∝ f (n+3)/(n+2)
a . (3.25)

The corresponding coefficient can be fixed by numerical simulation for the evolution of axionic
strings and domain walls [11], yielding

Ωa(string/wall)∼ (1−5)×
(

fa

1012 GeV

)7/6

. (3.26)

6



P
o
S
(
K
M
I
2
0
1
7
)
0
2
1

Short Title for header Kiwoon Choi

axion dark matter                                                                                  anthropic 
in the post-inflation axion dark matter
scenario in the pre-inflation 

scenario

Figure 1: The thin orange band denotes the relic axion mass density in the post-inflation scenario, while the
green band represents the case that axions constitute the observed dark matter in the pre-inflation scenario,
with a misalignment angle adjusted by the anthropic selection. The blue lines correspond to the upper bound
on the axion mass density in the pre-inflation scenario for a given value of δθ = H(tinf)/2π fa(tinf).

4. Conclusion

The PQ solution of the strong CP problem is particularly attractive as it provides also a com-
pelling candidate for dark matter in the universe. In the pre-inflation scenario in which the last
PQ phase transition took place before the primordial inflation is over, dark matter axions are pro-
duced mostly by the misalignment mechanism, with a relic density determined by the two param-
eters, the axion decay constant fa at present and the initial misalignment angle θmis. Dark matter
axions in this scenario can generate a CMB isocurvature perturbation, whose amplitude is deter-
mined by the axion fraction of the dark matter, i.e. Ωa/ΩDM, and the inflationary angle fluctuation
δθ = H(tinf)/2π fa(tinf) which is determined by the inflationary Hubble scale H(tinf) and the ax-
ion decay constant fa(tinf) during the inflationary epoch. On the other hand, in the post-inflation
scenario in which the PQ phase transition took place after the inflation, dark matter axions are
produced dominantly by the axionic strings and domain walls, which results in the relic density
determined by fa alone. To avoid the cosmological domain wall problem, the post-inflation sce-
nario requires the model parameter c3 = 1. In Fig. 1, we summarize the relic density of the QCD
axions in both the pre- and post-inflation scenarios , including the constraint from the isocurvature
perturbation of CMB [16].
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