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Dynamic Partial Reconfiguration(DPR) optimizes the resource utilization  in the Field Programmable
Gate Array(FPGA) over time and space nowadays. But the lack of standard tools and interface makes
the  extensive application of DPR rather  difficult .  With  the open source Linux widely used in the
Xilinx Zynq,  users’ demand for the reconfiguration becomes urgent. Linux-based dynamic partial
reconfiguration system(LDPRS), combining the unified multi-thread programming model of software
tasks and hardware tasks with FPGA dynamic partial reconfiguration, provides reliable and perfect
reconfiguration  system  services.  LDPRS supplies  Linux  standard  reconfiguration  programming
interface and service of dynamic loading bitstreams. In the experiment, reconfiguration system is
applied in  the reconfigurable  computing and the results  show that  FPGA reconfiguration design
based on LDPRS has a short development period and high flexibility, supporting the dynamic loading
bitstreams.  This  system  efficiently  solves  the  problem  of  the  lack  of  standard  reconfiguration
development tools under  LINUX, increasing the development flexibility of reconfiguration design
and decreasing the difficulty and time in development.
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1.Introduction

FPGA are increasingly adopted in embedded systems due to their flexibility and relative
low cost compared to the fixed application of specific integrated circuits (ASICs) [1]. In modern
FPGAs, the flexibility of the device is further enhanced by the dynamic partial reconfiguration
feature(DPR). DPR allows  the functionality of certain blocks  to  change  in the FPGA at run-
time without interrupting the operation of the system[2].

Xilinx Zynq retains the partial reconfiguration feature of Virtex Series FPGA and supports
the reconfiguration through the PS to control the configuration interface. However, the lack of
the  unified  interface  and  system support  leads  to  the  partial  reconfiguration  unable  to  be
efficiently applied in Zynq. In the paper, the author designs the DPR based on the open source
Linux  ,  combining  the  partial  reconfiguration  feature  of  Zynq.  The  LDPRS  provides  the
reconfiguration system based on the Linux and API which control the reconfiguration process.
By  the  standardized  API  proposed  by  LDPRS,  users  can  load  dynamicalbitstreams  to  the
designated  logical  resource  regions  without  interrupting  the  operation  of  other  regions.
Compared with Xilinx official reconfiguration, LDPRS provides the unified reconfigurable API,
which can support the relocation of bitstreams and combine the reconfiguration features with
the operating system. Thus the development cycle of reconfiguration can be shortened and the
difficulty  of  using  reconfiguration  can  be  reduced  as  users  need’t  to  concern  the  complex
substructure when they use the reconfiguration features.

The main contribution of this paper is the presentation of the novel reconfiguration system
LDPRS, including the programming model for hardware tasks and a runtime system for Xilinx
Zynq FPGAs.

The remainder  of  this  paper  is  organized as  follows:  Section presents  an overview of
related work; Section 3 is dedicated to describing the architecture of our system; The practical
application of reconfiguration system and the  results analysis are presented in Section 4;The
final section summarises the conclusion and the future research prospects.

2.Related Work

Reconfiguration operation system(ROS), firstly proposed by Brebner, refers to the system
which provides some functions to manage and control the reconfiguration hardware(HW).The
ROS can  directly  provide  some  efficient  services  to  users,  avoiding  the  substrate  complex
architecture. These services include the management and controll of the whole reconfiguration
through API.  

As  the  early  ROS,  OS4RS  were  developed  by  IMEC[3].  It  is  mainly  applied  in
multimedia, while little relevant design information about OS4RS is available. The idea that
hardware tasks (Hwt) are controlled by software tasks (Swt) proposed in OSR4S, is applied
extensively in the later PRS designs.

ReconOS was developed by the University of Paderborn. It integrates the hardware thread,
software  thread  and  delegate  thread.  However,  all  the  reconfiguration  modules  must  be
generated in the design phrase in the reconfiguration and all the bitstreams must be stored in the
external memory for the system’s relocation, thus this system lacks flexibility.

R3TOS was developed by the University of Edinburgh, the main CPU of which adopted
the Xilinx’s Microblaze. This architecture is not suitable for Zynq’s dual ARM processor [4].

There are no systems directly designed for the Zynq and no one suitable for Linux among
the above systems. In this case, the combination of reconfiguration features with the popular
Linux can not be realized.

3.LDPRS Architecture

The  architecture  of  LDPRS is  shown  in  Figure  1.  LDPRS provides  the  standardized
system services  and interfaces  for  the  software and hardware which lends  support  for  the
hardware tasks based on the Linux’s multi-thread, thus the hardware tasks and software tasks
use the same system mechanism.The whole system is made up of bottom hardware and Linux
software.  Designed by VHDL, the bottom hardware includes reconfiguration CPU, memory
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sub-system,  ICAP  controller  and  the  reconfiguration  hardware  tasks(Hwt).  The  software
controls the bottom hardware based on the Linux’s multi-thread.

Figure 1: Architecture of  LDPRS

The whole reconfiguration is completed by hardware and software tasks. The hardware
tasks are the function circuit running on the FPGA’s logical resources, while the software is
running  on  the  Linux,  matched  with  the  hardware.  Each  hardware  task  corresponds to  a
software  task.  Users  send  the  reconfiguration  command  to  the  system,  acknowledging  the
information of hardware tasks. The reconfiguration system loads the hardware tasks to FPGA
from the external memory according to the users’ command. The tasks’ bitstream is generated

by Xilinx’s  PlanAhead and then  stored  in  the  external  memory.  After  the  establishment  of

hardware tasks, the system will create the corresponding software task, which will bridge the
gap between hardware  tasks  and the  reconfiguration  system.  The  tasks  make  the  inter-task
communication through the shared memory.

The system’s memory stores the reconfiguration tasks and system data, and the external
memory stores partial bitstreams and the location profile of the hardware tasks. The location
profile describes the location of each hardware task. In the reconfiguration, the system loads the
bitstreams,  inquires  the  position  in  the  location  profiles  and  modifies  the  bitstreams’
configuration information, which will then be loaded to the designated location.

3.1The Architecture of the Memory Subsystem

In the ROS, there's  data interaction among all the software tasks. LDPRS conducts the
data transmission by means of shared memory. Before  reconfiguration, the system applies to a
piece of memory space and then divides the  space according to the  hardware tasks.  In the
running, hardware tasks store the generated data into the designated memory space and send the
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access command to memory controller when access to other hardware tasks is required. The
memory controller will search the data in the memory space according to the hardware tasks ID
and transmit the data to the designated the hardware task.
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CPU Memory
Task
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Tasks write
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Figure 2: The Memory Subsystem

The memory controller links the memory subsystem to the memory bus of the system as
an AXI master. The memory controller is responsible for searching the address entry when the
memory manage unit(MMU) can’t find the relevant entry. The entry searched will be sent back
to the MMU. The MMU will generate a physical address based on the received entry and then
send the physical address to the memory controller.  The memory controller will  inquire the
system memory based  on  the  physical  address  and  then  transmit  the  searched  data  to  the
designated hardware task. The detailed process is shown as follows (shown in Figure 2):

• The hardware task writes the data to the memory system:

The hardware tasks apply to the memif arbiter for writing the data to the memory. The
memif  arbiter  will  transmit  the  data  to  the  memory controller  if  one of the hardware tasks
buffers is not empty. Then the memory controller will  write the data to the system memory
through the AXI bus.

• CPU writes the data to the designated hardware task:

The task arbiter chooses the hardware tasks in a traversal way and writes the transmitted
data into the corresponding hardware task buffers.

• Hardware tasks access to the memory:

The  task  arbiter  selects  the  hardware  tasks  and  sends  the  data  address  to  the  burst
converter, which will truncate the data address according to the address length and send the
short address to the MMU. When the the MMU doesn’t find the entry in translation lookaside
buffer (TLB), the memory controller will transform the physical address in the page table and
then send the transformed address back to the MMU to generate the physical  address.  The
physical address will be transmitted to memory controller for access to memory data, which will
be sent back to task arbiter. The specific process is shown in Figure 2.

3.2 The Architecture of Reconfiguration Hardware Task

The  reconfiguration  task,  as  the  hardware  task  is  located  in  the  designated  slot,  is
controlled  by  CPU and  has  access  to  the  memory.  All  the  hardware  tasks  have  the  same
interface for the unified management and only one hardware task can access to the memory a t
the same time. Therefore, the synchronization mechanism needs to be established.
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There is a synchronization finite state machine in each hardware task to manage the access

to  the  memory.  See  Figure  3  for  the  specific  procedure.  The  hardware  thread  waits  on  a
semaphore, sets the hardware thread as read-lock, reads a block of data from shared memory
into a local RAM, unlocks and processes it and then writes the result back to shared memory.
The hardware thread performs the void-write lock and unlock.  The synchronization finite state
machine and user logic communicate via the two handshakes signals data_in and data_out.

Figure 3: Architecture of Reconfiguration Hardware Task

Each hardware task has  four  FIFO  buffers.  Two of  them(OS FIFO) are  used for  data
interaction between  hardware task and CPU and the other two (MEMORY FIFO) are employed
to  access   the  memory  sub-system.  Users  can  modify  the  function  of  hardware  tasks  by
changing the user logic. When the users design the reconfiguration tasks, they shall ensure that
each reconfiguration task shall have the same port consistent with the port of CPU and memory
subsystems.

3.3 Architecture of ICAP Controller

Zynq can be reconfigured through internal configuration access port (ICAP) or processor
configuration access port (PCAP), but PCAP always blocks CPU at the moment of loading the
bitstreams,  which is  not  suitable for ROS. Therefore,  we adopt  ICAP and design the ICAP
controller as follows. Direct Memory Access (DMA) controller loads the bitstreams from the
external memory to the ICAP under the control of CPU. This process doesn’t consume CPU
resources,  thus  efficiently  reducing  the  CPU load  and  increasing  the  reconfiguration  speed
(shown in Figure 4).

Our ICAP controller supports the modification of the bitstreams’ location. The architecture
of bitstreams is shown in Figure 5. Each bitstream has the unique 32-bit address called FAR
(frame  address  register),  which  determines  the  initial  position  of  the  bitsreams.  The  ICAP
controller relocates the bitstreams by modifying  FAR[5]. In the bitsreams, there is also a cyclic
redundancy check (CRC). The CRC parameter is placed in the footer to check the validity of the
bitstreams. To download a Partial Reconfiguration Bitstreams (PRB), we have to invalidate the
CRC; to invalidate the CRC, we have to modify the access command to the CRC register. This
is represented as (3000 0001) in footer command, and the subsequent word is CRC value. The
(3000 0001)must be modified to (30008001), and the subsequent word must be modified to
(0000 0007). (3000 8001) is an access command to the command register(CMD), and (0000
0007) is the CRC reset command.
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Figure 4: The ICAP Controller                      Figure 5: Content of the Bitstreams

The software driver allows user applications to utilize ICAP controller at a high speed
without being aware of the low-level operations associated with PR. The driver handles high-
level  tasks such  as  management  of  bitstreams  and  DRAM  memory  as  well  as  low-level
operations like configuration of the hardware, reconfiguration manager as well as the bitstream
movement. We also integrate the ICAP controller into Linux as a driver. Users need to modify
the device tree before employing API to control the ICAP controller in Linux.

4. Case Study

We use the zedboard to confirm the efficiency of the reconfiguration system.The hardware
task  is  a  bubble  sort  algorithm.  In  the  reconfiguration,  the  system generates  some  random
numbers  and  divides  the  numbers  evenly  to  each  hardware  task  based  on  the  number  of
hardware tasks. The hardware tasks sort the number separately and then one of them will make
the overall sorting after all the hardware tasks finish the separate sorting. Therefore,  the total
time in the sorting process consists of time of generating data, time of loading bitstream,  the
sorting time of hardware thread and the whole sorting time. We will record the time used in the
whole  process  and make   comparison.  In  this  experiment,  we can test  whether  API of  the
reconfigurable system operates smoothly and whether ICAP controller can realize the relocation
of bitstream and verify the application of our reconfigurable system in other fields.

 In the experiment, the reconfigurable system loads the generated sorting bitstream from
the  external  flash  according to  the  designated sorting task amount  by the users  and online
modify the  configuration location based on the bitstream configuration location files.  Without
interrupting  the  system operation,  the  modified  bitstream will  be  loaded  to  the  designated
location. Reconfigurable sorting tasks concurrently sort the data, check the sorting result and
output the sorting time.

Number of 
Data

Number of 
Hwt

time of generating data 
(ms)

time of loading 
bitstream(ms)

Partial sorting 
time(ms)

Total sorting 
time(ms)

131072 2 5 20 350 530
131072 4 5 45 270 442
131072 6 5 50 230 310
131072 8 5 90 146 256
131072 10 5 120 100 190
131072 12 5 200 79 340
131072 14 5 278 46 500
131072 - 5 0 0 2577

Table 1: Result of the Experiment

As is shown in the Table 1, when the total number of sorting data is certain, the sorting
time will decrease with the increase of hardware tasks number, because ICAP controller can
load only  one bitstream at the same time. However, the partial sorting time decreases with the
number of hardware threads,  because more hardware tasks make sorting time for each task
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decrease, besides,  the hardware tasks are performed concurrently.  However, the total sorting
time decreases firstly and increases then with the increase of hardware thread number. This is
because the increase of time of loading bitstreams is larger than the decrease of partial sorting

time  by  the  increase  of  hardware tasks.  The  results  show that  the  reconfiguration  system

provides normally functional API and ICAP operates the bitstreams correctly.
The bottom line shows the sorting result of Linux thread mechanism by establishing 14

software threads without using the hardware tasks. From the table, we can see that the time
consumed after  using the hardware thread is  much less than that  consumed after  using the
software thread because the operation of hardware thread is concurrent while the operation of
software thread is  sequential;  therefore,  our  reconfiguration system can be  applied to  other
fields, such as reconfigurable computing.

5. Conclusion and Future Work

In this paper, we have proposed the linux-based partial dynamic reconfigurable system
(PDRS)  to provide the unified reconfigurable API for the linux users and reduce the time and
complexity of  the  development.  At  meanwhile,  we  also  proposed  a  novel  ICAP controller,
which can modify the online configuration location of bitstreams and realize the relocation of
bitstreams.Our reconfiguration system is based on the slots. Later, more efforts shall be made on
the slotless management of FPGA resources.
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