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1. Introduction

In recent years, the next-to-next-to-leading order (NNLO) perturbative QCD corrections have
been completed for many processes. For a consistent treatment, such processes with protons in
their initial state require parton distribution functions which are evolved at the same order. The
three-loop splitting functions governing their evolution have been known for some time [1, 2].

For a few processes, the N3LO QCD corrections are known [3–6]. An analysis at this order
requires, in principle, the four-loop splitting functions. The first results for low-N Mellin moments
of these contributions were presented in [7–10]; the flavour non-singlet quark+anti-quark splitting
function P(3),+

ns was computed at N = 2,4 and its quark−anti-quark counterpart P(3),−
ns at only N = 3.

The recently developed FORCER package [11] for the parametric reduction of four-loop self-
energy integrals has allowed significant progress to be made; the non-singlet splitting functions
are now known for values up to N = 16 [12] and the singlet splitting functions for values up to
N = 4 [13].

The subsets of Feynman diagrams contributing to the leading powers of n f (the number of
massless quark flavours) are much easier to compute. The most difficult four-loop topologies do not
contribute, and FORCER can provide Mellin moments for much higher values of N. The number of
moments computed for these terms is sufficiently large that when combined with suitable functional
ansatzes, based on the structure of lower-order splitting function contributions, analytic expressions
can be derived for their dependence on N using lattice basis reduction techniques [14, 15]. See
[16, 17] for earlier works using these methods.

We now discuss how these calculations are performed and consider how the results compare to
existing literature. For a more complete discussion and the results of the calculations, which are
not presented in these proceedings, the reader is referred to Ref. [18].

2. Calculation

In Mellin space, the scale evolution of the parton distribution functions is given by

d
d ln µ 2

f
fa = Pab fb, (2.1)

where fa = qu, q̄u, . . . ,g. This system of 2n f + 1 coupled equations can be decomposed into a
2× 2 system for the coupled evolution of the flavour singlet

(
qs = ∑

n f
i=1(qi + q̄i)

)
and gluon (g)

distributions,
d

d ln µ 2
f

(
qs

g

)
=

(
Pqq Pqg

Pgq Pgg

)(
qs

g

)
, (2.2)

and 2n f −1 equations for the evolution of the flavour non-singlet
(
q±ab = (qa±q̄a)−(qb±q̄b)

)
and

valence
(
qv = ∑

n f
a=1(qa− q̄a)

)
distributions,

d
d ln µ 2

f
q±ab = P±ns q±ab,

d
dln µ 2

f
qv = Pv qv. (2.3)
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It is the seven splitting functions appearing in Eq. (2.2) and Eq. (2.3) that we are concerned with
here. We compute them in the context of deep inelastic scattering (DIS) in the style of Ref. [19], to
which the reader is referred for further details. A brief description is given here.

For inclusive DIS, one can use the optical theorem to map the partonic cross sections to forward
amplitudes,

probe(q)+parton(p)→ probe(q)+parton(p), (2.4)

where p2 = 0 and q2 =−Q2 < 0. The forward amplitudes are projected onto powers of the parton
momentum (p) and a dispersion relation then yields, as the coefficients of

(
2p ·q/Q2

)
N , even- or

odd-N Mellin moments of the partonic cross sections (depending on which is being considered).
It is this projection which yields the four-loop self-energy-type Feynman integrals which can be
efficiently reduced to master integrals by FORCER.

Working in D = 4− 2ε dimensions, the partonic cross sections contain poles in the parameter
ε . The n-loop contributions to the splitting functions can be determined from the coefficient of
an

s/ε of the partonic cross sections (where as = αs/4π). We obtain even-N moments for the singlet
splitting functions Pab and the non-singlet splitting function P+

ns and odd-N moments for the non-
singlet splitting function P−ns and the valence splitting function Pv.

3. Determining Analytic Expressions

Section 2 briefly describes how one can obtain Mellin moments of the splitting functions from
the calculation of partonic cross sections in DIS. Here we outline the method by which we deter-
mine analytic expressions for the N dependence of the splitting functions, from knowledge of a few
of their Mellin moments.

To the order at which they are known (in both fixed-order results [1, 2] and all-order resum-
mations of certain leading-n f terms [20–22]), the splitting functions can be expressed in terms of
products of simple denominators Dp

i = (N + i)−p and harmonic sums, defined recursively as

S±m(N) =
N

∑
i=1

(±1)i

im
, S±m1,m2,...,ml (N) =

N

∑
i=1

(±1)i

im1
Sm2,...,ml (i). (3.1)

The weight w of a harmonic sum is defined as ∑
l
i=1 |mi|, and the overall weight of a harmonic sum

and Dp
i combination is defined to be (w+ p). The an

s contributions to splitting functions contain
terms with overall weight up to (2n− 1). Terms proportional to Riemann-Zeta values ζm have a
maximal overall weight reduced by m.

With these definitions, a contribution to a splitting function an+1
s P(n) may be assumed to have

the following structure,

P(n)(N) =
2n+1

∑
w=0

c00w Sw(N)+∑
i

2n+1

∑
p=0

2n+1−p

∑
w=0

cipw Dp
i Sw(N), (3.2)

where Sw(N) denotes the set of harmonic sums of weight w (excluding those with an index “-1”,
which do not appear in any known splitting function) and we define S0(N) = 1. It should be noted
that at three loops, the renormalized DIS partonic cross sections already contain structures which
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cannot be written in this way. Nevertheless, we assume this structure to be valid at least for the
large-n f terms of the four-loop splitting functions, which we consider here.

Given a sufficient number of Mellin moments of P(n), one can of course determine all coef-
ficients c00w and cipw of Eq. (3.2). In general, however, such a structure contains far too many
coefficients to be able to compute a sufficient number of Mellin moments for their determination.
We proceed by noting that, up to predictable powers of (1/3), c00w and cipw are all integers. The
system of equations formed by equating Eq. (3.2) with the Mellin moments for different values of
N is a Diophantine system and can be solved with fewer equations than unknown coefficients. For
this we use the routine axb of [23].

For the singlet splitting functions, we determine the leading-n f colour factors CFn3
f of P(3)

qq and

P(3)
gq , and CFn3

f and CAn3
f of P(3)

qg and P(3)
gg . The above considerations suffice to determine solutions

to the systems of equations for all but the CAn3
f terms of P(3)

qg . For this contribution we must
additionally assume that:

(i) in the large-N limit, the only constants which may appear are Riemann-Zeta values,

(ii) the coefficients of S1,2 are equal to those of S2,1, up to a sign change.
These assumptions are based on observations of the lower-order contributions to Pqg. In this case,
we have an ansatz of 117 unknown integer coefficients which are determined by axb using Mellin
moments at N = 2,4, . . . ,44 with N = 46 providing a check of the result.

The n3
f terms of the non-singlet splitting functions are already known to all orders in as [20].

Here, we determine analytic expressions for the terms proportional to C2
Fn2

f and CACFn2
f . The

subsets of diagrams which provide these colour factors are significantly harder to compute with
FORCER than those of the singlet case described above. We can not compute so many moments,
and must appeal to additional structure in order to solve the systems of equations. The crucial
observation is that if one writes P(3),±

ns in the following way,

P(3),±
ns

∣∣∣
n2

f

= 2C2
FA+(CA−2CF)B± = 2C2

F(A−B±)+CACFB±, (3.3)

the function A is common to both P(3),±
ns . This means that one can use both the even- and odd-

N moments of P(3),+
ns and P(3),−

ns to determine it, thus obtaining a sufficient number of moments
without the value of N becoming prohibitively high. The linear combinations (A− B±) of the
second part of Eq. (3.3) can be determined by computing just the (easier) C2

Fn2
f diagrams. Even

so, in order to obtain solutions for (A−B±) we enforce, in addition to (i) and (ii) (without the sign
change) above, that
(iii) P(3),+

ns and P(3),−
ns behave as lnN in the large-N limit [24, 25]

to eliminate more coefficients from the ansatz. With 115 coefficients remaining, (A−B+) is deter-
mined with even moments N = 2, . . . ,40 and (A−B−) with odd N = 3, . . . ,37. In each case one
additional moment provides verification. To determine A we must further assume that

(iv) only positive-index harmonic sums appear,

(v) no “many-index” sums appear. We remove S1,1,2, S1,1,1,2 etc. from the ansatz.
With these assumptions, A can be determined from an ansatz of 55 unknown coefficients using
moments N = 2,3, . . . ,17 with N = 18,19, . . . ,22 providing verification.

We now list existing literature against which we can verify our new results:
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• Refs. [21, 22] give the n3
f terms for two linear combinations of P(3)

qq , P(3)
gq and P(3)

gq , P(3)
gg .

• The function A of Eq. (3.3) yields, in the large-N limit, the large-nc limit of the cusp anoma-
lous dimension. It is in agreement with Refs. [26, 27].

• Ref. [28] provides a prediction for the lnN
N coefficients of P(3),±

ns in the large-N limit, in terms
of lower-order coefficients of lnN. This prediction is verified here at n2

f .

• The highest three double logarithms in both the large- and small-x limits have been predicted
in Refs. [29–31] and agree with our results.

4. Conclusions

The development of FORCER has allowed a much greater number of Mellin moments of the
four-loop splitting functions to be computed than was previously possible. The diagrams contribut-
ing to the leading terms in the large-n f limit can be computed to sufficiently high values of N
that we are able to determine analytic expressions for their N dependence. By choosing a suitable
ansatz of basis functions (Eq. (3.2)) and making various additional assumptions about the structure
((i)-(v) above) we are able to solve the systems of Diophantine equations for the Mellin moments
using axb.

We find solutions for the n3
f terms of the singlet splitting functions and terms proportional to n2

f
of the non-singlet splitting functions. We have also determined, but not discussed here, the terms
proportional to n2

f dabcdabc/nc of the valence splitting function P(3)
v . Our results are presented in

both Mellin-N and x space in Ref. [18].
For the remaining colour factors, the moment calculations become very computationally de-

manding. This, in addition to much larger ansatzes, means that this method cannot be used to de-
termine analytic expressions for the full four-loop splitting functions. Numerical approximations
to the remaining colour factors can be made using the available low-N moments and knowledge of
their behaviour in the large- and small-x limits. These are presented in Ref. [12].
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