
P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based Dynamic Partial Reconfiguration
System Applied on Xilinx Zynq

Dongming Luo1

Beihang University
Beijing ,100191, China

E-mail: ldm520@buaa.edu.cn

Guoqing Pan
Beijing Aerospace Measurement & Control Technology CO.LTD

Beijing, 100037,China
E-mail: pan_guo_qing@163.com

Guohua Wang
Beihang University
Beijing ,100191, China

E-mail: wgh@buaa.edu.cn

Dynamic Partial Reconfiguration(DPR) optimizes the resource utilization in the Field Programmable
Gate Array(FPGA) over time and space nowadays. But the lack of standard tools and interface makes
the extensive application of DPR rather difficult . With the open source Linux widely used in the
Xilinx Zynq, users’ demand for the reconfiguration becomes urgent. Linux-based dynamic partial
reconfiguration system(LDPRS), combining the unified multi-thread programming model of software
tasks and hardware tasks with FPGA dynamic partial reconfiguration, provides reliable and perfect
reconfiguration system services. LDPRS supplies Linux standard reconfiguration programming
interface and service of dynamic loading bitstreams. In the experiment, reconfiguration system is
applied in the reconfigurable computing and the results show that FPGA reconfiguration design
based on LDPRS has a short development period and high flexibility, supporting the dynamic loading
bitstreams. This system efficiently solves the problem of the lack of standard reconfiguration
development tools under LINUX, increasing the development flexibility of reconfiguration design
and decreasing the difficulty and time in development.

CENet2017
22-23 July 2017
Shanghai, China
1Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo
1.Introduction

FPGA are increasingly adopted in embedded systems due to their flexibility and relative
low cost compared to the fixed application of specific integrated circuits (ASICs) [1]. In modern
FPGAs, the flexibility of the device is further enhanced by the dynamic partial reconfiguration
feature(DPR). DPR allows the functionality of certain blocks to change in the FPGA at run-
time without interrupting the operation of the system[2].

Xilinx Zynq retains the partial reconfiguration feature of Virtex Series FPGA and supports
the reconfiguration through the PS to control the configuration interface. However, the lack of
the unified interface and system support leads to the partial reconfiguration unable to be
efficiently applied in Zynq. In the paper, the author designs the DPR based on the open source
Linux , combining the partial reconfiguration feature of Zynq. The LDPRS provides the
reconfiguration system based on the Linux and API which control the reconfiguration process.
By the standardized API proposed by LDPRS, users can load dynamicalbitstreams to the
designated logical resource regions without interrupting the operation of other regions.
Compared with Xilinx official reconfiguration, LDPRS provides the unified reconfigurable API,
which can support the relocation of bitstreams and combine the reconfiguration features with
the operating system. Thus the development cycle of reconfiguration can be shortened and the
difficulty of using reconfiguration can be reduced as users need’t to concern the complex
substructure when they use the reconfiguration features.

The main contribution of this paper is the presentation of the novel reconfiguration system
LDPRS, including the programming model for hardware tasks and a runtime system for Xilinx
Zynq FPGAs.

The remainder of this paper is organized as follows: Section presents an overview of
related work; Section 3 is dedicated to describing the architecture of our system; The practical
application of reconfiguration system and the results analysis are presented in Section 4;The
final section summarises the conclusion and the future research prospects.

2.Related Work

Reconfiguration operation system(ROS), firstly proposed by Brebner, refers to the system
which provides some functions to manage and control the reconfiguration hardware(HW).The
ROS can directly provide some efficient services to users, avoiding the substrate complex
architecture. These services include the management and controll of the whole reconfiguration
through API.

As the early ROS, OS4RS were developed by IMEC[3]. It is mainly applied in
multimedia, while little relevant design information about OS4RS is available. The idea that
hardware tasks (Hwt) are controlled by software tasks (Swt) proposed in OSR4S, is applied
extensively in the later PRS designs.

ReconOS was developed by the University of Paderborn. It integrates the hardware thread,
software thread and delegate thread. However, all the reconfiguration modules must be
generated in the design phrase in the reconfiguration and all the bitstreams must be stored in the
external memory for the system’s relocation, thus this system lacks flexibility.

R3TOS was developed by the University of Edinburgh, the main CPU of which adopted
the Xilinx’s Microblaze. This architecture is not suitable for Zynq’s dual ARM processor [4].

There are no systems directly designed for the Zynq and no one suitable for Linux among
the above systems. In this case, the combination of reconfiguration features with the popular
Linux can not be realized.

3.LDPRS Architecture

The architecture of LDPRS is shown in Figure 1. LDPRS provides the standardized
system services and interfaces for the software and hardware which lends support for the
hardware tasks based on the Linux’s multi-thread, thus the hardware tasks and software tasks
use the same system mechanism.The whole system is made up of bottom hardware and Linux
software. Designed by VHDL, the bottom hardware includes reconfiguration CPU, memory

2

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo
sub-system, ICAP controller and the reconfiguration hardware tasks(Hwt). The software
controls the bottom hardware based on the Linux’s multi-thread.

Figure 1: Architecture of LDPRS

The whole reconfiguration is completed by hardware and software tasks. The hardware
tasks are the function circuit running on the FPGA’s logical resources, while the software is
running on the Linux, matched with the hardware. Each hardware task corresponds to a
software task. Users send the reconfiguration command to the system, acknowledging the
information of hardware tasks. The reconfiguration system loads the hardware tasks to FPGA
from the external memory according to the users’ command. The tasks’ bitstream is generated

by Xilinx’s PlanAhead and then stored in the external memory. After the establishment of

hardware tasks, the system will create the corresponding software task, which will bridge the
gap between hardware tasks and the reconfiguration system. The tasks make the inter-task
communication through the shared memory.

The system’s memory stores the reconfiguration tasks and system data, and the external
memory stores partial bitstreams and the location profile of the hardware tasks. The location
profile describes the location of each hardware task. In the reconfiguration, the system loads the
bitstreams, inquires the position in the location profiles and modifies the bitstreams’
configuration information, which will then be loaded to the designated location.

3.1The Architecture of the Memory Subsystem

In the ROS, there's data interaction among all the software tasks. LDPRS conducts the
data transmission by means of shared memory. Before reconfiguration, the system applies to a
piece of memory space and then divides the space according to the hardware tasks. In the
running, hardware tasks store the generated data into the designated memory space and send the

3

HW
Task’s

data

System
data

MEMORY

HW
Task’s
bitstrea

ms

HW
Position
informat

ion

FLASH

UART Memory
Controller DMA GIC DDR2/3 Clock

Generation

PSAXI Master port AXI ACP Slave port

Memory controller

Mem2Hw

MMU Burst Converter

MEMIF Arbiter

CTRL_FIFO_OUT

CTRL_FIFO_H
wt

CTRL_FIFO_Mmu
MEMIF_FIFO_Mmu

Hw1

Hw2

Hw3

Hw n

...

GP Port

DMA
Controller

ICAP
Manager

ICAP

ICAP Controller

HP port

AXI-Lite

SYSTEM API

Hw2Mem

Hwt_Rst

Configure

LINUX
POSIX API

Dynamic memory
management

Drivers Mutexes Other libraries(math)

SW
task

SW
task

SW
task

SW
task

SW
task

SW
task

Application
sofeware

Linux
kernel

Proc_c
ontrol

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo
access command to memory controller when access to other hardware tasks is required. The
memory controller will search the data in the memory space according to the hardware tasks ID
and transmit the data to the designated the hardware task.

Burst
converter

mmu TLB
entrySmall

address

CPU Memory
Task

arbiter

TLB miss

Table address

Tasks write
data

Find
entry

Tas k1

Tas kn

.

.

.

Figure 2: The Memory Subsystem

The memory controller links the memory subsystem to the memory bus of the system as
an AXI master. The memory controller is responsible for searching the address entry when the
memory manage unit(MMU) can’t find the relevant entry. The entry searched will be sent back
to the MMU. The MMU will generate a physical address based on the received entry and then
send the physical address to the memory controller. The memory controller will inquire the
system memory based on the physical address and then transmit the searched data to the
designated hardware task. The detailed process is shown as follows (shown in Figure 2):

• The hardware task writes the data to the memory system:

The hardware tasks apply to the memif arbiter for writing the data to the memory. The
memif arbiter will transmit the data to the memory controller if one of the hardware tasks
buffers is not empty. Then the memory controller will write the data to the system memory
through the AXI bus.

• CPU writes the data to the designated hardware task:

The task arbiter chooses the hardware tasks in a traversal way and writes the transmitted
data into the corresponding hardware task buffers.

• Hardware tasks access to the memory:

The task arbiter selects the hardware tasks and sends the data address to the burst
converter, which will truncate the data address according to the address length and send the
short address to the MMU. When the the MMU doesn’t find the entry in translation lookaside
buffer (TLB), the memory controller will transform the physical address in the page table and
then send the transformed address back to the MMU to generate the physical address. The
physical address will be transmitted to memory controller for access to memory data, which will
be sent back to task arbiter. The specific process is shown in Figure 2.

3.2 The Architecture of Reconfiguration Hardware Task

The reconfiguration task, as the hardware task is located in the designated slot, is
controlled by CPU and has access to the memory. All the hardware tasks have the same
interface for the unified management and only one hardware task can access to the memory a t
the same time. Therefore, the synchronization mechanism needs to be established.

4

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo
There is a synchronization finite state machine in each hardware task to manage the access

to the memory. See Figure 3 for the specific procedure. The hardware thread waits on a
semaphore, sets the hardware thread as read-lock, reads a block of data from shared memory
into a local RAM, unlocks and processes it and then writes the result back to shared memory.
The hardware thread performs the void-write lock and unlock. The synchronization finite state
machine and user logic communicate via the two handshakes signals data_in and data_out.

Figure 3: Architecture of Reconfiguration Hardware Task

Each hardware task has four FIFO buffers. Two of them(OS FIFO) are used for data
interaction between hardware task and CPU and the other two (MEMORY FIFO) are employed
to access the memory sub-system. Users can modify the function of hardware tasks by
changing the user logic. When the users design the reconfiguration tasks, they shall ensure that
each reconfiguration task shall have the same port consistent with the port of CPU and memory
subsystems.

3.3 Architecture of ICAP Controller

Zynq can be reconfigured through internal configuration access port (ICAP) or processor
configuration access port (PCAP), but PCAP always blocks CPU at the moment of loading the
bitstreams, which is not suitable for ROS. Therefore, we adopt ICAP and design the ICAP
controller as follows. Direct Memory Access (DMA) controller loads the bitstreams from the
external memory to the ICAP under the control of CPU. This process doesn’t consume CPU
resources, thus efficiently reducing the CPU load and increasing the reconfiguration speed
(shown in Figure 4).

Our ICAP controller supports the modification of the bitstreams’ location. The architecture
of bitstreams is shown in Figure 5. Each bitstream has the unique 32-bit address called FAR
(frame address register), which determines the initial position of the bitsreams. The ICAP
controller relocates the bitstreams by modifying FAR[5]. In the bitsreams, there is also a cyclic
redundancy check (CRC). The CRC parameter is placed in the footer to check the validity of the
bitstreams. To download a Partial Reconfiguration Bitstreams (PRB), we have to invalidate the
CRC; to invalidate the CRC, we have to modify the access command to the CRC register. This
is represented as (3000 0001) in footer command, and the subsequent word is CRC value. The
(3000 0001)must be modified to (30008001), and the subsequent word must be modified to
(0000 0007). (3000 8001) is an access command to the command register(CMD), and (0000
0007) is the CRC reset command.

5

Data_addr

Lock

Read

Process

Unlock Lock

write

unlock

Synchronization
Finite state machine

Address in

Done=0

Done=0
Run=0

Read(count)

Write(count)

OS FIFO

MEMORY
FIFO

USER

LOGIC

Control

Data in

Data out

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo

Project name

User ID

Version

Time

Sync word

CMD

CRC

CRC0

CRC1

MASK

CTL

FAR

CMD

FDRI

CRC
File header control

FDRI
data

Figure 4: The ICAP Controller Figure 5: Content of the Bitstreams

The software driver allows user applications to utilize ICAP controller at a high speed
without being aware of the low-level operations associated with PR. The driver handles high-
level tasks such as management of bitstreams and DRAM memory as well as low-level
operations like configuration of the hardware, reconfiguration manager as well as the bitstream
movement. We also integrate the ICAP controller into Linux as a driver. Users need to modify
the device tree before employing API to control the ICAP controller in Linux.

4. Case Study

We use the zedboard to confirm the efficiency of the reconfiguration system.The hardware
task is a bubble sort algorithm. In the reconfiguration, the system generates some random
numbers and divides the numbers evenly to each hardware task based on the number of
hardware tasks. The hardware tasks sort the number separately and then one of them will make
the overall sorting after all the hardware tasks finish the separate sorting. Therefore, the total
time in the sorting process consists of time of generating data, time of loading bitstream, the
sorting time of hardware thread and the whole sorting time. We will record the time used in the
whole process and make comparison. In this experiment, we can test whether API of the
reconfigurable system operates smoothly and whether ICAP controller can realize the relocation
of bitstream and verify the application of our reconfigurable system in other fields.

 In the experiment, the reconfigurable system loads the generated sorting bitstream from
the external flash according to the designated sorting task amount by the users and online
modify the configuration location based on the bitstream configuration location files. Without
interrupting the system operation, the modified bitstream will be loaded to the designated
location. Reconfigurable sorting tasks concurrently sort the data, check the sorting result and
output the sorting time.

Number of
Data

Number of
Hwt

time of generating data
(ms)

time of loading
bitstream(ms)

Partial sorting
time(ms)

Total sorting
time(ms)

131072 2 5 20 350 530
131072 4 5 45 270 442
131072 6 5 50 230 310
131072 8 5 90 146 256
131072 10 5 120 100 190
131072 12 5 200 79 340
131072 14 5 278 46 500
131072 - 5 0 0 2577

Table 1: Result of the Experiment

As is shown in the Table 1, when the total number of sorting data is certain, the sorting
time will decrease with the increase of hardware tasks number, because ICAP controller can
load only one bitstream at the same time. However, the partial sorting time decreases with the
number of hardware threads, because more hardware tasks make sorting time for each task

6

S_AXI_HP M_AXI_GP

AXI Interconnect

DMA Controller

Finite state machine

PL

ICAP
controller

PS

ICAP
Port

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
4
7

A Linux-based DPR System Applied on Xilinx Zynq Dongming Luo
decrease, besides, the hardware tasks are performed concurrently. However, the total sorting
time decreases firstly and increases then with the increase of hardware thread number. This is
because the increase of time of loading bitstreams is larger than the decrease of partial sorting

time by the increase of hardware tasks. The results show that the reconfiguration system

provides normally functional API and ICAP operates the bitstreams correctly.
The bottom line shows the sorting result of Linux thread mechanism by establishing 14

software threads without using the hardware tasks. From the table, we can see that the time
consumed after using the hardware thread is much less than that consumed after using the
software thread because the operation of hardware thread is concurrent while the operation of
software thread is sequential; therefore, our reconfiguration system can be applied to other
fields, such as reconfigurable computing.

5. Conclusion and Future Work

In this paper, we have proposed the linux-based partial dynamic reconfigurable system
(PDRS) to provide the unified reconfigurable API for the linux users and reduce the time and
complexity of the development. At meanwhile, we also proposed a novel ICAP controller,
which can modify the online configuration location of bitstreams and realize the relocation of
bitstreams.Our reconfiguration system is based on the slots. Later, more efforts shall be made on
the slotless management of FPGA resources.

References

[1] A. Ebrahim, K. Benkrid, X. Iturbe, C. Hong. A novel high performance fault-tolerant ICAP
controller[C]. 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
Nuremberg, Germany, Jun, 2012:259-263

[2] J.A. Williams, N.W. Bergmann, X. Xie. FIFO communication models in operating systems for
reconfigurable computing[C]. Proc IEEE 13th Symposium on Field-Programmable Custom
Computing Machines(FCCM’ 05), Los Alamitos, American, Apr, 2005:277-278

[3] X. lturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez. R3TOS:A Novel Reliable
Reconfigurable Real-Time Operating System for Highly Adaptive[J], Efficient and Dependable
Computing on FPGAs. IEEE Trans. Computers.2013,62(8): 1542-1556

[4] X. Iturbe, A. Ebrahim, K. Benkrid, C. Hong, T. Arslan, J. Perez. R3TOS Based Autonomous Fault-
Tolerant Systems[J], IEEE Micro.2014, 34(6):20-30

[5] H. Styles, W. Luk. Compilation and Management of Phase-Optimized Reconfigurable Systems, The
International Conference on Field Programmable Logic and Applications (FPL), Tampere, Finland,
Aug, 2005:311-316

7

