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we have entered a new and exciting era where cosmic rays, neutrinos, photons and gravitational
waves will be used simultaneously to study the highest energy phenomena in the Universe. Here
we present a fully Bayesian approach to the challenge of combining and comparing the wealth
of measurements from existing and upcoming experimental facilities. We discuss the procedure
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the method by incorporating the use of information provided by different theoretical models and
different experimental measurements.
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1. Introduction

We are starting a new era for astroparticle physics. A lot of experiments are taking data simul-
taneously measuring different observables in a wide range of energies: Pierre Auger Observatory
[1], Telescope Array [2], HAWC [3], IceCube [4], Magic [5], Antares [8]. New experiments will
be developed such as Cherenkov Telescope Array [7] or KM3Net [9] and we are going to have
unprecedented number of events to perform analyses that could answer the questions related with
high-energy cosmic rays, neutrinos and photons from more than century ago such that: what are
the cosmic rays?; where are they comming from?; how are they accelerated?. There are no doubts
that for answer these questions the experiments must share their results and the answer will arrive
by combining all the measurements.

In this work we present a brief review of Bayesian inference in Sec. 2, explaining the parameter
estimation and hypothesis testing. The practice of these methods are shown using toy simulations
in Sec. 3. First we consider that two experiments analyse different data without taking into account
the results of the other experiment. After that, we consider that the experiments share their results
and modify their prior information in their analyses.Finally the conclusions are reported in Sec. 4.

2. Review of Bayesian statistical inference

2.1 Parameter inference

Let D = {xi}n
i=1 be n realizations of a random variable X , i.e, n results of experiments con-

sisting in measuring the variable X . Let θ be a parameter of interest. Notice that there are not
restrictions on the dimensions of X and θ . The Bayesian inference consists of allocating probabil-
ities to the possible values of θ according to the observed data set D by solving the equation

π(θ |D, I) =
f (D|θ , I)π(θ |I)

f (D|I) =
Likelihood ×Prior

Evidence
, (2.1)

which is expressed in terms of probability density functions. Now we describe each term appearing
in Eq. 2.1.

Likelihood function: f (D|θ , I)
The likelihood function f (D|θ , I) is the conditional probability distribution of D given the un-

known parameter θ and it is usually denoted as L (θ |D). This function describes how the data set
D is distributed assuming a given value of θ . The likelihood function expresses all information
obtainable for the data satisfaying the Likelihood principle: All the information about θ that can be
obtained from an experiment is contained in the likelihood function for θ given X . Two likelihood
functions for θ (from the same or different experiments) contain the same information about θ if
they are proportional to one another, see [10] and [11]. In [11] it is also shown that the likelihood
principle is derived by the assumption of two principles: the principle of sufficiency and the princi-
ple of conditionality. These principles can be described informally as asserting the “irrelevance of
observations independent of a sufficient statistic” (sufficiency) and the “irrelevance of experiments
not actually performed” (conditionality).
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The prior: π(θ |I)
It describes all the information that we have about the parameter of interest before perform-

ing the experiment. A prior distribution can be created using information about past experiments,
using theoretical knowledge or expressing our total ignorance about the problem. When we do
not have information about the parameter of interest one should follow the Laplace criterion rule
paraphrased as: “in the abscence of any further information (prior information) all possible results
should be considered equally probable”. This kind of prior is the so called “flat prior”.

The posterior: π(θ |D, I)
This function describes our knowledge about the θ parameter after the data analysis of the ex-

perimental results. Then one can read Eq. 2.1 as an update of the prior knowledge of θ , described
by the prior, through the experiment described by the likelihood. For each event xi ∈ D of the
data set, our knowledge about θ changes. Once the posterior distribution is known there are two
standard estimators for the true value of θ : the mean of the posterior and the mode (the so called
Maximum of A Posteriori distribution, MAP).

The evidence: f (D|I)
Also denoted as Z acts as a normalization constant in the parameter inference but takes an

important role in the Bayesian Model Selection explained in Sec. 2.3. The evidence is given by:

Z =
∫

f (D|θ , I)π(θ |I)dθ . (2.2)

2.2 Confidence intervals

The confidence intervals or credible sets (here denoted as C.I) are easy to calculate in the
Bayesian approach. Once the posterior distribution is known we want to find between which values
[θ1,θ2] the actual value of the parameter has been estimated. Usually this question is answered with
an associated probability q which is typically 0.68, 0.9 and 0.95. The limits of the range are given
by solving the equation

q = P(θlow ≤ θ ≤ θup) =
∫

θup

θlow

π(θ |D, I)dθ . (2.3)

When the inferred value of θ equal or near to one of the limits of the possible values of θ , one talk
about upper or lower limits depending if θ ≈ θmin or θ ≈ θmax.

2.3 Bayesian model selection

Consider now two hypotheses I1 and I2 that we want to constrast and we perform an experiment
which gives us the data set D = {xi}n

i=1. We are going to consider that the likelihood functions
are different for the different hypotheses, for I1 we have L1(θ |D) = f1(D|θ) and for I2 we have
L2(ω|D) = f2(D|ω) where θ and ω could in principle have different dimensions (θ could be for
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instance a shape of an exponential distribution and ω could be the mean and the variance of a
normal distribution). The posterior distributions are given by

π(θ |D, I1) =
L1(θ |D)π(θ |I1)

Z1
(2.4)

for the first hypothesis and

π(ω|D, I2) =
L2(ω|D)π(ω|I2)

Z2
(2.5)

for the second hypothesis. Z1 and Z2 are the normalization factors for their respective equations:

Z1 =
∫

f1(D|θ)π(θ |I1)dθ = P(D|I1), (2.6)

which gives the probability of the data set D given the hypothesis I1 (once P(D|Ik) has been nor-
malized to all the hypotheses). In the same way, Z2 is the probability of D given the hypothesis
I2. The evidences have statistical meaning. Since we can calculate P(D|I1) and P(D|I2) we can
also calculate P(I1|D) and P(I2|D) using the Bayes’ theorem obtaining the probability of a given
hypothesis given the data set D and independently of the parameters θ and ω:

P(Im|D) =
P(D|Im)P(Im)

P(D)
=

ZmP(Im)

∑
M
l=1 ZlP(Il)

, (2.7)

where here M = 2 and m = 1,2. The expression shown in Eq. 2.7 is the generalization for M
possible hypotheses.

Once more the prior probabilities P(I1) and P(I2) must be chosen before the analysis. In this
way, we obtain a probability mass function in which the variables are the different hypotheses. To
compare which of the hypotheses is preferred by data, the ratio between the posterior probabilities
is performed:

P(I1|D)

P(I2|D)
=

Z1

Z2

P(I1)

P(I2)
. (2.8)

This ratio is called “posterior odds” and the ratio P(I1)/P(I2) is called “prior odds”. The ratio of
the evidences Z1/Z2 is called the Bayes’ factor of the hypothesis I1 over I2 (B1,2) and represents the
gain of probability of I1 over the hypothesis I2 after the data analysis:

posterior odds (I1, I2) = B1,2×prior odds (I1, I2). (2.9)

2.4 Predictive distributions

Suppose that an observer wants to prepare an experiment to infer certain parameter θ which
can take values in the Θ space with prior probabilities π(θ , I). The distribution of the random
variable X is given by the likelihood function f (x|θ , I). The data distribution before the experiment
is

f (x̃|I) =
∫

Θ

f (x̃|θ , I)π(θ |I)dθ (2.10)

where x̃ denotes unobserved data. f (x̃|I) is called the prior predictive distribution. After the ex-
periment has been built and the data D analysed, the knowledge about θ has changed: π(θ , I)→
π(θ |D, I). Now the expected data distribution has also changed:

f (x̃, I)→ f (x̃|D, I) =
∫

Θ

f (x̃|θ , I)π(θ |D, I)dθ (2.11)
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where f (x̃|D, I) is called the posterior predictive distribution. This distribution can be used to
compare with the observed data distribution to get a feeling of how well the estimation of θ fits the
measured data or for future experiments.

3. Simulations

Let EX and EY be two experiments measuring different observables X and Y . The experiments
are interested in to measure the fraction of certain distribution (signal) that there is in their data.
As an example, X can be the proton fraction of cosmic rays at ultra-high energies while Y can be
the astrophysical photon or neutrino fractions at energies in the PeV region. Let M1 and M2 two
models predicting different signals both in X and Y and predicting different relations between the
signals as it is illustrated in Fig. 1. In our example αy = α1.2

x for M1 and αy = α2
x for M2.
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Figure 1: Signal and background distributions (continuous and dashed lines) predicted from M1 (blue) and
M2 orange for the two experiments: EX in the left panel and EY in the center. The fraction of the signal in
EY as a function of the signal in EX is shown in the right panel for the two models.

The signal and background are normal distributions (denoted by gs and gbg respectively) for
the two models with the following parameters:

M1


gs

1(x) : µ = 2.3 and σ = 0.3

gbg
1 (x) : µ = 2.2 and σ = 0.27

gs
1(y) : µ = 7.4 and σ = 1.2

gbg
1 (y) : µ = 7.2 and σ = 1

M2


gs

2(x) : µ = 2.27 and σ = 0.27

gbg
2 (x) : µ = 2.18 and σ = 0.25

gs
2(y) : µ = 7.37 and σ = 1.15

gbg
2 (y) : µ = 7.17 and σ = 0.8

(3.1)

We simulate two data samples (one for each experiment) following the model M1 with α true
x = 0.3.

EX measures 300 events and EY measures 200 events. For these simulations we have 〈x〉 = 2.23
and σx = 0.3; 〈y〉 = 7.27 and σy = 1.07. The likelihood function for the model Mi (i = 1,2) and
variable z (z = x,y) is given by:

f (z|αz,Mi) = αzgs
i (z)+(1−αz)g

bg
i (z). (3.2)

Now we perform two analyses: one where each experiment analyse the data without any kind of
information (Sec. 3.1) and another one where the experiments use the information obtained from
the other (Sec. 3.2).
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3.1 Independent analyses

In this approach the experiments have no any prior information but they are interested in the
fraction of the signal, then the fraction of signal plus the fraction of background must be one. For
this reason, each experiment choose a uniform distribution between 0 and 1 as its prior.
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Figure 2: Posterior probability distributions of EX (a) and EY (b) for the fraction of the interesting signal
assuming the different models: M1 (blue) and M2 (orange).

In Fig. 2 the posterior probabiltiy distributions of the signals for each experiment under the
assumption of the different models are displayed. We obtain numerically that EX obtains 〈α〉x =
0.33 and a C.I at 90% [0.13,0.6] assuming M1 while assuming M1 EX obtains 〈α〉x = 0.6 and
[0.4,0.9] as the posterior mean value of the fraction of the signal and C.I respectively. EY obtains
〈α〉y = 0.38 and C.I 0.09,0.74 assuming M1 and 〈α〉y = 0.62 as fraction of the interesting signal
with [0.46,0.93] as a C.I assuming M2. Since each experiment assumes P(M1) = P(M2) = 0.5,
before the analysis, EX arrives to the conclusion that M1 is almost ten times most probable than M2

while the resolution to discriminate between the models in EY is smaller and for this experiment
P(M1|D)/P(M1|D)∼ 2.

3.2 Combined analyses

When one experiment has analysed some data, its prior knowledge change, and these change
can be use for the same experiment to analyse new data or for another experiment. In this example
we show how the results of each experiment is used by the other. Assuming the results of EX in the
previous section EY can modify the prior of αy for each theoretical model or scenario. In the same
way, EX can do the same in sight of the analysis done by EY . These new priors are shown together
with the new results in Fig. 3.
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Figure 3: Prior probabilities for the signals given the independent analysis in panel (a): prior for αx given
the results of EY assuming M1 (M2) is shown as continuous blue (orange) line; prior for αy given the results
of EX assuming M1 (M2) are shown as dashed blue (orange) line. They are compared with the uniform prior
taken in the independent analysis (black dashed line). The posterior distributions for each experiment are
shown in panels (b) and (c) for EX and EY respectively.

One can observe that by including the results of one experiment in the other the results change.
Now EX obtains that the posterior odds in favour of M1 are: P(M1|D)/P(M2|D) = 11.8×1.89≈ 22,
increasing the evidence in favour of the model M1. When EY analyse its data taking into account
the results of EX the posterior odds also increase being now P(M1|D)/P(M2|D) ≈ 31. Therefore
both experiments have reasons to beleave that the true model is M1 and the joined results will be
〈αx〉= 0.36 and 〈αy〉= 0.31 with C.I [0.18,0.56] and [0.13,0.51] respectively being M1 at least 22
times more probable than M2.

Finally, the posterior predictive distributions taking the results of the combined analysis are
shown in Fig. 4. Even though the data can be well described by the two models, the Bayesian
combined analysis permits us distinguish numerically between the two models.
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Figure 4: Posterior predictive distributions for EX (a) and EY (b) compared with the observed data.

4. Conclusions

The Bayesian approach for the combination of different measurements and detectors has been
presented and tested using simulations. With these methods the estimation of the parameters of
interest and the discrimination among different theoretical models or scenarios can be improved
using past or present experimental results from different experiments.
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In this work we show how the combination of the information obtained with two different
detectors can improve the parameter estimation, reduce the uncertainty and distinguish between
theoretical models that can explain the same data.
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