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1. Introduction

Measurements of high-multiplicity proton-nucleus collisions at the LHC have revealed col-
lective phenomena that have been traditionally interpreted as evidence of a creation of a hydrody-
namically evolving fluid, the quark-gluon plasma. These signals include, for example, long range
rapidity correlations and harmonic flow coefficients. For a review of recent collectivity measure-
ments, the reader is referred to Ref. [1]. This has raised a natural question whether a hydrodynam-
ically evolving medium is created in proton-nucleus and even in high-multiplicity proton-proton
collisions. In Ref. [2] we quantitatively study if the IP-Glasma framework that has been successful
in describing a vast variety of LHC and RHIC heavy ion data (see e.g. Ref [3]) can be applied to
high-multiplicity pA collisions.

In hydrodynamical simulations the initial state geometric anisotropies are converted into mo-
mentum space correlations and are observed e.g. as an elliptic (v2) and triangular flow (v3). Even
tough the proton is on average round, the eccentricity of the initial state can be large if the proton
geometry has large event-by-event fluctuations. Without these fluctuations, the explanation of the
large elliptic and triangular flow in proton-nucleus collisions is difficult [4]. However, the inclusion
of additional parameters that determine a fluctuating shape of the proton requires additional input
besides measurements in proton-nucleus collisions in order to consistently test the quantitative
agreement between the hydrodynamical picture and experimental data.

One possibility to constrain the proton structure fluctuations is given by exclusive vector meson
(in this work J/¥) production measured at the HERA electron-proton collider. Unlike other DIS
observables, diffractive scattering processes are sensitive to the transverse geometry of the target,
as the impact parameter is a Fourier conjugate to the momentum transfer. These processes can be
divided into two categories. In coherent diffraction, where the target hadron remains in the same
quantum state, the transverse momentum spectra of the produced vector mesons are directly related
to the average density profile of the target [5, 6]. On the other hand, in incoherent diffraction,
where the target breaks up but there is still no net color charge exchanged between the vector
meson and the target, the cross section is proportional to the amount of fluctuations of hte density
profile [5, 7, 8].

In this work, we constrain the proton shape fluctuations using HERA diffractive J /¥ produc-
tion data, and use the obtained fluctuating protons as an input for the hydrodynamical simulations
of the proton-nucleus collisions at the LHC energy /syy = 5.02TeV. The diffractive vector me-
son production calculations are published in Refs. [9, 10] and the hydrodynamical simulations in
Ref. [2].

2. Theoretical framework: the IP-Glasma model

Instead of a rotationally symmetric proton, we assume that the color charge density in the
proton is distributed around the three hot spots whose positions in the transverse plane are sampled
from a Gaussian distribution. The width of that distribution, By, and the width of the density
profile of each hot spots B, are free parameters to be determined by the diffractive DIS data. The
density around each hot spot is parametrized as 7, (b) = ﬁe*bz/ (2By)
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Writing the density profile of the proton as T'(b) = %Z?:l T,(b—b;) we use the IPsat dipole
model fitted to the HERA structure function data [11] to calculate the saturation scale Qg at each
point on the transverse plane. Then, solving the classical Yang-Mills equations we obtain the
Wilson lines V(x), which completely determine the initial stage. When we calculate diffractive
vector meson production, for which the dipole-proton scattering amplitude is obtained as N(r =
x—y) = tr(1 =V (x)V'(y))/N.. For more details, see Refs. [9, 10, 2].

The scattering amplitude for diffractive vector meson production can be written as [6]
d .
Ay VP (xp, QP A) = 2i / d’r / d’b / ﬁ(\P*lPV)T,L(QZ,r,z)e—’["—“—Z>rJ'AN(b,r,xp). (2.1)

Here Q7 is the virtuality of the photon, b impact parameter, r size of the quark-antiquark dipole
and z longitudinal momentum fraction of the photon carried by the quark.

The coherent cross section is obtained by averaging the scattering amplitude over different
configurations of the proton, and then taking the square:

do?V'r—=Vp 1

dt T (2:2)

‘(%YW’HV!J@P’QZ’A)) ’2

On the other hand, the incoherent cross section can be written as a variance [5] (see also Refs. [7,

8]):

do?Vr=Vr ]
dr - lé6x

<<‘42f7’*pHVP(XIP7Q27A)’2> - ‘<,;zﬂ‘pﬁvp(xp,Q2’A)>)2> . (2.3)

As the incoherent cross section is proportional to the variance of the amplitude (2.1), it mea-
sures the amount fluctuations of the proton density profile. On the other hand, the coherent cross
section is sensitive to the average density profile, as the target average results in a dependency
only on the average proton shape. Thus, requiring simultaneous description of HERA coherent and
incoherent diffractive J/¥ production data [12] allows us to constrain the unknown parameters
describing the proton shape fluctuations. In Refs. [9, 10] we find By = 3.0 GeV~2 and B, =0.3
GeV 2. In addition, for the infrared cutoff parameter that is suppressing long distance Coulomb
tails, we find m = 0.4 GeV.

Proton-nucleus collisions are described as follows. We simulate the hydrodynamical evolution
of the produced matter using MUSIC [13, 14]. We use the same second order transport parameters
as in Ref. [15], and use both temperature dependent and constant shear viscosity 1/s = 0.2. We
also include bulk viscosity and use a temperature dependent {/s as in [15], which is essential
in small systems to obtain average transverse momenta compatible with the LHC data. Before
79 = 0.2fm/c, when the hydrodynamical evolution is started, the pre-thermal evolution is described
by the solutions of the classical Yang-Mills equations as implemented in the IP-Glasma model.
The full energy-momentum tensor 7#V at 1, is matched to the hydrodynamical phase including the
initial shear stress tensor and bulk viscous pressure. The hydrodynamic equations are evolved with
a Lattice Equation of State s95p-v1 [16]. The switching temperature is set to Tyyitch = 155 MeV,
after which particles are sampled using the Cooper-Frye prescription and are allowed to propagate
in the hadronic cascade model UrQMD [17]. For more details, see Ref. [2].



Proton structure fluctuations: from HERA to the LHC Heikki Mintysaari

1 10° m e B =30GeV2 B, =03GeV2 i
1.0 —— B, —30GeV 2 B, = 03GeV2 + Q. fluct Coherent
— Incoherent
N i
= 0.8 o
. SR
0.6 STt
1 £
0.4 =
= o 100
E 0 a <
= 0.2
1 101 IP-Glasma
T 0 1 T 0 1 0.0 3
g;[fm] ;r[fm] 0.0 0.5 1.0 1.5 2.0 2.5

] [GeV?)

Figure 1: Illustration of the event-by-event fluctua-

tions of the proton density profile. Figure 2: Coherent and incoherent diffractive J /¥

production compared with the H1 data [12].

3. Results

The cross section for the coherent and incoherent diffractive J /¥ production at W =75 GeV,
after fitting the parameters controlling the shape of the fluctuating proton, By, B, and m, is shown
in Fig. 2. We note that without geometrical fluctuations the experimentally measured incoherent
cross section [12] would be underestimated by roughly two orders of magnitude, see Ref. [10]. The
obtained proton profiles (at x ~ 1073) are illustrated in Fig. 1. In Fig. 2 we also show the effect
of including, on top of the geometric fluctuations, additional fluctuations of the saturation scale
(see [10]). As these fluctuations take place at longer distance scale, their effect is largest at small
|t| where these additional fluctuations make the agreement with the H1 data better.

We then use the same fluctuating proton structure to do hydrodynamical simulations of the
proton-nucleus collisions. In Fig. 3 we show the mean transverse momentum of identified hadrons
compared with the ALICE data [18]. Overall we find a good agreement with the measurements,
except in case of charged kaons. The results are also unchanged when a constant 1 /s is replaced
by a temperature dependent parametrization.

The elliptic and triangular flow coefficients v, and v3 at \/syy = 5.02 TeV are compared with
the ALICE data in Fig. 4. We note that in case of no geometric fluctuations in the proton, the
data would be significantly underestimated due to the small initial state eccentricity [4]. With the
geometric fluctuations constrained by the HERA data, we find a good description with both v, and
v3 data. For more details, see Ref. [2].

4. Conclusions

The amount of geometric fluctuations in the proton wave function is constrained using the
HERA diffractive J /¥ production data. Large event-by-event geometric fluctuations are found to
be necessary in order to describe the experimentally measured incoherent cross section, which is
sensitive to the variance of the density profile. When simulating proton-nucleus collisions with
relativistic hydrodynamics using an initial state determined by these fluctuating protons, we find a
good description of the flow harmonics in high multiplicity events. In Ref. [20] the necessity of
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Figure 3: The average transverse momentum of
identified particles as a function of multiplicity
compared with the ALICE data [18].

2
ALICE T+ 10 +B4 1t (is)(T) —— rtnis=02 = = 0.1 -
1.8 - ALICE K* +>K' a4 KY*(M/s)(T) == K*n/s=02 = = | Vo{2} To=0.2 fm B V32 10=0.4 fm o
1.6 | ALUCEp+p w4 p(S)(T) —— pns=02 = = _ 0.08 | va{2} 19=0.2 fm O Vo{2} CMS per. sub. - |
1.4 | AUCEA+A ros Ams)T) N Anjs=02 | Vo{2} Tg=0.4 fm ® V5{2} CMS per. sub. —a—
3 2 | |
12 | P— - o 008 (VST R g T g g
9 & & o ® L4 O
ré = 1 > °
os| v 5 i &3 4 _ | 0.04 | N _
A /———-—" .
06| J a
04EEEELEE B 0.02 |- ggggs " —
[ 1 A
1 1 1 1 1
0 10 20 30 40 50 60 0 _AAT ' s s ! s
AN/ 0 20 40 60 80 100 120 140 160 180
o Ngffine

Figure 4: Elliptic (v;) and triangular (v3) flow in
p+Pb collisions at /syy = 5.02 TeV as a function
of multiplicity compared with the CMS data [19].

having large geometric fluctuations was also found to improve the description of the exclusive J /¥
production data in ultraperipheral heavy ion collisions at the LHC.
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