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1. Introduction

We will present two results, published in refs. [1], [2] and [3], for one-loop computations of
impact factors for high-energy diffractive DIS-like exclusive processes. Such results, once numer-
ically solved, would provide the first complete Next-to-Leading-Logarithmic description of many
exclusive processes with or without saturation. The impactfactors obtained here rely on the QCD
shock wave formalism [4], equivalent to the color-glass condensate framework [5], which extends
the BFKL formalism by including gluonic saturation effects. In this framework, we will describe
the direct Pomeron contribution to diffraction as the action of color singlet Wilson line operators
on the target fields. We will put an emphasis on the various mechanisms for the cancellation of
divergences in both processes considered.

2. The shockwave formalism

We will work in D ≡ d+2≡ 4+2ε dimensions. We introduce two lightcone vectorsn1 and
n2 such that the projectile (resp. target) flies mainly alongn1 (resp. n2). They define a Sudakov
basis, so for anyD-vectorsk andl we will write

k≡ k+n1+k−n2+k⊥, k · l = k+l−+k−l+−~k ·~l . (2.1)

We use then2 lightcone gauge for gluonic fieldsA ·n2 = 0, and writeA as the sum of an external
field bη built from slow gluons whose momenta are limited by the longitudinal cutoffeη p+γ , where
η is an arbitrary negative parameter andpγ is the momentum of the incoming projectile, and the
remaining quantum fieldAη . In the high center-of-mass energy limit considered here, we can write

A
µ = Aµ

η +bµ
η , bµ

η (z) = b−η (z
+,~z)nµ

2 = δ (z+)Bη (~z)nµ
2 , (2.2)

whereBη(~z) is a profile function. We then define path-ordered Wilson lines as

Uη
~zi

= P exp

[

ig
∫ +∞

−∞
b−η (z

+
i ,~zi)dz+i

]

. (2.3)

From the Wilson lines, we define the dipole operator and its Fourier transforms as follows:

U
η

~zi~zj
≡ Tr(Uη

~zi
Uη†
~zj

)−Nc, (2.4)

Ũ
η
~pi~pj

≡

∫

dd~zi d
d~zj e

−i(~pi ·~zi)−i(~pj ·~zj )U
η

~zi~zj
, (2.5)

Ṽ
η
~pi~pj~pk

≡

∫

dd~zi d
d~zj d

d~zke
−i(~pi ·~zi)−i(~pj ·~zj )−i(~pk·~zk)U

η
~zi~zk

U
η

~zk~zj
. (2.6)

When computing a physical amplitude, one acts with such operators on the incoming and outgoing
states of the target. For example in the case of a coherent diffractiveγ(∗)(pγ)P(p0)→ X(pX)P′(p′0)
process, the following matrix elements will be involved:

W
η → 〈P′(p′0)|P(W η)|P(p0)〉, (2.7)

whereW η is an operator built from the Wilson lines. In both diffractive cases considered here,
there are two possibilities forW η : either a dipole operatorW η = Ũ

η
~pi~pj

, or a double-dipole operator

W η = Ṽ
η
~pi~pj~pk

. Note that in the t’Hooft limitN−2
c → 0 or in the mean field approximation, the matrix

elements for the double dipole operators can be written as the product of the matrix elements for
two dipole operators. From now on we will writeW rather thanW η for readability.
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3. Impact factors for open qq̄ and open qq̄g production

3.1 Impact factor for open qq̄ production

Figure 1: Diagrams for the impact factor for openqq̄ production. The gray blob stands for the interaction
with the external shock wave field via the convolution with the path-ordered Wilson line operators

The diagrams contributing to the impact factor for theγ∗ → qq̄ transition are shown in figure 1.
After the projection on the color singlet state and the subtraction of the contribution without inter-
action with the external field, the contribution of these diagrams can be written in the momentum
space as the convolution of Wilson line operators with what we will refer to as impact factors with
the following form:

Mqq̄ = εµ

∫

dd~p1 dd~p2dd~p3 δ (~pq1+~pq̄2−~p3)δ (p+q + p+q̄ − p+γ ) (3.1)

×
{

Ũ~p1~p2 δ (~p3)
[

Φµ
0 +CF

(

Φµ
V1
+Φµ

V2

)]

+CA
(

Ṽ~p1~p2~p3 + Ũ~p1~p3 + Ũ~p3~p2 − Ũ~p1~p2

)

Φµ
V2

}

,

where we denotedpi j ≡ pi − p j , and wherepq (resp. pq̄) is the momentum of the outgoing
quark (resp. antiquark).Φµ

0 = Φµ
0 (~p1, ~p2) is directly obtained by computing the first diagram

in figure 1,Φµ
V1

= Φµ
V1
(~p1, ~p2) is obtained from the second, third and fourth diagram1 andΦµ

V2
=

Φµ
V2
(~p1, ~p2, ~p3) is obtained from the last two diagrams.
Several divergences appear in each of the NLO terms in eq. (3.1): Φµ

V1
contains soft, collinear,

soft and collinear, and UV divergences, whileΦµ
V2

contains a rapidity divergence2. In the shock-
wave formalism and in lightcone gauge, it is impossible to use the usual dimensional regularization
around dimension 4 due to the presence of the cutoff onp+ momenta: the 2 longitudinal directions
must be isolated. Thus we use dimensional regularizationd = 2+2ε for the transverse compo-
nents, and the cutoff prescriptionk+ < eη p+γ which is natural in our formalism.
The rapidity divergence inΦµ

V2
is canceled via the use of the B-JIMWLK evolution equation for

the dipole operator: evolving the dipole operator in the leading order convolution in (3.1) w.r.t. the
longitudinal cutoff from the arbitraryeη p+γ to a more physical divideeη0 p+γ , which will serve as
a factorization scale which separates the upper and lower impact factors, allows one to cancel the
dependence onη in Φµ

V2
and get a finite expression for the double-dipole contribution to the NLO

1Note that the contributions of the first two diagrams inΦV1 were also obtained in ref. [6].
2i.e. a divergence fork+ → 0 for fixedk− andk⊥, due to the spurious lightcone gauge pole.
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impact factor. In momentum space and ind+2 dimensions, the evolution equation is given by:

∂ Ũ
η
~p1~p2

∂ logη
= 2αsµ2−d

∫

dd~k1dd~k2dd~k3

(2π)2d δ
(

~k1+~k2+~k3−~p1−~p2

)(

Ṽ
η

~k1~k2~k3
+Nc

(

Ũ
η

~k1~k3
+ Ũ

η
~k3~k2

− Ũ
η

~k1~k2

))

×






2
(~k1−~p1).(~k2−~p2)

(~k1−~p1)2(~k2−~p2)2
+

π d
2 Γ

(

1− d
2

)

Γ2
(

d
2

)

Γ(d−1)







δ (~k2−~p2)
[

(~k1−~p1)2
]1− d

2

+
δ (~k1−~p1)

[

(~k2−~p2)2
]1− d

2












. (3.2)

Evolving the Wilson lines from the arbitrary cutoffη to the rapidity divideη0, which has the role
of a t-channel factorization scale in the shockwave framework, creates a counterterm toΦµ

V2 which
reads:

Φ̃µ
V2 =−

µ2−d

Γ(1− ε)π1+ε ln

(

eη0

eη

)

∫

dd~k1dd~k2δ (~p1+~p2+~p3−~k1−~k2)H (~k1,~k2,~k3, ~p1,~p2),

(3.3)
whereH is thed-dimensional Balitsky-Kovchegov kernel3 in momentum space and can be ex-
tracted from eq. (3.2). Adding this counterterm allows one to get rid of the rapidity divergence. A
similar countertem arises when varying the rapidity divide, and a similar cancellation mechanism
then allows one to cancel the dependence on that scale up to Next-to-Next-to-Leading-Logarithmic
(NNLL) corrections.

The divergences inΦV1 must be canceled in a process-dependent way. In the following sections
we will show how to cancel them at the level of the amplitude for a process and at the level of the
cross-section for a second process.

3.2 Impact factor for open qq̄g production

Figure 2: Diagrams contributing to the impact factor for openqq̄gproduction.

The convolution for theγ(∗) → qq̄g impact factor is very similar to the one for theγ(∗) → qq̄
impact factor:

Mqq̄g = εµ

∫

dd~p1dd~p2 dd~p3 δ (~pq1+~pq̄2+~pg3)δ (p+q + p+q̄ + p+g − p+γ ) (3.4)

×
{

CF
(

Φµ
R1
+Φµ

R2

)

Ũ~p1~p2 δ (~p3)+CA
(

Ṽ~p1~p2~p3 + Ũ~p1~p3 + Ũ~p3~p2 − Ũ~p1~p2

)

Φµ
R2

}

,

whereΦµ
R1

= Φµ
R1
(~p1, ~p2) andΦµ

R2
= Φµ

R2
(~p1, ~p2, ~p3) are obtained by computing respectively the

first diagram and the second diagram in figure 2, as described in refs. [8], [1] and [9].

3At d = 2, see refs. [4, 7].
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When considering exclusive observables, the real contributions are those where the additional
gluon is either collinear to the quark or to the antiquark, ortoo soft to be detected i.e. with an
energy which is lower than a typical energy resolutionE. The contribution from the soft gluon to
the openqq̄ cross section can be written with a very simple form:

dσqq̄g
so f t = αs

(

N2
c −1
2Nc

)

∫ dp+g
p+g

dd~pg

(2π)d

∣

∣

∣

∣

pq

(pq · pg)
−

pq̄

(pq̄ · pg)

∣

∣

∣

∣

2

dσLO, (3.5)

where the integration is performed in thepg-phase space region wherep+g +
~p2

g

p+g
< 2E.

In the case of vector meson production, the collinear gluon contributions cancel. We will
study the collinear contribution for the dijet case in section 5. All the infrared divergences in the
qq̄gcontribution will be combined in a process-dependent way tocancel the remaining divergences
in the virtual terms.

4. Impact factor for the production of a longitudinally polarized light vector meson

We will now build a finite amplitude for the production of a light vector mesonV (e.g. V =

ρ ,φ ,ω). For this purpose, in addition to the CGC rapidity separation in t-channel we will use
leading-twist collinear factorization ins-channel. Let us define the twist-2 Distribution Amplitude
(DA) for the longitudinally polarized meson via the expansion of the vacuum-to-meson matrix
element of the leading twist 2-particle operator:

<VL(pV)|ψ̄(z)γµ ψ(0)|0>z2→0= fV pµ
V

∫ 1

0
dxeix(pV ·z)ϕ(x,µF). (4.1)

To obtain the hard matrix element for this process, one only needs to substitute

(pq, pq̄)→ (xpV , x̄pV), (ūpq)α(vpq̄)β →
1
4

γµ
βα (4.2)

in the result obtained from the purely diagrammatic computation and multiplying by the r.h.s. of
eq. (4.1). Because the process is exclusive, the real correction does not contribute in the present
case. In this example of a process, the cancellation of divergences in the virtual corrections occurs
at the level of the amplitude, through the Efremov-Radyushkin-Brodsky-Lepage evolution equa-
tion [10] for the DAϕ , which appears when one renormalizes the bilocal operator in the r.h.s. of
eq. (4.1). In theMSrenormalization scheme, it reads:

∂ϕ(x,µF)

∂ ln µ2
F

=
αsCF

2π
Γ(1− ε)
(4π)ε

(

µ2
F

µ2

)ε ∫ 1

0
dzϕ(z,µF)K (x,z), (4.3)

whereK is the well-known ERBL evolution kernel

K (x,z) =
1−x
1−z

(

1+

[

1
x−z

]

+

)

θ(x−z)+
x
z

(

1+

[

1
z−x

]

+

)

θ(z−x)+
3
2

δ (x−z). (4.4)

Evolving the DA up to the factorization scaleµF creates a counterterm toΦV1 reading

Φ̃µ
V1(x,µF ) =−

∫ 1

0
dzK (z,x)

[

1
ε
+ ln

(

µ2
F

µ2

)]

Φµ
0 . (4.5)
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This counterterm allows one to get rid of the dimensional poles and of the dependence onµ .
When changing the factorization scaleµF of δ µF , a similar mechanism allows one to cancel the
dependence onδ µF up to NNLL terms. We thus found a finite expression for the NLO amplitude
for the production of a longitudinally polarized forward light vector meson. The explicit result for
the finite impact factors can be found in ref. [3]. Our result,for arbitrary kinematics, remains to be
compared with the result of ref. [11] in the forward kinematics and in the usualkt−factorization
framework, this last fact making this comparison non trivial.

5. Impact factor for the production of a forward dijet

The divergences inΦV1 must be canceled by combining such terms with the associatedreal
corrections to form a physical cross section. The first step to compute such a cross section is to
use a jet algorithm in order to cancel the soft and collinear divergence from the real correction.
By using the jet-cone algorithm in the small cone limit, as used in ref. [12], we proved that such
a cancellation occurs. In practice, it amounts to redefiningthe integration domains in eq. (3.5)
and performing a redefinition of the external momenta. For example if the gluon and the quark
are collinear, they will form together a single jet of momentum pq+ pg, and after the right change

of variables the remaining momentum
p+q pg−p+g pq

p+q p+g
will be inclusively integrated over, in a small

collinear cone region.
The thus redefined collinear contribution has a simple form,in terms of the jet variables. For

example when the gluon is collinear to the quark one gets:

dσ (qg), q̄ = αs

(

N2
c −1
2Nc

)

NJ dσ jets
LO , (5.1)

whereNJ is proportional to the “number of jets in the quark”, a DGLAP-type emission kernel.
The divergence in the virtual contribution can be expressedby factorizing the leading order

cross section:

dσ jets
Vdiv = (NV +N∗

V)dσ jets
LO , (5.2)

whereNV is extracted from the divergent part of the virtual amplitude. As shown in ref. [2],
combining all divergent terms together, i.e. adding eqs. (5.2), (3.5), (5.1) and the equivalent of
eq. (5.1) where the gluon is collinear to the antiquark, one finally obtains a finite cross section. The
lengthy finite result can be found in ref. [2].

6. Conclusion

In the context of high-energy diffractive DIS-like processes, we built a finite amplitude for the
production of a forward longitudinally polarized light vector meson and a finite cross section for
the production of a forward dijet. They were described here using the QCD shock wave formalism,
which generalizes the BFKL framework by including saturation effects that are expected for very
high energy collisions and for heavy ion targets. In order toget a full numerical prediction for our
processes, the toughest step will be to solve the dipole B-JIMWLK evolution equation with NLO
accuracy. In principle it should be solved as a function of rapidity with a non-perturbative initial
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condition at a typical target rapidity, then evaluated at a typical projectile rapidity4. The convolution
of the resulting non-perturbative input with the finite impact factors presented in refs. [2] and
[3] would then give the very first full NLL predictions with saturation for an exclusive process,
providing additional observables with respect to the inclusive cases [13, 14]. Such predictions can
be made for a very wide range ofepandeAexperiments, as well as in ultraperipheralpp andpA
collisions if one takes the (finite) photoproduction limit of the impact factors.

Finally, let us note that our framework allows, in the case ofmeson exclusive production, for
an inclusion of contributions beyond twist 2, based on the framework developed in refs. [15].
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National Science Center in Poland, by the French grant ANR PARTONS (Grant No. ANR-12-
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