
P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

RELOCATE: A Container Based Moving Target 
Defense Approach

Rui Huang1

Zhengzhou Information Science and Technology Institute,
Zhengzhou 450001, China

E-mail: xjhr1009@163.com

Hongqi Zhang
Zhengzhou Information Science and Technology Institute,

Zhengzhou 450001, China
E-mail: zhq37922@126.com

Yi Liu
Zhengzhou Information Science and Technology Institute,
Zhengzhou 450001, China

E-mail:liuyi9582@126.com

Shie Zhou
Zhengzhou Information Science and Technology Institute,

Zhengzhou 450001, China
E-mail:942624127@qq.com

In  order  to  cope  with  border  information  leakage  problem in  cloud services,  we presented
RELOCATE, a moving target  defense approach.  RELOCATE chose a lightweight operating
system virtualization technology named Docker to  manage the containers  in  physical  hosts.
Docker performs well  for tenants’ services  because of fast  initialization and small footprint.
Thus, we used Docker clusters to orchestrate the tenants' services. Additionally, we proposed a
novel dynamic relocation strategy to mitigate attacks from malicious neighbors  by using the
moving target defense thought. Lastly, we  conducted a simulation experiment in our testbed.
Result shows that RELOCATE is efficient and effective to defense border information leakage
attacks.

CENet2017
22-23 July 2017
Shanghai, China

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/


P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

1.Introduction 

The  booming up  of  Cloud computing has  gradually changed the whole  industrial  and
academic  world  of  computer  science.  There  are  three  levels  of  cloud  computing[1]:
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS).

Multi-tenant[2], as a key technique of the software as a service (SaaS), is an application
program model essentially. In this model, all users and applications can share the same platform
of  infrastructures  and  codes.  With  the  development  of  container  techniques,  an  increasing
number of service providers choose container techniques to solve the problems of large scale
multi-tenant service deployment. Nevertheless, containers share the same hardware, software,
libraries and file  system with each other,  causing the isolation boundaries not  rigorous  and
exposing a series of safety problems[3]. Such as, border information leakage attacks. The CPU's
data caches, e.g.

At  present,  there  are  mainly  three  kinds  of  approaches  to  thwart  border  information
leakage  attacks[4]. Zhang  et  al  purposed  a  cryptographic  implementation  inside  virtual
machines  to  maintain  safety.  Their  technique  is  a  more  evolved  version[5].  Ananta  et  al
presented a self-cleaning intrusion tolerance, but results show that this approach will cause a
long downtime[6]. Soo et al purposed NOMAD[7]  using VM migration,  which  is the closest
approach to RELOCATE. However, NOMAD is a pure reactive approach and has a high cost.

To  solve  the  problem  mentioned above,  the  proposed  approach  includes  container
management  architecture  and  a  dynamic  relocation  strategy.  We  use  Docker[8] to  manage
containers  and  conduct  dynamic  migration  to  thwart  border  information  leakage  attacks.
Moving  target  defense  (MTD)[9]  is  one  of  the  revolutionary  technologies  in  recent  years.
Inspired from this, dynamic relocation strategy was proposed.  Finally, we test RELOACTE in
our simulation testbed.

The rest of the paper is organized as follows. In Sect.2, the architecture of RELOCATE is
described. A dynamic relocation strategy based on moving target defense thought is designed in
Sect.3.  Section  4  conducts  the  simulation  experiments  and  makes  an  analysis.  Section  5
concludes the paper.

2.Architecture of RELOCATE

Our  approach named  RELOCATE,  which  is  built  to  be  as  universal  as  possible  with
minimal  application  customization.  Aimed at  satisfying  the  user/system administrator  needs
with almost no limitations or constraints, RELOCATION arranges containers in different host
systematically by means of a lightweight operating system virtualization technology. We choose
Docker, a LXC-based container management tool hosted on Linux operating system to sandbox
the users’ applications. Docker is increasingly popular with developers and service providers
due to its small footprint and fast instantiation. With the help of Docker, independent containers
are isolated from each other and the underlying host, ensuring the tenants’ privacy. The Linux
kernel on the host isolates containers applications including processes, network and file systems,

2



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

while the cgroups(Control Groups) provide resource isolation including CPU, memory, I/O and
network. 

Figure 1 :Architecture of RELOCATE

Figure 1 shows the architecture of RELOCATE. First of all, our approach is based on the
cloud services. Every host in the cloud services can either be a real physical machine or a virtual
machine. We put Docker cluster into each host with our RELOCATE proxy in it. And another

RELOCATE proxy is placed on an independent virtual machine called host0 to cooperate with

the inside one. 
The RELOCATE process starts by the time clock. Since initiating the container, operation

time is dynamically monitored. Once the operation time exceeds the specific threshold, the time
clock alerts. Then, the checkpoint and restore module is triggered. There are two main function
of this key module: one is the memory dump of containers, and another is network relocation.
On finishing these two procedures, dynamic migration module is invoked. The entire process
occurs in matter of milliseconds with almost no effect on the enclosed applications. 

The entire RELOCATE architecture includes container instantiation, container networking
functions  and checkpoint  and  dynamic  migration  modules.  We  will  illustrate  the  first  two
functions in the first place, and the task of modules will be described in next section.

A: container instantiation
First of all, we are supposed to describe the working procedure of Docker. Since Docker is

a lightweight operating system virtualization technology, every operation is executed through
images. If the local host has the needed image, then the container can be started according to it.
Otherwise, you can download from the Docker hub. After that, mount the file system and assign
the IP address. Then, the container can be used to run the applications. In our condition, tenants
will instantiate containers either manually or using an automatic script. The container will hold
the tenants’ application, and all the needed files for that application to run. 

B: container networking
It is extremely similar between container network technology and virtual machine network

technology. Since Linux containers are a software construct that can host an application and its
dependencies as an isolated process on a Linux kernel. It allows sharing the kernel with other
containers. In case of default installation, Docker will set up a virtual bridge called docker0 in
the host machine. This virtual bridge has a private network address and its subnet. And most of
the time, docker0’s address is 172.17.42.1. All the containers will be linked to the virtual bridge

3



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

and assigned an IP address in the subnet.  As a result,  it allows pass packets back and forth
between containers on the same host.  Generally,  there  is  only one NAT interface to  access
external network. 

3.Dynamic relocation strategy

RELOCATE mainly consists of three modules: checkpoint and restore module, network
relocation module and dynamic migration module respectively. Figure 2 shows the process of
dynamic  relocation strategy.  There  are  two main  aspects  of  the  problem need to  pay great
attention to:

1- When to relocate?
Docker Daemon dynamically set up containers for each tenant according to the images in

repository and the dockerfile. The container is responsible for the operation of the application,
including  operating  system,  user  files  and  data.  Nevertheless,  during  the  execution  of  an
application, the start time is about one-tenth of the total time, and the rest of the time is the
application’s running time, which causes the application to be exposed to the attacker for a long
time. As a result,  the vulnerability is easily detected. Great attentions should be paid to this
issue. We are inspired from the offensive and defensive rules of badminton, that is, immediately
return to the midfield and empty state after the defense or attack. Return to the start point so that
the adversary’s attack cannot be accumulated. In our strategy, under the premise of continuous
service,  RELOCATE  switches the containers constantly.  It  ensures the safety of large scale
multi-tenant service deployment by shorting the life cycle of containers. We set up a time clock
and use Poisson distribution to calculate the time, regarding each process k as an independent
event of Poisson distribution. The symbol λ is the probability distribution index, it is always a
constant. We define the symbol T as the threshold.  Once the time exceed the threshold T, the
time clock will alert. 

P (X =k )=ℷk
/k !e(−ℷ)

   (3.1)

                  P (X =k )>T   

 (3.2)
2- Which one (host) should be relocated in?
Prior  to  starting  the  dynamic  migration  module,  RELOCATE should  select  a  suitable

destination. With the purpose of  not reusing the same vulnerability, RELOCATE needs to select
a heterogeneity scale host. Heterogeneity scale is decided by host configurations C, networking
N and services S, e.g. we define heterogeneity entropy Δ to measure the difference between the
hosts.  Different  indicators  hold  different  weights.  The  higher  Δ is,  the  more  likely  for
RELOCATE to select. In the mainwhile, it is regarded as a safe, reliable and long term benefit
relocation.

Δ=wc (Cd−C s)+wn( N d−N s)+w s(S d−S s)

(3.3)

4



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

Figure 2 : Process of RELOCATE    Figure 3 : Network relocation procedure

3.1 Checkpoint and restore module

Since  the  container  is  a  lightweight  encapsulation  of  the  application,  including  many
important information, such as process and memory information, we should dump the memory
before migrating. We leverage the encapsulation state of the application and used CRIU to dump
the container memory into persistent set of files that are easy to share and recover.

CRIU is an open source tool to checkpoint and restore running tasks in user space[10].
CRIU momentarily freezes the running (container) runC process and all its sub-processes (user
apps) and checkpoint it to a collection of image files that can be used to restore the container to
the next state later. The dumped images are stored in persistent storage. In order to minimize the
application response time, containers will use the host memory to operate between these dump
events.

RELOCATE  uses  a  remote  shared  storage  as  a  container  repository  to  store  runC
containers, ensuring fast instantiation, quick recovery and easy migration. Running the container
from a remote  storage gives  easy access  to  initiate such containers.  RELOCATE sets up a
remote  repository to  host  the  base  image  of  containers,  which  massively reduces the  time
needed to move all the files between hosts. The only files that have to be synchronized between
the source and destination host are the memory dump which are small and easy to be relocated.

3.2 Network relocation module

After the checkpoint and restore procedure, the state of original container has been stored
in persistent set of files, including processes, memory and so on. It should be noted that CRIU
can only restore the state memory but  network relocation issue is  ignored.  Assuming that  a
tenant under docker0’s subnet is downloading a file from out net, simply checkpoint and restore
will  breakdown  the  download  process,  which  cannot  guarantee  services  for  the  tenant.
Furthermore, if the malicious tenant neighbors the target, having stolen some vital information
of the container, such as IP address. Then, the attacker may launch Dos to destroy the target.
Great attentions should be paid to this issue.

In our approach, two procedures were purposed to solve the problem. Figure 3 illustrates
the procedure. Firstly,  RELOCATE  kills the process on the original host  and  makes an ARP
update  to  change  the  MAC/IP assignment  of  the  old  container.  Then,  the new docker0  in
destination host will assign a new IP to the destination container. New IP address will make the

5



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

attacker’s accumulated knowledge invalid. Secondly, in order to maintain the service of tenants,
we modify the host NAT interface’s destination address to the new host NAT interface, ensuring
data flow not lost and achieving a virtual IP hopping from the source to the destination.

3.3 Dynamic migration module

For  RELOCAION  working, the  participated  host  must  run  a  Linux  operating  system
customized kernel to enable some features. After the two modules, it is time to migrate. The
destination container will recover the application from the remote shared storage and rebuild the
network connection. The entire process occurs in matter of milliseconds, guaranteeing almost
zero downtime to the tenants.

4.Simulation experiments and analysis

We  built  a  simulator  to  evaluate  the  effectiveness  of  RELOCATE.  Additionally,  we
conducted our experiments on our local cloud with 30 virtual machines (hosts) in it.  Both the
virtual  machines  were  equipped with  Linux CentOS 6.5  operating  system.  The  experiment
included two parts: time migration and space migration. We regard the attack succeed only if the
attacker manages to keep the target sharing the same host with his containers for the entire time
of attack. We assumed that we cannot identify the attacker containers and the main goal was to
minimize the chance of sharing the same host with any untrusted container. For time migration:
we tested static and probability threshold conditions. Figure 4 shows that more than 87% of the
border information leakage attacks can be resisted by RELOCATE. For space migration: we
tested static, high heterogeneity scale and low heterogeneity scale conditions. Figure 5 shows
that  RELOCATE can improve approximately 29% survival  probability of a  target  container
compared  with the  static  condition.  Both the  results  indicated that  the  effectiveness  of  our
purposed approach.

Figure 4 :Time migration Figure 5 :Space migration

5.Conclusion

In  this  paper,  we  introduced  RELOCATE,  a  container  based  moving  target  defense
approach to thwart border information leakage attacks in cloud service. We purposed a novel
architecture using a lightweight operating system virtualization technology named Docker. And

6



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
0
8

Relocate Rui Huang

we  designed  a  dynamic  relocation  strategy to  mitigate  the  attacks.  Simulation  experiment
showed that RELOCATE can effectively avoid border information leakage attacks with almost
no downtime to tenants. Our future work is to evaluate RELOCATE in a real condition and
make further efforts to quantify the heterogeneity scale. 

References

[1] Nist S P. A NIST definition of Cloud computing[J]. Communications of the ACM, 2011, 53(6):50-
50.

[2] Shen Z, Subbiah S, Gu X, et al. CloudScale: elastic resource scaling for multi-tenant cloud 
systems[C]// ACM Symposium on Cloud Computing. ACM, 2011:5.

[3] https://www.dockerbook.com/

[4] Bangalore, Anantha K, and A. K. Sood. "Securing Web Servers Using Self Cleansing Intrusion 
Tolerance (SCIT)." International Conference on Dependability IEEE Xplore, 2009:60-65.

[5] Wu, Zhenyu, Z. Xu, and H. Wang. "Whispers in the Hyper-space: High-speed Covert Channel 
Attacks in the Cloud." Usenix Security Symposium (2013).

[6] Bates, Adam, et al. "Detecting co-residency with active traffic analysis techniques." Proceedings of 
the 2012 ACM Workshop on Cloud computing security workshop ACM, 2012:1-12.

[7] Zhang, Yinqian, et al. "HomeAlone: Co-residency Detection in the Cloud via Side-Channel 
Analysis." IEEE Symposium on Security and Privacy IEEE Computer Society, 2011:313-328.

[8] Combe T, Martin A, Pietro R D. To Docker or Not to Docker: A Security Perspective[J]. 2016, 
3(5):54-62.

[9] Jajodia S, et al. Moving Target Defense[J]. Advances in Information Security, 2011, 54:99-108.

[10] http://criu.org/Checkpoint/Restore

 

7

https://www.dockerbook.com/

	1. Introduction

