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It is known that the galactic cosmic rays are the main souféenization in the Earth’s strato-
sphere and troposphere. Occasionally, with greater piliyaturing solar maximum periods
eruptive solar processes, namely solar flares and cororsd gjactions (CMESs) lead to a pro-
duction of high energy solar energetic particles (SEPsectb class of events, called ground
level enhancements (GLES) can drastically enhance thesatmeoic ionization. The induced by
primary cosmic ray particles ionization is important inieas processes related to atmospheric
physics and chemistry, specifically the minor constituebtsring the Solar cycle 23 (1996 May
— 2008 January) we observed several strong GLEs, namelyastd|B day event on 14 July 2000
(GLE 59), the Easter event on 15 April 2001 (GLE 60), Octobiervember 2003 Halloween
events (GLEs 65, 66 and 67), mid—January 2005 (GLE 68 andr&®}he last event from the
cycle on 13 December 2006 (GLE 7@)l (e. oul u. fi ). Here we study the long term ionization
effect of two of the mentioned events (specifically GLE 59 &idE 70) and perform a compar-
ative analysis, studying the ionization in the tropospheggion. We use a full Monte Carlo 3-D
model and compute the cosmic ray induced ionization as aifumof the altitude above the sea
level. lonization maps of several altitudes in the trop@spland stratosphere are presented. The
investigated ionization effects are much more essentidieatltitudes above 12 km a.s.l., and
especially in the Regener-Pfotzer maximum (15-20 km) andjimal at altitudes below 8 km.
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1. Introduction

The main source of ionization in the troposphere and sipatEre of the Earth is due to high
energy particles of various populations, the most importdnvhich are the galactic cosmic rays
(GCRs) [1, 2, 3, 4]. High energy GCR patrticles penetrate detephe atmosphere and interacting
with the air molecules induce a complicated nuclear-ebecagnetic-muon cascade. This leads to
an ionization of the ambient air [1, 2, 4, 5, 6]. The maximunioof production in the atmosphere,
observed at the altitude of about 12—-15 km above the sea(kegdl) is known as Regener—Pfotzer
maximum [7, 8, 9]. The majority of GCRs are protons and particles, and minor quantities
of heavier nuclei are also observed [10, 11]. Their flux ighgly modulated in the Heliosphere
by the solar wind and follows in anti-phase the 11-year sojate. It also responds to transient
phenomena e.g. Forbush decreases [12]. During strongiwrigalar processes as solar flares
and CMEs are produced SEPs (see [13, 14, 15] and referereresn)h Occasionally, SEPs are
accelerated to energies of about GeV/nucleon, which areginio initiate an atmospheric cascade
similarly to GCRs, and the secondaries eventually obseatagtound level. This special class
of events are known as GLEs. They significantly increasedheproduction in the atmosphere,
specifically in polar regions [16, 17, 18, 19]. Here, we corephe ionization effect due to GLE
particles in a medium to long time scales during two strong§lhamely GLE 59 on 14 July 2000
(Bastille day event) and GLE 70 on 13 December 2006.

2. Model for computation of ion production rate in the atmosphere dueto CRs

The computations of ion production rate and the correspgnidinization effect are performed
with a model similar to [20]. The details are given elsewHe@de 22, 23]. The ion production rate
is given by:

(h,
anE)=g /E [ ZEE o E)p(naed (2.1)

wheredE is the deposited energy in an atmospheric lajferh is the air overburden (air mass)
above a given altitude in the atmosphere expresseagidn? subsequently converted to altitude
a.s.l.,,D;(E) is the differential cosmic ray spectrum for a given nucleipaimary CR,p is the
atmospheric density ig.cm3, E is the initial energy of the incoming primary nuclei on the tuf
the atmosphere is the geometry factor - a solid angle aBg, = 35 eV is the energy necessary
for creation of an ion pair in air [24]. The integration is ovhe kinetic energy abovEq(R:),
which is defined by the local rigidity cut-oR; for a nuclei of typd at a given geographic location

/ 2
by the expressiokcyj = (%) RZ+ Eg — Ep, whereEp = 0.938 GeV is the proton’s rest mass.

The ionization effect in the stratosphere and troposphemoimputed using the Eq. (2.1)
averaged over the corresponding periodn(®4 one week). During strong GLE events the ion
production rate in the atmosphere is a superposition of dnéribution of GCRs, which in some
cases could be reduced (Forbush decrease) and SEPs,ghgylattally with essential anisotropic
part, specifically during the event onset. For the GCR spsetive assume the force field model
according to [25, 26], where the parametrization of loc#gristellar spectrum is considered as in



Long term ionization effect during several GLE events Alexander Mishev

[20]. The modulation potential is calculated according2d][ For the SEPs in equation (2.1) we
use a compilation of derived form ground based measuremétitdNMs spectra [28, 29, 30].

3. lon production rateduring GLE 59 and GLE 70

During the Solar cycle 23 (1996 May — 2008 January) we obsesaveral strong GLES,
namely the Bastille day event on 14 July 2000 (GLE 59), thedtavent on 15 April 2001 (GLE
60), October—November 2003 Halloween events (GLEs 65, 86&) mid—January 2005 (GLE
68 and 69) and the last event from the cycle on 13 December @06 70) [31, 32].
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Figure 1: lon production rate during the Bastille day GLEmw@n 14 July 2000. a) lon production
rate in the region withiR; < 1 GV, b) lon production rate in the region wil, < 2 GV

July 2000 was period of intense solar activity, producingee¢hX-class flares and two halo
CMEs. The GLE 59 was related to the Bastille day X5.8/3B stitae and associated full halo
CME [33]. The event onset was between 10:30 and 10:35 UT. rhegest NM increases were
observed at South Pole (58.3 %) and SANAE (54.4 %). Here, wsider SEPs spectra and
anisotropy according to reconstructions from NM data [28, 3The computations are fulfilled
at realistic conditions, namely assuming a summer atmogppeofile [34, 35] for the Northern
hemisphere and winter for the Southern hemisphere, régplgct The computed ion production
rates are presented in Fig.1la Ry < 1 GV cut-off, accordingly Fig.1b foR; < 2 GV [36].

The mid December 2006 was characterized as period near toittieum of solar activity.
However, on 1% of December 2006, was observed a X3.4/4 B solar flare assdadth Type I
and Type IV radio bursts and a fast full-halo CME. It was acpanied by a major proton event
with energy producing a GLE 70 (onsetat2:48 UT) (maximum at Oulu and Apatity NMs
90 %). The event was characterized by a large anisotropys imiial phase [37]. In addition,
the event occurred during the recovery phase of a Forbusieaks Therefore for ion production
we consider reduced GCR flux adjusted from Oulu NM measur&ndrhe spectral and angular
characteristics of SEPs are adopted from the works of [2D, B0cordingly, the computed ion
production rates are presented in Fig.2aRgK 1 GV cut-off and Fig.2b foR. < 2 GV [38].
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Figure 2: lon production rate during GLE 70 on 13 Decembel62@0) lon production rate in the
region withR; < 1 GV, b) lon production rate in the region wi, < 2 GV

4. Mid and long term term ionization effect during GLE 59 and GLE 70

The derived ion production rates (Fig.1 and Fig.2) allowaisampute the ionization effect
by integration of ion production rate over the event andémious periods [39, 40, 41]. The 24
ionization effect relative to the average due to GCRs audki of 12 km a.s.l., which corresponds
to nearly maximal ion production level, is presented inFig.the regions withR. < 1 GV rigidity
cut-off, accordingly in Fig.4 at altitude of 8 km a.s.l.
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Figure 3: The 2%ionization effect at altitude of 12 km a.s.l.Rf < 1 GV. a) The ionization effect
during the Bastille day GLE on 14 July 2000; b) The ionizateffect during the GLE 70 on 13
December 2006

The ion production and the corresponding ionization efteotng major GLEs considerably
vary throughout the event, mostly due on variation of speé¢®BEP spectrum soften during the
event) and angular characteristics (the pitch angle digion broaden out). The anisotropy of
SEPs as well as the duration of the event and/or the occ@reina Forbush effect considerably
affect the magnitude of ionization in a given geographidéaeg

Bastille day event isotropizes relatively fast, hence dfiisct is not as important compared to
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Figure 4: The 2%ionization effect at altitude of 8 km a.s.l. Bt < 1 GV. a) The ionization effect
during the Bastille day GLE on 14 July 2000; b) The ionizateffect during the GLE 70 on 13
December 2006
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Figure 5: The weekly ionization effect at altitude of 12 kra.kh.atR; < 1 GV. a) The ionization
effect during the Bastille day GLE on 14 July 2000; b) The zation effect during the GLE 70 on
13 December 2006
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Figure 6: The weekly averaged ionization effect at altitol® km a.s.|. aR. <1 GV. a) The
ionization effect during the Bastille day GLE on 14 July 20BDThe ionization effect during the
GLE 70 on 13 December 2006
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other events (Fig.3a and Fig.4a). The effect of anisotremjdarly seen during the GLE 70 event.
In general, the 24ionization effect at altitude of 12 km a.s.|. is strongeridgrthe GLE 70 & 20
%) compared to GLE 59¢ 5 %), with clearly observed anisotropic feature at Soutlseimpolar
region of 60-180 E. The 24 ionization effect at altitude of 8 km a.s.l. is smaller withalearly
seen anisotropy. The weekly averaged ionization effectésemted in Fig. 5 (12 km a.s.l.) and
Fig. 6 (8 km a.s.l.). The weekly ionization effect during Bastille day event is slightly negative
because the Forbush effect, while during the GLE 70 remagugjimal, but positive. Both effects
are negative in the middle troposphere at altitudes of aBdumh a.s.l.. In both cases there is no
anisotropic features on long term time scales.

5. Conclusion

In this study we presented computation of medium and long tenization effect due to CRs
of galactic and solar origin during the Bastille day GLE evem 14 July 2000 and GLE 70 on 13
December 2006. It was shown that in the middle tropospheken(8.s.l.) the ionization effect is
very similar for both events despite their difference asspeduration and amplitude. Moreover,
the weekly effect is clearly negative, because the accopmpaurorbush effect in both events. The
estimated ionization effect is important for recent stadigated to impact of CRs on atmospheric
chemistry and physics.
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