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Parameterization for data points is a fundamental problem in the field of Computer Aided 
Geometric Design. Recently, an improved centripetal parameterization technique is proposed by 
Fang et al and its superiority to other common methods, such as uniform method, chord length 
method, centripetal method, Foley method and universal method, etc., is validated by a lot of 
numerical examples. In this article, a refined formula is firstly given to resolve the problem that 
the parameter values obtained by Fang’s method are usually a little bigger than the optimum 
ones. Furthermore, as enlightened by the local differential geometric properties of parametric 
curves, a novel parameterization scheme is put forward by introducing the discrete curvature 
and torsion information at each point. As indicated by numerical experiments, the deviation 
measured by a curvature and Euler distance-based criterion between the interpolation B-spline 
curve obtained by our method and the polyline constructed by the points are smaller than the 
ones between the curves obtained by Fang’s method, the chord length method, the standard 
centripetal method and the polyline. The proposed algorithm is applicable to both 2D and 3D 
points and has a distinct advantage for 3D points as compared with the three aforementioned 
methods. 
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Discrete Curvature and Torsion-based Parameterization Scheme for Data Points       Xiongbing Fang 
1. Introduction 

Parameterization for a set of data points is one of the fundamental problems in curve and 
surface interpolation applications[1-3]. Appropriate parameters of data points can be further 
used to construct a knot vector and compute the control points of the interpolation curve. The 
common parameterization methods are uniform[1], chord length[4], centripetal[5,1], Foley[6] 
and universal methods[7,8], among which the chord length and centripetal methods are the most 
popular parameterization algorithm in the CAGD community. Recently, a refined centripetal 
parameterization method is presented by Fang et al[9]. All the aforementioned methods are 
obtained by mainly taking planar points as research focus and utilizing the information of 
distance between any two successive points, the angle between two successive lines and the 
discrete curvature at each point, and they are usually used in 3D points’ parameterization and 
curve/surface interpolation problems directly. 

The parameterization is also one of the key steps for 3D data points and surface 
interpolation[2,8]. At present, the familiar way is directly applying the above methods in 3D 
point cases. For spacing points, there’s usually an angle φi between the triangles constructed by 
the three consecutive points Pi-1, Pi, Pi+1 and Pi, Pi+1, Pi+2 (see Fig. 1). It is evident that the chord 
length and centripetal methods only utilize the distance information. Furthermore, Fang used the 
information of the external angle θi rather than the angle φi. When the value of φi is not equal to 
zero, the interpolation curve is not only crooked but also torsional at the point Pi+1. From the 
differential geometry point of view, the local configuration of a space curves at a point is 
confirmed by both of the curvature and torsion[10]. In this paper, we concentrate the problem of 
3D points’ parameterization and a new parameterization scheme fully distilled the high-order 
differential geometric quantities, such as discrete curvature and torsion, implied by the points is 
put forward, which is also appropriate for 2D points. 
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Figure 1: Spatial Structure of 3D Points 

2. Data points parameterization 

2.1. B-spline curves 

B-spline has been proven to be the most popular representation method for free-form 
curves and surfaces. In the paper, we adopt B-spline curve interpolation to illuminate our 
parameterization scheme. A kth-order B-spline curve is represented as 

,
0

( ) ( )
n

j j k
j

t N t
=

= ∑P B  

where {Bj} is the control points, and {Nj,k(t)} is the normalized kth-order B-spline basis 
functions defined on the knot vector T={τj} j=0,1,…,n+k. The B-spline curve interpolation 
problem is formulated as follows. Given the points {Pi} i=n+1, the associating parameter values 
ti for each point Pi can be obtained by a parameterization method and the knot vector T can be 
computed by the average method [1] as follows: 
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+ +
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Then the control points {Bj} of a B-spline curve are unknowns to be calculated to satisfy 
P(ti)=Pi, i=0,1,…, n, i.e. the interpolation curve P(t) passing through the points at the associated 
parameter values. 

2.2. Common parameterization methods 

There are several classical techniques to choose the parameters {ti}, such as uniform, 
chord length, centripetal, Foley and universal method, etc.. The uniform method does not use 
the distance information between each pair of consecutive points, while the chord length and 
centripetal ones utilize the information. The uniform, chord length and centripetal methods can 
be formulated uniformly as follows. 

Let Li=Pi−Pi−1, i=1,…, n, 
1

n
a

i
i

D
=

= ∑ L , t0=0, Δti=ti−ti−1, then the three methods can be 

rewritten as 
a

i it D∆ = L                                (2.1) 
Equation (2.1) denotes the uniform, chord length and centripetal parameterization when 

a=0, a=1 and a=1/2, respectively. The Foley parameterization modifies the centripetal method 
by adopting a Nielson metric to define the distance. It is formulated as 
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For more details about the definition of di, please refer to [6]. 
Lim develops a new parameterization approach named universal based on the above 

methods[7,8].The key idea of this method is using the parameter it  associated with the 
maximum of the basis function Nj,k(t). 

Among the aforementioned methods, Foley and the universal parameterization are not 
very popular because of their laborious computation. The uniform method is rarely used as its 
bad parameterization effect for the final interpolation curves. So the popular parameterization 
methods in the context of CAGD are chord length and centripetal algorithms. 

2.3. Fang’s parameterization method 

Fang et al provided a refinement of the classical centripetal parameterization method by 
introducing the discrete curvature information at each point[9]. The geometric intuition of the 
method is that the flexure of a curve at one point will elongate the arc length around the 
neighborhood of the point. For the points’ parameterization, it signifies the parameter interval 
between the point and the next one will be augmented. Fang’s method is formulated as 

0.5
i i it D e∆ = +L                              (2.2) 
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1 1

12sin( 2) 2sin( 2)
i i i i
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θ θ
− −

−

= （ + ）

                        
(2.3) 

where θi and ei are the exterior angle of the triangle ΔPi-1PiPi+1 and the parameter disturbance 
quantity at point Pi respectively, the coefficient α is determined as 0.1 by an experimental way, 
and li is the magnitude of the shortest side of the triangle ΔPi-1PiPi+1. 

The characteristics of Fang’s method are summarized as follows: (1) it has fully used the 
geometric information of distance, angle and discrete curvature of the given point set; (2) as 
compared with the centripetal and other methods, the final interpolation curve obtained by 
Fang’s has less deviation to the polyline constructed by the points and the parameters for the 
points are more optimized. Moreover, its computation is also compact. 

3. Curvature and torsion-based parameterization 

3.1. Refinement of Fang’s method [9] 

A B

dsds
Pi

 

Figure 2: Discrete Curvature Circle at Point Pi 

In Fig. 2, Fang’s method used the circular arc PiB of the circumcircle of the triangle 
ΔAPiB to approximate the arc length increment ds of the curve from Pi to B. Obviously, when 
use the circumcircle of the triangle ΔAPiB to approximate the local of the curve around Pi, the 
local of the curve is geometrically inside the circle and that means the arc length of PiB is 
bigger than ds. 

Based on the above observation and the simulation results of the method, we’ve found that 
the disturbance quantity ei in Fang’s article is bigger than its optimum. Aiming at the limitation, 
we give a corrected way by using the average of the chord length PiB and the arc length PiB to 

approximate the increment ds, i.e. 2i i ids rθ= P B（ + ） . 

Suppose =P Bi il , the new disturbance quantity is ie dsα= ×  instead of ei in Equation 

(2.3), then one has 
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e
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(3.1) 

where li is the length of the shortest side of the triangle ΔPi-1PiPi+1, ri=li/2sinφiandφi=θi/2. 
Substitute them into Equation (3.1) then it follows that: 
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(3.2) 

Thereby the parameter value for each point Pi (i=1,…, n) in the given data set can be computed 
by 
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0.5
1i i i it t D e−= + +L                             (3.3) 

where t0=0. 

3.2. Analysis for the two methods 

From Fig. 3, we can get the following conclusions by analyzing the formulations of 
Equation (2.3) and (3.1). 

(1) If [0, 2]iϕ π∈ , then [1,1.57]
sin

i

i

ϕ
ϕ

∈ , sin
2sin
i i

i

ϕ ϕ
ϕ

+ [1,1.235]∈ . It shows that the range of 

the value of Equation (4) is smaller than that of Fang’s. 

(2) If iϕ  increases, then 
sin

i

i

ϕ
ϕ

and sin
2sin
i i

i

ϕ ϕ
ϕ

+ also increase, but the change rate of the 

latter is more slowly than that of the anterior one. For a same φi, the quantity computed by 
Equation (3.1) is smaller than that of Equation (2.3). 

Consequently, the parameter correction ie  computed by Equation (3.2) is smaller than 
that of Fang’s. 

 
Figure 3: Comparison of the Proposed Method and Fang’s Method 

3.3. Discrete curvature and torsion-based method 

Given a set of 3D points randomly, the fitting curves usually have torsion as the points are 
not coplanar. The common parameterization methods like chord length and centripetal, and 
Fang’s method usually take the geometric information of point position, lengths of line 
segments, angles between the line segments and the discrete curvature at each point into account 
rather than the higher-order geometric information of torsion. According to the local differential 
geometric characteristics of a space curve, the shape of the curve around a point is only 
determined by the curvature and torsion at the point. Based on the method in Section 3.1, a 
discrete curvature and torsion-based parameterization scheme is proposed for 3D points. 

There are a lot of methods to calculate the discrete curvature and torsion[11-15]. In the 
paper, we choose the following approach to estimate the torsion at each point[14, 15]. Let Δi=[Li, 
Li+1, Li+2], i=2,…, n-2, and [U, V, W] be the scalar triple product of the vectors U, V and W, then 
one has 

1
1

1 1 2 1 2

3
ˆ ∆
τ +

+
+ + + + +

=
⊗ ⊗ + +

L
L L L L L L L

ii
i

i i i i i i i                    
(3.4) 

where M ⊗ N denotes the cross product of the vectors M and N, Δi denotes the volume of 
the hexahedron constructed by a triple of consecutive vectors Li, Li+1, Li+2, and îτ  is computed 
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Fang's method method in section 3.1 
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by Equation (3.4) at points P2, P3, ..., Pn-1, and equals zero at P0, P1, and Pn. Finally, the discrete 
torsion at each point Pi (i=2,…,n-1) is estimated as 

-1 1
1

1

1

ˆ ˆ
0

0 0

∆ τ ∆ τ
∆ ∆

τ ∆ ∆

∆ ∆

−
−

−

−

 +
 >

= +
                            ≤

，

，

i i i i
i i

i i i

i i                         

(3.5) 

When the points Pi-2, Pi-1, Pi and Pi+1 are coplanar, τi=0; Otherwise, τi≠0. The sign and absolute 
value of τi determine the direction and degree of the tortility of the final interpolation curve at Pi, 
respectively. Hence, the parameter correction induced by the torsion at a point can be expressed 
as fi=β|τi|, where the scale β can be set as a constant or variable. Thus the parameter ti associating 
with Pi can be formulated as 

0.5
1i i i i it t D e f−= + + +L                            (3.6) 

where ie  is computed by Equation (3.1). For 2D points, all the discrete torsions calculated by 
Equation (3.5) are zero, and thus the Equation (3.6) is equivalent to Equation (3.3). 
Consequently, the proposed method depicted by Equation (3.6) is appropriate for both 2D and 
3D cases. 

3.4. Criterion of interpolation precision measurement 

The knot vector and interpolation curve can be constructed after the parameter values 
being computed by Equation (3.6). Different parameter values usually result in different shapes 
of curves and the deviation values of those curves to the polyline of the data points may be 
different. There are many criteria to measure the divergence [16-18]. In the paper, we utilized 
the curvature and Euler distance-based criterion depicted in [9] to compare different methods. 

3.5. Value range for α and β 

Experimental results show that the optimum value of α has relation with the shortest side 
length of the triangles constructed by each triple of consecutive points, i.e. the bigger the side 
length is, the smaller the value of α will be. The value of the torsion augmented coefficient β has 
relation with the points’ torsions, i.e. the bigger the torsions are, the smaller the optimum value 
of β will be. In this work, we recommend using 0.05 as an initial value for β. 

4. Numerical experiments and discussion 

4.1. Numerical experiments 

We compare our approach developed in Section 3.3 with the chord length [1], centripetal 
[1,4] and Fang’s methods [9] by four examples. For the sake of justice, the curvature and Euler 
distance-based criterion for the deviation of the final interpolation curve from the data points is 
chosen as the unified comparison standard for the four methods. We choose the cubic B-spline 
curve as interpolation curve and the average method to calculate the knot vector T={τj}. Once 
the parameters {ti} is get by one of the four approaches and the knot vector T is achieved, the 
interpolation curve will be obtained by algorithms for calculating a system of linear equations 
[1,10,19] or by a robust progressive iteration algorithm[20,21] with a small threshold, such as 
1.0*10-8. 

Example 1. The data set contains 12 planar points, i.e. P0=[1;1], P1=[2;1.2], P2=[3;1], 
P3=[4;1.3], P4=[6;8], P5=[7;1.25], P6=[7.5;2], P7=[8;1.2], P8=[8.2;-3.2], P9=[11;0.3], P10=[12;4], 
P11=[15;-2]. The polyline connecting the points is shown in Fig. 4(a), and the cubic B-spline 
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curves obtained by Fang’s, the proposed, the centripetal and the chord length methods are 
shown in Fig. 4(b) to Fig. 4(e) respectively. Distance deviations computed by the four methods 
with different values of α are listed in Table 1 and the centripetal method and the chord length 
one are irrelative with α. The Fang’s method and the proposed one get the minimum deviations 
1.512049 and 1.449913 with α=0.016 and 0.017, respectively. Fig. 4(e) shows that the final 
curve obtained by chord length method has loops and spires, which are not acceptant in CAD 
and CAGD domains. 

 
a. Data points and the polyline 

  

b. Fang’s method               c. Proposed method 

  

d. Centripetal method            e. Chord length method 
Figure 4: Data points and interpolation curves by the four methods (Example 1) 

α 0.014 0.015 0.016 0.017 0.018 0.019 0.020 
Fang’s 1.517790 

1.457083 
1.513974 1.512049 1.513629 1.517409 1.522162 1.527457 

Proposed 1.452770 1.450377 1.449913 1.451091 1.453554 1.457285 
Centripetal 1.677775 

Chord length 18.737667 

Table 1: Distance deviation of the four methods in example 1 
Example 2. The data points are sampled from a hypotrochoid curve determined by 

x=100×((a-b)×cos(t)+h×cos((a-b)/b×t)), y=100×((a-b)×sin(t)-h×sin((a-b)/b×t)), where a = 1, 
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b=3/4, h=9/13, t=[-3π, 3π] and the sampling step=π/2. The data set contains 13 points and the 
polyline connected them is shown in Fig. 5(a). The cubic B-spline curves obtained by Fang’s 
method, the proposed method, the centripetal method and the chord length method are shown in 
Fig. 5(b) to Fig. 5(e) respectively. Distance deviations computed by the four methods with 
different values of α are listed in Table 2. Fang’s method and the proposed one get the minimum 
deviations 4.185482 and 4.181231 with α=0.00007 and 0.00018, respectively. 

 
a. Data points and the polyline 

 
b. Fang’s method                          c. Proposed method 

 
d. Centripetal method                       e. Chord length method 
Figure 5: Data points and interpolation curves by the four methods (Example 2) 

α 0.00006 0.00007 0.00008 0.0001 0.00015 0.00017 0.00018 0.00019 
Fang’s 4.185522 4.185482 4.185545 4.185986 4.188297 4.189704 4.190466 4.191382 

Proposed 4.183784 4.183378 4.183039 4.182450 4.181403 4.181296 4.181231 4.181261 
Centripetal 4.187168 

Chord length 6.720811 

Table 2: Distance Deviation of the Four Methods in Example 2 
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Example 3. The data set contains 93D points, i.e. P0=[1;-2;0], P1=[1;1;0], P2=[0;1;0], 

P3=[0;1;1], P4=[0;2;1], P5=[1;3;-3.5], P6=[2;3;1], P7=[2;1.5;0] and P8=[3;1.5;0]. The polyline 
connecting the points is shown in Fig. 6(a), and the cubic B-spline curves obtained by Fang’s 
method, the proposed method, the centripetal method and the chord length method are shown in 
Fig. 6(b) to Fig. 6(e), respectively. Distance deviations computed by the four methods with β=0 
and different values of α are listed in Table 3, in which, Fang’s method and the proposed one get 
the minimum deviation 2.413632 and 2.396702 with α=0.03, respectively. Distance deviations 
computed by our method with α=0.03and different values of β are listed in Table 4 and our 
method get the minimum value 2.390160 at β=0.16. 

 
a. Data points and the polyline 

  
b. Fang’s method                         c. Proposed method 

  
d. Centripetal method                      e. Chord length method 
Figure 6: Data points and interpolation curves by the four methods (Example 3) 

α 0.01 0.02 0.03 0.04 0.05 0.06 

Fang’s 2.518915 2.426647 2.413632 2.418041 2.430161 2.450619 

Proposed 2.519913 2.416239 2.396702 2.397967 2.405062 2.423769 

Centripetal 3.116156 

Chord length 5.014220 
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Table 3: Distance Deviation of the Four methods in Example 3 (β=0) 

 
β 0.13 0.14 0.15 0.16 0.17 0.18 0.19 

Proposed 2.390215 2.390167 2.390162 2.390160 2.390251 2.390391 2.390561 

Table 4: Distance deviation of the proposed method in example 3 (α=0.03) 
Example 4. The data set contains nine3D points, i.e. P0=[20;0;0], P1=[s;s;-10], P2=[0;20;0], 

P3=[-s;s;-10], P4=[-20;0;0], P5=[-s;-s;-10], P6=[0;-20;0], P7=[s;-s;-10] and P8=[20;0;0], where 

40 2 2s = × . The polyline connecting the points is shown in Fig. 7(a), and the cubic B-spline 

curves obtained by Fang’s method, the proposed method, the centripetal method and the chord 
length method are shown in Fig. 7(b) to Fig. 7(e) respectively. Distance deviations computed by 
the four methods with β=0 and different values of α are listed in Table 5 and also the centripetal 
and chord length methods are irrelative with α. In Table 6, Fang’s method and the proposed 
achieve the minimum deviation 5.017925 and 5.017953with α=0.0012, respectively. The 
distance deviations computed by our method with α=0.0012 and different values of β are listed 
in Table 6 and our method is the minimum value 4.630315 with β=0.0018. 

 
a. Data points and the polyline 

 
b. Fang’s method                           c. Proposed method 

 
d. Centripetal method                        e. Chord length method 
Figure 7: Data points and interpolation curves by the four methods (Example 4) 

 
α 0.0008 0.0009 0.001 0.0011 0.0012 0.0013 

Fang’s 5.034880 5.026639 5.021550 5.018686 5.017925 5.018950 

Proposed 5.034586 5.026297 5.021331 5.018554 5.017953 5.019288 

Centripetal 5.286629 

Chord length 5.286629 

Table 5: Distance Deviation of the Four Methods in Example 4 (β=0) 
β 1.5 1.6 1.7 1.8 1.9 2.0 2.1 

Proposed 4.639045 4.633862 4.630822 4.630315 4.631928 4.635823 4.641646 

Table 6: Distance Deviation of the Proposed Method in Example 4 (α=0.0012) 

4.2. Discussion 
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4.2.1. Algorithms comparison 

From Table 1 to Table 3, the minimum distance deviation of our method is smaller than 
that of the Fang’s, centripetal and chord length methods when the discrete torsion information at 
each point is not taken into account. From Table 5, the minimum deviation of our algorithm 
with β=0 is smaller than that of the Fang’s about 2.8×10-5. 

From Table 3 to Table 6, the proposed method can efficiently reduce the deviations when 
the discrete torsions are taken into account. As compared with Fang’s approach, the deviation 
values of the proposed scheme for Examples 3 and 4 reduce about 0.023472 and 0.38761, 
respectively. As compared with the centripetal and chord length methods, the proposed one 
possesses many advantages. 

From Table1 to Table 6, the proposed method can obtain a minimum deviation value in a 
large range of parameter values and there is a pair of values of α and β that makes the 
parameterization results of our method being finer than the other three ways. 

4.2.2. Future work 

There are several possibilities for the extension of our method; we list a few of them as 
follows: 

(1) The parameters of the data points have tight relations with the knot vector T and both 
of them have coordinative importance for the shape of the final interpolation curve. However, 
the relations among parameter values {ti}, the knot vector T and the arc length parameter of the 
final curve are not very clear and it is worthy of much more research. 

(2) Another extension is to adopt different αi and βi for each parameter interval Δti by taking 
the properties of concave and convexity of the given points into account. 

5. Conclusion 

Aiming at the shortages of common parameterization methods and Fang’s improved 
centripetal method [9], a new parameterization method, based on discrete curvature and torsion, 
is provided and illumined by the local differential geometric properties of a space curve at one 
point. Experimental results indicate that the distance deviation between the B-spline 
interpolation curve obtained by our method and the polyline of data points is smaller when 
compared with the centripetal, chord length and Fang’s parameterization, thus the proposed 
method is more excellent for 2D and 3D data points’ parameterization. 
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