
P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE against
Power Analysis Attacks

Yi Zou 1

College of Computer Science and Technology, Hengyang Normal University
Hunan Provincial Key Laboratory of Intelligent Information Processing and Application

Hengyang, 421002, China
E-mail: 51674074@qq.com

Lang Li2

College of Computer Science and Technology, Hengyang Normal University
Hengyang, 421002, China

E-mail: lilang911@126.com

The algorithm PRINCE proposed in ASIACRYPT 2012 is a lightweight cipher, currently
suitable for the implementation on RFID Smart Card of the IoT. It's studied to achieve the
optimal implementation of PRINCE encryption algorithm, and to add a fixed random mask to
enhance the anti power attacking ability of PRINCE. In this paper, we constructed the same
operations into a module called PrinceRound, and used counter to control the PrinceRound
module, while the same round operation runs repeatedly. As a result, it can save registers and
effectively reduce the amount of computation. Furthermore, we used a special method by adding
the random mask to S-box. The experimental results show that the optimized PRINCE occupies
area 9.8% fewer than original PRINCE on FPGA and the encryption with a fixed random mask
can run correctly. Last but not least, our research is the first one about the implementation of
PRINCE algorithm on FPGA, and can serve as a reference for further application of IOT
encryption.

ISCC 2017
16-17 December 2017
Guangzhou, China
1Yi Zou(1983-),M.S.,Lecturer, Her research interests include embedded system and
information security.

2This research is supported by the Scientific Research Fund of Hunan Provincial
Education Department with Grant(15C0203), Industry university research project of
Hengyang Normal University (No. 14CXYY02), the National Natural Science
Foundation of China under Grant (No.61572174), the Science and Technology Plan
Project of Hunan Province (No.2016TP1020) and Young Backbone Teacher of
HengYang Normal University.
 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

1.Introduction

With the rapid development of the Internet of Things (IoT), great changes have taken place
in all aspects of people's lives in recent years. Many lightweight block ciphers have been
proposed to provide cipher blocks for resource constrained devices such as RFID tags. Among
the best studied ciphers are PRESENT, KATAN,LED and PRINT Cipher [1-4].

PRINCE is a novel lightweight block cipher which was proposed by Borgho in 2012[5]. It
is optimized with respect to latency when implemented in hardware. This is the first lightweight
block cipher which gives priority to latency with block length 64 bits and the key 128 bits.
There are few research papers about PRINCE cryptographic algorithms but there is no research
paper about optimization of the PRINCE cipher algorithm and resisting power analysis.

It is very important to reduce area resources when the cipher is implemented on resource
constrained chips. At the same time, in order to obtain the area optimization, the anti attack
ability of the cipher is correspondingly declining. So it is a very meaningful to find out how to
make the lightweight cipher more secure, occupy less resource and run faster.

This paper is organized as follows: Section 2 briefly describes the PRINCE block cipher;
Section 3 elaborates on area optimization of PRINCE; in Section 4, resisting power analysis for
PRINCE encryption algorithm is proposed; Section 5 discusses the experimental results, and
finally the conclusion is presented in the last section.

2.Description of PRINCE

PRINCE is a 64-bit block cipher with a 128-bit key. The key is split into two parts of 64
bits each, k = k0||k1,and extended to 192 bits by the mapping (k0||k1)—> (k0||k0’||k1) := (k0||

(k0>>>1) (k0 >>63)||k1). During the encryption, the first two subkeys k⊕ 0 and k′0 are used as

whitening keys, while the third subkey k1 is the key for a 12-round block cipher referred to as

PRINCEcore. The high level structure of PRINCE is demonstrated in Fig. 1.
The 12-round process of PRINCEcore is depicted in Fig. 2. A typical round of

PRINCEcore consists of an S-box layer, a linear layer and an addition layer. The intermediate
computation result called state, is usually represented by a 64-bit vector or a 16-nibble vector.

Figure 1: The structure of PRINCE

Figure 2:PRINCEcore
S-box layer: The cipher uses a 4-bit S-box which is given in Table.1. We denote the S-box

and its inverse by S and S−1 respectively.

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(X) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 1:S-box of PRINCE

2

PRINCEcorem

k0

c

K0'

⊕ ⊕

RC0

R

RC10

⊕

k1 k1

⊕⊕

RC11

R

RC9

R

RC8

R

RC7

R

RC6

R

RC5

R

RC4

R

RC3

R

RC2

R

RC1

S M S-1⊕

M

k1

⊕⊕

RCi

S

k1 k1 k1 k1 k1 k1 k1 k1 k1 k1

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

3.The Area Optimization and Verification of PRINCE

In the area optimization method, the PRINCE algorithm mainly has five modules:
MatrixMutil, ShiftRow, SubCell, PrinceRound, and the main program Prince. Five modules are
described as follows:

MatrixMutil: the column vector of matrix multiplication (the intermediate state is the
column vector);

ShiftRow: including the row shift and reverse row shift, through the control signal to
choose the corresponding results as output;

SubCell: including S-box replacement and reverse S-box replacement, through the control
signal to choose the corresponding results as output;

PrinceRound: complete a round wheel transformation of Prince algorithm
The main program Prince: The module which controls all modules.

3.1 The Optimization of MatrixMutil and Experiment

In MatrixMutil, we found that according to the characteristics of the matrix, the element
on each line is a corresponding element of the corresponding column vector, the result is
obtained by adding these elements. Using this method, we only need to do 64*3 XOR on
MatrixMutil, effectively reducing the computational complexity. The Verilog HDL code is given
as follows.

————————————————————————————————————
module MatrixMutil(res,state);
 input [0:63] state;

 output[0:63] res;
assign res={ s[4]^s[8]^s[12],s[1]^s[9]^s[13],s[2]^s[6]^s[14],s[3]^s[7]^s[11],

 …………
 s[48]^s[56]^s[60],s[49]^s[53]^s[61],s[50]^s[54]^s[58],s[55]^s[59]^s[63]

 };
endmodule

———————————————————————————————————
The simulation results of MatrixMutil by Modelsim 6.1f are as follows.

Figure 3: Simulation results of MatrixMutil module

3.2 Optimization of Repeated Round Modules and Experiment

The same operation module of the PRINCE encryption is placed in the round operation
called PrinceRoundso as to realize the repeated calling. It can effectively reduce the area when
the encryption is running on hardware. Thus, it is feasible to apply encryption into sensors and
other nodes.

In PrinceRound module, the operation order of the corresponding module was controlled
by the control signal, which can implement encryption/decryption operations within the module,
and it can reduce the number of registers. The Verilog HDL code of main programming is
described as follows.

——————————————————————
assign tag=(r<=5)?1:0;

3

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

 assign t[0]=tag? state:tem[1], ……t[3]=tag?tem[2]:state,

 result=tag?tem[3]:tem[0];
 MatrixMutil MM(tem[0],t[0]);

 ShiftRow SR(tem[1],t[1],tag);
 assign tem[2]= t[2] ^key ^RC[r];

 SubCell SC(tem[3],t[3],tag);

————————————————————————
Simulation results for the PRINCE round module are shown as Fig. 4.

Figure 4: Simulation Results for the PRINCE Round Module

3.3 Main Program of Prince

The realization of the Prince master control program is to use the counter which controls
PrinceRound module to run transformation round 10 times. The code is shown as follows.

——————————————————————
always @(posedge clk) begin

 cnt <= (cnt^10)? cnt+1: cnt;
 res <= ready ? ((cnt) ?te:t_SC) :res;

 ready <= (cnt^10)? 1:0;
 end

PrinceRound PR(t_res,res,key[64:127],cnt);

———————————————————————
Owing to the method of continuous assignment and the clock signal controlled by the

calculator to update, the encryption requires only 12 clock cycles.

plaintext k0 k1 ciphertext

0000000000000000 0000000000000000 0000000000000000 818665aa0d02dfa

ffffffffffffffff 0000000000000000 0000000000000000 604ae6ca03c20ada

0000000000000000 ffffffffffffffff 0000000000000000 9fb51935fc3df524

0000000000000000 0000000000000000 ffffffffffffffff 78a54cbe737bb7ef

0123456789abcdef 0000000000000000 fedcba9876543210 ae25ad3ca8fa9ccf

Table 2:Test Vector of PRINCE

Figure 5: Simulation Results of Main Program Prince
The test vector in Table 2 is the vector used in Paper [5], and we also used the same test

values on the fifth group in Paper [5]. The simulation results can be seen in Fig. 5, the plaintext
for input is 012345789abcdef, the key for input is 0000000000000000 and fedcba9876543210,
the ciphertext is ae25ad3ca8fa9ccf. So, the method of optimization is correct.

4.Algorithm of Resisting Power Analysis for PRINCE

The random mask is considered for the S-box transform and inverse S-box transform of
PRINCE encryption algorithm. Due to the special design of the PRINCE algorithm, it also

4

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

needs to do an S-box transform and inverse S-box transformation in the control section. In order
to construct S-boxes with random mask, a large amount of memory is needed. So we use a
special way to avoid consuming more memory. Before the S-box transform, the intermediate
state is XOR with a random array once, then after S-box transform, the result XOR with a
random array runs again. The modified code is suitable for completely random mask, partial
random mask, and fixed random mask. The algorithm is shown as follows:

——————————————————————————————————
Algorithm 1:Add(state,key0); Add(state,key1); Add(state,RC[0]);

 Add(state,R);SubCell(state,R);Add(state,R);

 for(i=1;i<=5;i++){

 M_layer(state); M_layer(R);

 ShiftRow(state); ShiftRow(R); Add(state,RC[i]); Add(state,key1);

 Add(state,R);// add random mask

 SubCell(state,R);

 Add(state,R);//compensation mask}

 M_layer(state); M_layer(R);

 for(;i<=10;i++){ …

r_ShiftRow(state);r_ShiftRow(R);

 M_layer(state); M_layer(R);…}//the next 5 rounds

——————————————————————————————————

From Fig. 6, with the input of plaintext and key, the output of the PRINCE algorithm
which added a random mask can verify that the random mask is correct.

Figure 6: Verification Result of PRINCE Random Mask Algorithm in VC

5.Experiment on FPGA and Analysis

5.1 Area Comparison

Among the above method, the optimized PRINCE algorithm, un-optimized PRINCE
algorithm and the PRINCE random mask algorithm are run on FPGA, synthesized by ISE13.2
and downloaded on Xilinx Virtex-5 LX50T FPGA. The result of the un-optimized PRINCE
algorithm on FPGA is shown in Fig. 7. The result of optimized is shown in Fig.8. The result of
PRINCE random mask algorithm is shown in Fig. 9 respectively. Table 3 is the comparison of
logic resource usage on FPGA.

5

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

Figure 7:Results of the Un-optimized PRINCE Algorithm on FPGA

Figure 8: Result of Optimized PRINCE Algorithm on FPGA

Figure 9: Results of PRINCE Random Mask Algorithm on FPGA

PRINCE Slice LUT Flip Flops

optimized 5342 5317 5326

un-optimized 5433 6382 5417

Random Mask 5497 5562 5481

Table 3: Comparison of Logic Resource Usage on FPGA
According to the compared data, the optimized PRINCE has advantages in area resource

consumption before optimization. The area resource is reduced by 9.8%.

5.2 Speed Comparison

Throughput is equal System clock frequency * length of block / clock of encryption and
decryption. The length of cipher block is 64, and clock of encryption and decryption is 12. The
clock frequency of the optimized PRINCE algorithm is 102.459, so

T hr o u g h p u t=102.459* 64/12=546.448(M b p s) .

The clock frequency of un-optimized PRINCE algorithm is 109.939, so

T h r o u g h p u t=100.939* 64/12=538.43(M b p s) .

The clock frequency of PRINCE random mask algorithm is 100.472, so

T hr o u g h p u t=100.472* 64/12=535.850 (M b p s) .

From the above results, we can see that the optimized PRINCE with less area and the
encryption speed is faster, the throughput is increased by 1.5%, and it can be testified that we
added a fixed value.

6

P
o
S
(
I
S
C
C

2
0
1
7
)
0
3
9

FPGA Optimal Implementation of PRINCE A gainst Power Analysis Attacks Yi Zou

6. Conclusion

This paper proposed a method based on area optimization for PRINCE, and realized the
algorithm of resisting power analysis for PRINCE based on Verilog HDL language and running
on FPGA. The experimental results have shown that random mask added correctly, and the
algorithm of resisting power analysis which is proposed in this paper added fixed random mask
value. Theoretically, it has a certain ability of defending attack.

References

[1] Bogdanov A，Knudsen L R Leander Get a1．PRESENT：Anultra-lightweight block
cipher[C]．Cryptographic Hardware and Embedded Systems (CHES 2007), 2007，LNCS,
Vol.4727, pp.450-466．

[2] Canniere De,Dunkelman O,and K nezevic M.KATAN and KTANTAN-A family of small and
efficient hardwareoriented block ciphers[C].Cryptographic Hardware and Embedded Systems
2009,2009,LNCS, Vol.5747, pp.272-288.

[3] Guo J, Peyrin T, Poschmann A ,et al. The LED block cipher[C]. Cryptographic Hardware and
Embedded System(CHES 2011). 2011,LNCS, Vol. 326-341.

[4] Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J. B. Robshaw. PRINTcipher:
A Block Cipher for IC-Printing[C].CHES 2010, LNCS, Vol.6225, pp.16-32.

[5] Julia Borgho, Anne Canteaut, Tim Guneysu, Elif Bilge Kavun. PRINCE:A Low-latency Block
Cipher for Pervasive Computing Applications[C]. Asiacrypt 2012. LNCS, Vol. 7658, pp. 208-225.

[6] Cheng Lei,Sun Bing,Li Chao.Side Channel Cube Attack on PRINCE[C].Telecom market,2013,
2:107-114.

[7] LI Lang, DU Guo-quan, ZENG Ting, et al.Research on the PRINCE Algebraic Attack[J].　
MATHEMATICS IN PRACTICE AND THEORY,2015,45(5):153-159.

[8] ZOU Yi, LI Lang, JIAO Ge. Differential Fault analysis of PRINCE lightweight cryptographic
algorithm[J]. Computer Science, 2017,44(6A):377-379.

7

	1.Introduction
	2.Description of PRINCE
	3.The Area Optimization and Verification of PRINCE
	3.1 The Optimization of MatrixMutil and Experiment
	3.2 Optimization of Repeated Round Modules and Experiment
	4.Algorithm of Resisting Power Analysis for PRINCE
	5.Experiment on FPGA and Analysis

	5.1 Area Comparison
	5.2 Speed Comparison
	6. Conclusion
	References

