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We examine the constraints that future lepton colliders would impose on the effective field
theory describing modifications of top-quark interactions beyond the standard model,
through measurements of the e+e− → bW+b̄W− process. Statistically optimal observ-
ables are exploited to constrain simultaneously and efficiently all relevant operators. Their
constraining power is sufficient for quadratic effective-field-theory contributions to have
negligible impact on limits which are therefore basis independent. This is contrasted
with the measurements of cross sections and forward-backward asymmetries. An overall
measure of constraints strength, the global determinant parameter, is used to determine
which run parameters impose the strongest restriction on the multidimensional effective-
field-theory parameter space.
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Precision constraints on the top-quark effective field theory at future lepton colliders

Effective field theory The standard-model effective field theory (EFT) has the aston-
ishing feature of parametrizing systematically the theory space in direct vicinity of the
standard model (SM). Its applicability requires new physics to be heavier than the ener-
gies directly probed in the measurement considered. As a proper quantum field theory,
it also allows for quantum corrections to be computed consistently. We adopt such a de-
scription of top-quark interactions beyond the standard model, while most of the literature
on this subject relies on anomalous vertices. This latter framework however suffers from
several insufficiencies. It for instance, in general, allows for gauge-invariance violation in
top electromagnetic couplings, misses four-fermion operators which can be generated at
tree level by heavy mediators, or precludes the combination of constraints arising from
various sectors, like the top and bottom sectors. We rely on the so-called Warsaw basis
of standard-model dimension-six operators [1] and focus on the operators which interfere
with standard-model e+e−→ bW+b̄W− amplitudes, at leading-order and in the massless-b
limit. Altogether, one then counts ten real degrees of freedom among which two violate
CP. From the relevant two-quark and two-quark-two-lepton operators forming our effective
Lagrangian LEFT =

∑
i

(
Ci
Λ2Oi+h.c.

)
,

O1
ϕq ≡

y2
t
2 q̄γµq ϕ†i

←→
Dµϕ,

O3
ϕq ≡

y2
t
2 q̄τ Iγµq ϕ†i

←→
D I

µϕ,

Oϕu ≡ y2
t
2 ūγµu ϕ†i

←→
Dµϕ,

Oϕud ≡
y2

t
2 ūγµd ϕTε iDµϕ,

OuG ≡ ytgs q̄TAσµνu εϕ∗GAµν ,

OuW ≡ ytgW q̄τ Iσµνu εϕ∗W I
µν ,

OdW ≡ ytgW q̄τ Iσµνd εϕ∗W I
µν ,

OuB ≡ ytgY q̄σµνu εϕ∗Bµν ,

Ouϕ ≡ y3
t q̄u εϕ∗ ϕ†ϕ,

(1)

O1
lq ≡ q̄γµq l̄γµl ,

O3
lq ≡ q̄τ Iγµq l̄τ Iγµl ,

Olu ≡ ūγµu l̄γµl ,
Oeq ≡ q̄γµq ēγµe,
Oeu ≡ ūγµu ēγµe,

OTlequ ≡ q̄σµνu ε l̄σµνe,
OSlequ ≡ q̄u ε l̄ e,
Oledq ≡ d̄q l̄e,

(2)

they are the ten combinations corresponding to:

CAlq ≡ Clu− (C1
lq−C3

lq),
CVlq ≡ Clu+ (C1

lq−C3
lq),

CAeq ≡ Ceu−Ceq,
CVeq ≡ Ceu+Ceq,

CAϕq ≡ Cϕu− (C1
ϕq−C3

ϕq),
CVϕq ≡ Cϕu+ (C1

ϕq−C3
ϕq),

CRuA = Re{CuW +CuB},
CIuA = Im{CuW +CuB},

CRuZ = Re{c2
WCuW −s2

WCuB}/sW cW ,
CIuZ = Im{c2

WCuW −s2
WCuB}/sW cW ,

(3)

where it is understood that the quark and lepton flavour indices are fixed to the third and
first generation, respectively. The CKM matrix is approximated as unity, and the scale Λ
is conventionally set to 1TeV.

Observables and sensitivities To constrain globally this EFT parameter space, we
introduce two sets of observables measured in a ILC-like benchmark scenario with runs
at 500GeV and 1TeV centre-of-mass energies where, respectively, 500fb−1 and 1ab−1 of
integrated luminosity are equally shared between P (e+,e−) = (+0.3,−0.8) and (−0.3,+0.8)
beam polarization configurations.
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Figure 1: Sensitivities of the total (left), forward-backward-integrated (centre) cross sections, and
statistically optimal observables (right) as functions of the centre-of-mass energy, for mostly left-
(left, right) and mostly right-handed (centre) electron beam polarizations.

Cross sections and forward-backward asymmetries The first set of observables
includes the total bW+b̄W− cross sections and the bW+ forward-backward asymmetries for
each of these four runs. For a total measurement efficiency of 20%, these eight observables
can be measured with a statistical uncertainty of about half a percent:

500fb−1 at 500GeV 1ab−1 at 1TeV
P (e+,e−) = (+0.3,−0.8) (−0.3,+0.8) (+0.3,−0.8) (−0.3,+0.8)
δσ/σ = 0.0046 0.0065 0.0060 0.0082
δAFB = 0.0043 0.0057 0.0051 0.0065

. (4)

They are not linearly sensitive to the CIuZ and CIuA CP-violating coefficients but constitute
a set sufficient to determine the eight remaining Wilson coefficients of (3).

As can be seen in the left panel of Fig. 1, the sensitivity of the total cross section to the
axial-vector operator combinations CAlq , CAeq, CAϕq suffers from a (1−4m2

t /s)1/2 suppression
close to the top pair production threshold. The sensitivity to four four-fermion operator
coefficients Clq,eq grows quadratically with energy as naively expected with dimension-six
operators. On the contrary, it tends to a constant for the two Cϕq since the two Higgs fields
the corresponding operators contain condense to their vacuum expectation value to give rise
to modifications of the SM tt̄Z coupling scaling as v2/Λ2. Following the same reasoning, a
linear growth would have been expected for the CuZ , CuA coefficients of dipole operators
which contain one single Higgs field. A chirality flip required for their interferences with
standard-model amplitudes however yields a vmt/Λ2 scaling. Interferences growing like
v
√
s/Λ2 can be recovered when the azimuthal helicity angles of the top decay products are

not integrated over. These few features of the sensitivities are explicit in the e+e−→ t t̄

helicity amplitudes (for a +− initial state), which have a

++ : 2mt√
s
V +
√
s (D−βD̃),

−− : 2mt√
s
V +
√
s (D+βD̃),

+− : (V +βA) + 2mtD,

−+ : (V −βA) + 2mtD,
(5)

schematic form where V , A, D, and D̃ respectively represent the contributions of the vector,
axial-vector, magnetic, and electric dipole operators. The central panel of Fig. 1 shows the
sensitivity of the forward-backward-integrated cross section (such that AFB = σFB/σ) to
axial-vector operators is enhanced compared to that of the total cross section. This can
be understood by realizing that σFB ∝ |+−|2−|−+|2. The flip of beam polarization from
the first panel to the second also inverts the hierarchy in sensitivities to the coefficients of
four-fermion operators featuring left- (Clq) and right-handed (Ceq) charged leptons.
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Statistically optimal observables Such observables are designed to yield the
strongest global statistical constraints on a set of vanishing parameters appearing lin-
early in some differential distribution described by a model [2]. Assuming a f(Φ) =
f0(Φ)+

∑
iCifi(Φ) distribution where Φ specifies the phase space and given a sample of n

events, optimal observables are defined as the expectation values of nfi(Φ)/f0(Φ) and are
thus estimated by:

Ōi =
n∑
k=1

fi(Φk)
f0(Φk)

. (6)

This approach is close to that of the matrix element method and should yield similar results
under identical assumptions. In practice and in the context we are interested in, it can
however be advantageous to define a discrete set of genuine observables and study, with
traditional methods, how they are affected by higher-order corrections, detector effects,
etc. (see also Ref. [4] using a “minimal set of determinants calculated as ratios of matrix
elements”).

We use for f(Φ) the full five-dimensional e+e− → t t̄→ bW+b̄W− differential cross
section depending on one top production angle, as well as one polar and one azimuthal angle
characterizing the distribution of the decay products of each top. Analytical expressions
are used for leading-order helicity amplitudes, in the vanishing b mass limit and narrow-
width approximation for the tops. The ones for instance found in Ref. [3] are complemented
with contributions from four-fermion operators. Note these optimal observables depend on
the beam energy and polarization. They are, in practice, not exactly optimal because the
model used for their definitions describes real observations with a limited accuracy, because
systematic uncertainties also play a role, and because the optimization is only performed
in a linear approximation around the Ci = 0,∀i point.

As seen in the right panel of Fig. 1, since they use all the kinematic information avail-
able, the statistically optimal observables yield a sensitivity to dipole operator coefficients
(CRuZ , CRuA) which mildly grows with energy in the range considered. Note however that op-
timal observables are not designed to maximize sensitivities, and that the definition of the
sensitivity used does not make sense for the statistically optimal observables corresponding
to CP-violating EFT parameters, as their expectation values vanish in the standard model
(with CP-violating phase neglected, at tree level, in the narrow width approximation).

Global constraints For the ILC-like run scenario described above and an overall effec-
tive efficiency of 20%, Fig. 2 shows the global statistical constraints deriving from the two
sets of ideal measurements considered. A metric for the average constraint strength, the
global determinant parameter or GDP [5], is defined from the determinant of V the covari-
ance matrix of the Gaussian fit to N effective-field-theory parameters as GDP≡ 2N

√
detV .

Interestingly, ratios of GDPs for different machines, run scenarios, or set of measurements
are independent of rescalings and rotations in the EFT parameter space. They are thus
operator basis independent. In terms of a GDP ratio, the constraints on CP-conserving
parameters obtained from the measurements of statistically optimal observables are a fac-
tor 1.6 times stronger than the ones obtained from cross-section and forward-backward
asymmetry measurements.
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Figure 2: Global constraints deriving from the measurements of either cross section and forward-
backward asymmetries (top) or optimal observables (bottom). Correlation matrices are displayed on
the left. White marks indicate individual constraints and grey numbers, their ratio to marginalized
constraints. Dashed vertical lines provide the average of constraint strengths in the form of global
determinant parameters.
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Figure 3: Profiled chi-square’s deriving from the measurements of cross sections and forward-
backward asymmetries (top), and statistically optimal observables (bottom, note the unreasonably
large y-axis scale), when only the linear dependence on dimension-six operator coefficients is ac-
counted for (dashed) or when both linear and quadratic terms are included (solid).

The global constraints in Fig. 2 are imposed after truncating the EFT expansion to the
linear level. Some relatively loose constraints and large correlations obtained using cross-
section and forward-backward asymmetry measurements however raise questions about
the possible importance of quadratic CiCj/Λ4 terms. When included, the top row of
Fig. 3 shows that constraints are indeed significantly altered. On the contrary, the bounds
derived from the measurements of statistically optimal observables remain unchanged (see
bottom row of Fig. 3). They thus have the much desired feature of being operator-basis
independent, given that different dimension-six operator bases lead to inequivalent CiCj/Λ4

contributions.
The GDP introduced above can also be employed to find the combination of run

parameters leading to the strongest overall constraints. Note that different optimal run
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Figure 4: Variations of the GDP deriving from optimal observable measurements, as functions
of the share of integrated luminosity spent at 500GeV and 1TeV, and with two beam polarization
configurations, P (e+,e−) = (+0.3,−0.8) and (−0.3,+0.8).

parameters could be obtained within specific models, or when a power counting is imposed.
For a fixed integrated luminosity shared between runs at 500GeV and 1TeV centre-of-mass
energies and between two beam polarizations, the optimal repartition leads to performances
indistinguishable from our benchmark ILC-like run scenario. GDP variations around this
minimum are displayed in Fig. 4.

Conclusions We studied the sensitivities of two sets of observables and the constraints
future leptonic colliders would impose, through pair production, on the effective field theory
of top-quark interactions. The power of statistically optimal observables yielding operator-
basis-independent constraints has been demonstrated. The robustness of these observables
against non-resonant contributions, beam structure, higher-order QCD corrections, realistic
reconstruction and detector simulation is currently under investigation. Uses of the global
determinant parameter to assess the global strengthening of constraints with different set
of measurements and run parameters have been illustrated.
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