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1. Introduction

Particle jets with large transverse momenta, pT, are abundantly produced in highly energetic
proton-proton collisions at the CERN LHC, when two partons interact with high momentum trans-
fer under the strong interaction. The process is described by Quantum Chromodynamics (QCD)
using perturbative techniques (pQCD). The two-final state partons, at leading order (LO) in pQCD,
are produced back-to-back in the transverse plane and thus the azimuthal angular separation be-
tween the two highest pT jets in the transverse plane, ∆φ1,2 = |φjet1−φjet2|, equals π . The production
of a third or more high-pT jets leads to a deviation from π in the azimuthal angle. The measurement
of the azimuthal angular correlation (or decorrelation from π) in inclusive 2-jet topologies is proven
to be an interesting tool to gain insight into multijet production processes. Previous measurements
of azimuthal correlation in inclusive 2-jet topologies were reported by the D0 Collaboration [1, 2],
ATLAS Collaboration [3], and CMS Collaboration [4, 5]. Multijet correlations have been measured
by the ATLAS collaboration at

√
s = 7 TeV and

√
s = 8 TeV [6, 7].

This paper reports measurements of the normalized inclusive 2-jet cross sections as a function
of the azimuthal angular separation between the two leading pT jets for several intervals of the
leading jet pT (pmax

T ). The measurements are done in the region π/2 < ∆φ1,2 ≤ π . Measurement of
inclusive 3-jet and 4-jet cross sections are also available in [8].

Experimental and theoretical uncertainties are reduced by normalizing the ∆φ1,2 distribution to
the total dijet cross section. The measurement is performed using data collected during 2016 with
the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 f b−1 of
proton-proton collisions at

√
s = 13TeV .

Concerning the final event selection, in this analysis first we consider all jets with a minimum
pT of 100 GeV and |y|< 5. Then for inclusive 2-jets events we require at least 2 jets whith |y1|< 2.5
and |y2|< 2.5. For inclusive 3-jet (4-jet) all jets must have |y|< 2.5.

2. Results and Conclusions.

Predictions from different MC event generators are compared to data. The HERWIG++ and
the PYTHIA8 event generators are considered. Both of them are based on LO 2→ 2 matrix element
calculations. For PYTHIA8, the CUETP8M1 tune [9], which is based on NNPDF2.3LO [10, 11],
is considered, while HERWIG++ uses the CUETHppS1 tune [9], based on the CTEQ6L1 PDF
set [12]. The MADGRAPH [13] event generator provides LO matrix element calculations with
up to four outgoing partons. The NNPDF2.3LO PDF set is used in the matrix element calcula-
tion. It is interfaced to PYTHIA8 with tune CUETP8M1. For the matching with PYTHIA8, the
kt-MLM matching procedure [14] is used. Predictions based on NLO pQCD are considered using
the POWHEG package [15, 16, 17] and the HERWIG7 [18] event generator. The events simulated
with POWHEG are matched to PYTHIA8 or to HERWIG++ parton showers and MPI, while HER-
WIG7 uses similar parton shower and MPI models as HERWIG++. In this analysis, POWHEG
provides an NLO dijet calculation [19], referred to as POWHEG 2jet, and an NLO three-jet calcula-
tion [20], referred to as POWHEG 3jet, both using the NNPDF30nlo PDF set [21]. The POWHEG
2jet is matched to PYTHIA8 with tune CUETP8M1 and HERWIG++ with tune CUETHppS1,
while the POWHEG 3jet is matched only to PYTHIA8 with tune CUETP8M1. Predictions from
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the HERWIG7 event generator make use of NLO dijet matrix elements calculated with the MMHT
2014 PDF set [22] and use the default tune H7-UE-MMHT [18] for the UE simulation. Parton
shower contributions are matched to the matrix element within the MC@NLO procedure [23, 24]
through angular-ordered emissions.

The unfolded, normalized inclusive 2-jet cross sections differential in ∆φ1,2 are shown in
Fig. 1 for the various pmax

T regions considered. The distributions are strongly peaked at π and
become steeper with increasing pmax

T . Overlaid with the data are predictions from POWHEG 2jet
+ PYTHIA8 event generator. The error bars on the data points represent the total experimental
uncertainty, which is the quadratic sum of the statistical and systematic uncertainties.

Figures 2 (left) shows the ratios of the PYTHIA8, HERWIG++, MADGRAPH + PYTHIA8
event generators predictions to the normalized inclusive 2-jet cross section differential in ∆φ1,2,
for all pmax

T regions. The solid band indicates the total experimental uncertainty and the error bars
on the MC points represent their statistical uncertainties. Among the LO dijet event generators
HERWIG++ exhibits the largest deviations from the measurements. PYTHIA8 behaves much
better than HERWIG++ exhibiting some deviations particular around ∆φ = 5π/6. The MAD-
GRAPH + PYTHIA8 event generator provides the best description of the measurements.

Figures 2 (right) shows the ratios of the POWHEG 2jet matched to PYTHIA8 and HERWIG++,
POWHEG 3jet + PYTHIA8, and HERWIG7 event generators predictions to the normalized inclu-
sive 2-jet cross section differential in ∆φ1,2, for all pmax

T regions. The solid band indicates the total
experimental uncertainty and the error bars on the MC points represent the statistical uncertainties
in the simulated data. The predictions of POWHEG 2jet or POWHEG 3jet exhibit large devia-
tions from the measurements. It has been checked that POWHEG 2jet predictions at parton level,
i.e. without the simulation of MPI, HAD and parton showers, give a reasonable description of
the measurement for values of ∆φ1,2 greater than ≈ 2π/3, while they completely fail for smaller
values, where the parton shower has a crucial role. Adding parton showers fills the phase space
at low values of ∆φ1,2 and brings the POWHEG 2jet predictions closer to data, however with the
parameter setting used the agreement is not optimal. Unfortunately, no big effect is observed when
parton-shower is included. Further investigation showed that the POWHEG 2jet calculation and
the POWHEG three-jet calculation at LO are equivalent when initial- and final-state radiation is
switched off.

The predictions from POWHEG 2jet matched to PYTHIA8 are describing the normalized
cross sections better than those where POWHEG 2jet is matched to HERWIG++. Since the hard
process calculation is the same, the difference between the two predictions is entirely due to differ-
ent parton shower in PYTHIA8 and HERWIG++, which also use different αS values for initial-
and final-state emissions, in addition to a different upper scale used for the parton shower simula-
tion, which is higher in PYTHIA8 than in HERWIG++. The dijet NLO event generator HERWIG7
provides the best description of the measurements, showing a very large improvement in compari-
son to HERWIG++.

For this observable MC@NLO method of combining parton shower with the NLO parton level
calculations has advantages compared to the POWHEG method.

All these observations emphasize the need to improve predictions for multijet production.
Similar observations, for the inclusive 2-jet cross sections differential in ∆φ1,2, were reported pre-
viously by CMS [5] at a different centre-of-mass energy.
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Figure 1: Normalized inclusive 2-jet cross section differential in ∆φ1,2 for nine pmax
T regions, scaled by

multiplicative factors for presentation purposes [8]. The error bars on the data points include statistical and
systematic uncertainties. Overlaid with the data are predictions from the POWHEG 2jet + PYTHIA8 event
generator.
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Figure 2: Ratios of PYTHIA8, HERWIG++, MADGRAPH + PYTHIA8 (left), and POWHEG 2jet,
POWHEG 3jet, Herwig7 (right) predictions, to the normalized inclusive 2-jet cross section differential in
∆φ1,2, for all pmax

T regions [8]. The solid band indicates the total experimental uncertainty and the error bars
on the MC points represent the statistical uncertainties of the simulated data.
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