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changes from nonlinear evolution at small x� 1 to linear evolution at moderate x∼ 1.
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Rapidity evolution of gluon TMDs

A TMD factorization [1, 2, 3] generalizes the usual concept of parton density by allowing PDFs
to depend on intrinsic transverse momenta in addition to the usual longitudinal momentum fraction
variable. These transverse-momentum dependent parton distributions (also called unintegrated
parton distributions) are widely used in the analysis of semi-inclusive processes like semi-inclusive
deep inelastic scattering (SIDIS) or dijet production in hadron-hadron collisions (for a review,
see Ref. [3]). However, the analysis of TMD evolution in these cases is mostly restricted to the
evolution of quark TMDs, whereas at high collider energies the majority of produced particles will
be small-x gluons. In this case one has to understand the transition between non-linear dynamics at
small x and presumably linear evolution of gluon TMDs at intermediate x.

In this presentation I discuss the connection between rapidity evolution of gluon TMD at low
xB and at moderate xB ∼ 1. (The discussion is based on papers [4, 5]). We assume k2

⊥ ≥ few GeV2

so that we can use perturbative QCD, but otherwise k⊥ is arbitrary and can be of order of s as in
the DGLAP evolution. In this kinematic region we will vary Bjorken xB and look how non-linear
evolution at small x transforms into linear evolution at moderate xB. It should be noted that at least
at moderate xB gluon TMDs mix with the quark ones. Here I disregard this mixing leaving the
discussion of full matrix for future publications.

It is convenient to define the field-strength operator with attached light-like Wilson line:

F aη

i (xB,z⊥) ≡
2
s

∫
dz∗ eixBz∗

(
[∞,z∗]am

z gFm
•i (z∗,z⊥))

η (1)

where the index η denotes the rapidity cutoff (2) for all gluon fields in this operator:

Aη
µ(x) =

∫ d4k
16π4 θ(eη −|α|)e−ik·xAµ(k) (2)

The Sudakov variable α is defined as usual, k = α p1 +β p2 + k⊥. We define the light-like vectors
p1 and p2 such that p1 = n and p2 = p− m2

s n, where p is the momentum of the target particle of
mass m. We use metric gµν = (1,−1,−1,−1) so p · q = (αpβq +αqβp)

s
2 − (p,q)⊥. For the

coordinates we use the notations x• ≡ xµ pµ

1 and x∗ ≡ xµ pµ

2 related to the light-cone coordinates by
x∗ =

√ s
2 x+ and x• =

√ s
2 x−.

Hereafter we use the notation [∞,z∗]z ≡ [∞∗p1 + z⊥, 2
s z∗p1 + z⊥] where [x,y] stands for the

straight-line gauge link connecting points x and y. Our convention is that the Latin Lorentz indices
always correspond to transverse coordinates while Greek Lorentz indices are four-dimensional.

Similarly, we define

F̃ aη

i (xB,z⊥) ≡
2
s

∫
dz∗ e−ixBz∗g

(
F̃m
•i (z∗,z⊥)[z∗,∞]ma

z
)η (3)

in the complex-conjugate part of the amplitude.
In this notations the unintegrated gluon TMD D(xB,z⊥,η) can be represented as

〈p|F̃ aη

i (xB,z⊥)F aiη(xB,0⊥)|p+ξ p2〉 ≡∑
X
〈p|F̃ aη

i (xB,z⊥)|X〉〈X |F aiη(xB,0⊥)|p+ξ p2〉

= −4π
2
δ (ξ )xBg2D(xB,z⊥,η) (4)

Hereafter we use a short-hand notation

〈p|Õ1...ÕmO1...On|p′〉 ≡ ∑
X
〈p|T̃{Õ1...Õm}|X〉〈X |T{O1...On}|p′〉 (5)

2



P
o
S
(
D
I
S
2
0
1
7
)
0
5
8

Rapidity evolution of gluon TMDs

where tilde on the operators in the l.h.s. of this formula stands as a reminder that they should be
inverse time ordered as indicated by inverse-time ordering T̃ in the r.h.s. of the above equation.

As discussed e.g. in Ref. [6], such martix element can be represented by a double functional
integral

〈Õ1...ÕmO1...On〉 =
∫

DÃD ˜̄ψDψ̃ e−iSQCD(Ã,ψ̃)
∫

DADψ̄Dψ eiSQCD(A,ψ)Õ1...ÕmO1...On (6)

with the boundary condition Ã(~x, t = ∞) = A(~x, t = ∞) (and similarly for quark fields) reflecting the
sum over all intermediate states X .

We will study the rapidity evolution of the operator F̃ aη

i (xB,x⊥)F
aη

j (xB,y⊥). In the spirit
of rapidity factorization, in order to find the evolution of this operator with respect to rapidity
cutoff η (see Eq. (2)) one should integrate in the matrix element (4) over gluons and quarks with
rapidities η > Y > η ′ and temporarily “freeze” fields with Y < η ′ to be integrated over later. (For
a review, see Refs. [7, 8].) In this case, we obtain functional integral of Eq. (6) type over fields
with η > Y > η ′ in the “external” fields with Y < η ′. In terms of Sudakov variables we integrate
over gluons with α between σ = eη and σ ′ = eη ′ and, in the leading order, only the diagrams with
gluon emissions are relevant - the quark diagrams will enter as loops at the next-to-leading (NLO)
level.

To make connections with parton model we will have in mind the frame where target’s velocity
is large and call the small α fields by the name “fast fields” and large α fields by “slow” fields.
As discussed in Ref. [9], the interaction of “slow” gluons of large α with “fast” fields of small
α is described by eikonal gauge factors and the integration over slow fields results in Feynman
diagrams in the background of fast fields which form a thin shock wave due to Lorentz contraction.
However, in Ref. [9] (as well as in all small-x literature) it was assumed that the characteristic
transverse momenta of fast and slow fields are of the same order of magnitude. For our present
purposes we need to relax this condition and consider cases where the transverse momenta of fast
and slow fields do differ. In this case, we need to rethink the shock-wave approach.

Let us figure out how the relative longitudinal size of fast and slow fields depends on their
transverse momenta. The typical longitudinal size of fast fields is σ∗ ∼ σ ′s

l2
⊥

where l⊥ is the char-
acteristic scale of transverse momenta of fast fields. The typical distances traveled by slow gluons
are ∼ σs

k2
⊥

where k⊥ is the characteristic scale of transverse momenta of slow fields. Effectively, the

large-α gluons propagate in the external field of the small-α shock wave, except the case l2
⊥� k2

⊥
which should be treated separately since the “shock wave” is not necessarily thin in this case. For-
tunately, when l2

⊥� k2
⊥ one can use the light-cone expansion of slow fields and leave at the leading

order only the light-ray operators of the leading twist. We use the combination of shock-wave
and light-cone expansions and write the interpolating formulas which describe the leading-order
contributions in both cases.

Here we present only the final equation for rapidity evolution of gluon TMDs (the details can
be found in Refs. [4, 5])

d
dη
〈p|F̃ a

i (xB,x⊥)F a
j (xB,y⊥)|p〉η=lnσ (7)

= −αs〈p|
∫

d−2k⊥ Tr{L̃ µ

i (k,x⊥,xB)
light−likeLµ j(k,y⊥,xB)

light−like}
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Rapidity evolution of gluon TMDs

+ 2Tr
{
F̃i(xB,x⊥)(y⊥|−

pm

p2
⊥

Fk(xB)(i
←
∂ l +Ul)(2δ

k
mδ

l
j −g jmgkl)U

1
αxBs+ p2

⊥
U†

+ F j(xB)
αxBs

p2
⊥(αxBs+ p2

⊥)
|y⊥)

+ (x⊥|Ũ
1

αxBs+ p2
⊥

Ũ†(2δ
k
i δ

l
m−gimgkl)(i∂k−Ũk)F̃l(xB)

pm

p2
⊥

+ F̃i(xB)
αxBs

p2
⊥(αxBs+ p2

⊥)
|x⊥)F j

(
xB,y⊥

)}
|p〉 + O(α2

s )

where Tr is a trace in the adjoint representation. Here F a
j (xB,y⊥) is so-called Lipatov vertex - the

amplitude of the emission of a real gluon by the operator F a
i

Lab
µi(k,y⊥,xB)

light−like (8)

= g(k⊥|F j(xB +
k2
⊥

αs

){αxBsgµi−2k⊥µ ki

αxBs+ k2
⊥

(k jU +U p j)
1

αxBs+ p2
⊥

U†

− 2k⊥µ U
gi j

αxBs+ p2
⊥

U†− 2gµ jU
pi

αxBs+ p2
⊥

U† +
2k⊥µ
k2
⊥

gi j

}
|y⊥)ab + O(p2µ)

where the operator Fi(β ) is defined as usual

(k⊥|Fi(β )|y⊥) ≡
2
s

∫
dy∗ eiβy∗−i(k,y)⊥Fi(y∗,y⊥) (9)

It is worth noting that at xB = 0 this vertex agrees with the one obtained in Ref. [11].
It is easy to see that our formula for the evolution kernel (7) smoothly interpolates between

the kT -factorization and TMD-factorization cases. Indeed, in the framework of the usual small-x
approximation βB is neglected so the corresponding “small-x” gluon TMD looks like

F a
i (z⊥,0) = Ua

i (z⊥) ≡ −2itr{taU∂iU†} (10)

and Eq. (7) reduces to the non-linear equation

d
dη

Ũa
i (z2)Ua

i (z1) (11)

= − g2

8π3 Tr(−i∂ z2
i +Ũ z2

i )
[∫

d2z3(Ũz2Ũ
†
z3
−1)

z2
12

z2
13z2

23
(Uz3U

†
z1
−1)

]
(i
←

∂
z1
i +U z1

i )

where all indices are 2-dimensional and Tr stands for the trace in the adjoint representation. It
is easy to see that the expression in the square brackets is actually the BK kernel for the double-
functional integral for cross sections [7, 10].

On the other hand, if βB ∼ 1 so that αβBs� p2
⊥ we get a linear equation

〈F̃ a
j (z⊥,βB)F

a j(z′⊥,βB)〉 (12)

= − g2Nc

π

∫
σ1

σ2

dα

α

∫ d−2 p
p2

[
1− ei(p,z−z′)⊥

]
〈F̃ ai(z′⊥,βB)F

a
i (z⊥,βB)〉

which can be rewritten as a linear equation

d
dη

D(xB,z⊥,η) = − αsNc

π2 D(xB,z⊥,η)
∫ d2 p

p2

[
1− ei(p,z)⊥

]
4
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Rapidity evolution of gluon TMDs

We see that the IR divergence at p2
⊥→ 0 cancels while the UV divergence in the virtual cor-

rection should be cut from above by the condition p2
⊥ < σs following from Eq. (7). Actually, at

xB ∼ 1 there will be logarithmical region eηm
√

s� p2
⊥� m2 so one has to sum up leading loga-

rithms
(
αsη

)n in the evolution kernel Eq. (12) after which the kernel should reproduce the usual
Sudakov double logarithms. From Eq. (7) it is clear that the transition between linear evolution
(12) and the non-linear evolution (11) occurs at xB = βB ∼ m2

s .
In addition, at x⊥ = y⊥ (light-cone DIS limit) one obtains from Eq. (7)

d
dη
〈p|F̃ n

i (βB,x⊥)F in(βB,x⊥)|p〉η

=
αs

π
Nc

∫
∞

0
dβ

{
θ(1−βB−β )

[ 1
β
− 2βB

(βB +β )2 +
β 2

B

(βB +β )3 −
β 3

B
(βB +β )4

]
× 〈p|F̃ n

i (βB +β ,x⊥)F ni(βB +β ,x⊥)|p〉lnσ ′− βBβ−1

βB +β
〈p|F̃ n

i (βB,x⊥)F in(βB,x⊥)|p〉lnσ ′
}

which is equivalent to DGLAP equation in the leading log approximation. Thus, our equation (7)
smoothly interpolates between DGLAP, Sudakov and low-x limits.

This work was supported by contract DE-AC05-06OR23177 under which the Jefferson Sci-
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DE-FG02-97ER41028.
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