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Gamma-ray observations of microquasars at high and very-high energies can provide valuable
information of the acceleration processes inside the jets, the jet-environment interaction and the
disk-jet coupling. Two high-mass microquasars have been deeply studied to shed light on these
aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray
spectral states of black hole transients, where the radiation is dominated by non-thermal emission
from the corona and jets and by thermal emission from the disk, respectively. Here, we report on
the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated
with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only
detected in phases around the compact object superior conjunction. We conclude that the high-
energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection
allow us to constrain the production site. Moreover, we include in the discussion the final results
of a MAGIC long-term campaign on Cygnus X-1 that reaches ∼ 100 hr of observations at different
X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity
period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-
energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of
∼ 70 hr. We discuss our results in a multi-wavelength context.
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1. Introduction

Cygnus X-1 is an X-ray binary comprised by a (19.2±1.9) M� O9.7Iab supergiant star and a
(14.8±1.0) M� BH [1], classified as a microquasar after the detection of a one-sided relativistic
radio-jet [2]. The jet seems to create a 5 pc ring-like structure detected in the radio that extends
up to 1019 cm from the BH [3]. The system follows an almost circular orbit of ∼ 5.6 d period [4].
Flux modulation with the orbital period is detected in X-ray and radio [5, 6, 7], produced by the
absorption/scattering of the radiation by the stellar wind. Cygnus X-1 displays the two principal
X-ray states of BH transients, the soft state (SS) and the hard state (HS). Both are described by
the sum of a blackbody-like emission from the accretion disk that peaks at ∼ 1 keV (dominant in
the SS) and a power-law tail with a cutoff at hundred keV, expected to be originated by inverse
Compton (IC) scattering on disk photons by thermal electrons in the so-called corona (dominant
in the HS). During HS the source displays persistent jets from which synchrotron radio emission is
detected, whilst in the SS, these jets are disrupted. Cygnus X-1 showed a 4σ -hint above 100 MeV
during HS reported by [9], using 3.8 yr of Fermi-LAT data. Evidences of flaring activity were also
reported by AGILE (> 100 MeV, [10, 11, 12]) and by MAGIC (> 100 GeV, [13]).

The microquasar Cygnus X-3 hosts a Wolf-Rayet (WR) star, although it follows a short 4.8 hr-
orbit. The compactness of the system produces an unusually high absorption, which complicates
the identification of the compact object (1.4 M� neutron star (NS) [14] or < 10 M� BH [15]).
Despite this high absorption, its X-ray spectrum shows the two aforementioned states. Cygnus X-
3 is the strongest radio source among the X-ray binaries, whose flux can vary several orders of
magnitude during its frequent radio outbursts. These major flares happen only during SS (see [16]).
Cygnus X-3 was detected above 100 MeV, during SS by AGILE [17] and Fermi-LAT [18]. Its
spectrum was described as a power law with photon indices 1.8±0.2 and 2.70±0.25, respectively.

Here, we present the results for GeV and TeV searches on Cygnus X-1 using 7.5yr of Fermi-
LAT data and ∼ 100 hr of MAGIC data. We also show the latest results of Cygnus X-3 obtained
with MAGIC during the August-September 2016 flare.

2. Observations and Analysis

Fermi-LAT is the principal scientific instrument on the Fermi Gamma-ray Space Telescope
spacecraft that studies the gamma-ray sky within an energy range of ∼ 20 MeV to ∼ 500 GeV
(see [19]). To study Cygnus X-1 in the high-energy (HE; > 60 MeV) regime, we used 7.5 years of
Pass8 Fermi-LAT data (from MJD 54682–57420). The analysis was performed using Fermipy1,
a package of python tools to automatize the analysis with the FERMI SCIENCE TOOLS (v10r0p5
package). We selected photon-like events between 60 MeV and 500 GeV, within a 30◦ radius
centered at the position of Cygnus X-1. Find more details in [20].

MAGIC is a stereoscopic system of two 17 m diameter Cherenkov Telescopes located in La
Palma (Spain). Until 2009, MAGIC consisted in just one telescope [21]. After autumn 2009,
MAGIC II started operation [22] and between 2011-2012, both telescopes underwent a major up-
grade [23]. MAGIC observed Cygnus X-1 for ∼ 100 hours between 2007 and 2014 mostly during
its HS (see [24]). This analysis was carried out with standard MAGIC software (MARS, [25]).

1http://fermipy.readthedocs.io/en/latest/
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Upper limits (ULs) at 95% confidence level (CL) were computed with the full likelihood analysis
developed by [26], assuming 30% systematic uncertainty.

Between August and September 2016, Cygnus X-3 experienced strong flaring activity in radio
and HE regimes during its SS [27, 28]. MAGIC observed the source ∼ 70 hours between MJD
57623 to 57653, under different moonlight conditions (moon analysis performed following [29]).
ULs at 95% CL were computed following Rolke method [30].

3. Results

3.1 Cygnus X-1

Fermi-LAT skymap, between 60 MeV and 500 GeV, showed a point-like source at the position
of Cygnus X-1 with a TS=53. Moreover, detection only happens during HS (Figure 1) with TS=49
above 60 MeV (division between HS and SS done following [31]). Therefore, Cygnus X-1 is
only detected while displaying persistent radio-jets, as claimed by [9] and confirmed afterwards
by [32]. Making use of the HS sample, we searched for orbital modulation (assuming ephemeris
T0 = 52872.788 HJD, [33]). Orbital phases (φ ) were split into two bins, one centered at φ = 0, the
superior conjunction of the compact object (0.75 < φ < 0.25) and other at the inferior conjunction
(0.25 < φ < 0.75). Detection only occurred during superior conjunction (TS=31). Cygnus X-
1 spectrum, from 60 MeV up to ∼ 20 GeV, is well defined by a power law with photon index
Γ = 2.3±0.1 and normalization factor of N0 = (5.8±0.9)×10−13 MeV−1 cm−2 s−1, at an energy
pivot of 1.3 GeV. Daily basis analysis was also performed, but no short-term flux variability was
observed. The results between 0.1-20 GeV can be found in Figure 2.
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Figure 1: TS maps above 1 GeV centered in Cygnus X-1, using HS (left) and SS subsamples (right).

With MAGIC, we searched for steady emission at energies above 200 GeV, making use of
the total data set of ∼ 100 hr. No significant excess was found, which led to an integral UL of
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Figure 2: Multi-wavelength light curve for Cygnus X-1. From top to bottom: Daily MAGIC ULs (> 200
GeV), HE gamma rays from the Fermi-LAT analysis (flux points are computed when T S > 9), hard X-rays
from Swift-BAT (15-50 keV, [37]), soft X-rays from MAXI (2–20 keV, [38]) and RXTE-ASM (3–5 keV
range), and radio from AMI (15 GHz) and RATAN-600 (4.6 GHz). In the HE pad, dashed lines correspond
to AGILE transient events. The horizontal green line in Swift-BAT pad shows the limit at 0.09 cts cm−2 s−1

given by [31] to differentiate between X-ray states. HS and SS periods are highlighted with grey and blue
bands, respectively.

2.6× 10−12 photons cm−2 s−1, assuming a power-law function with photon index Γ = 3.2 (fol-
lowing former MAGIC results, [13]). We also looked for gamma-ray emission at each X-ray state
separately. In the HS, the source was observed for ∼ 83 hours between 2007-2011, which yielded
no significant excess. Differential ULs are included in the spectral energy distribution (SED) shown
in Figure 3. Orbital phase-folded and daily analysis were also carried out, with no evidence of emis-
sion. Integral ULs in a night-by-night basis are depicted in Figure 2. During SS, this microquasar
was observed for ∼ 14 hours in 2014. We searched for steady, orbital and short-term variability
modulation, resulting in no detection.
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Figure 3: SED of Cygnus X-1. Soft X-rays from BeppoSAX are shown in green stars [34], while hard X-rays
are taken from INTEGRAL-ISGRI (red diamonds,[35]) and INTEGRAL-PICsIT (brown diamonds, [36]).
In the HE and VHE band, results presented in this proceeding obtained with Fermi-LAT (violet points)
and MAGIC (black ULs) are depicted. Sensitivity curves for CTA-North for 50 hours (https://www.cta-
observatory.org/science/cta- performance/) and scaled to 200 hours of observations are shown in light blue
and dark blue, respectively. No statistical errors are drawn, apart from the Fermi-LAT butterfly.

3.2 Cygnus X-3

We searched for steady emission with the MAGIC telescopes, making use of the available
∼ 70 hours. No excess was found at energies above 300 GeV (accounting for the energy threshold
of the sample with the highest moonlight) nor 100 GeV (using ∼ 52 hours of dark data, i.e. under
absence of Moon). Differential ULs, assuming a power-law function with photon index Γ= 2.6, are
presented in Figure 4. In this figure, Fermi-LAT spectrum from [18] is taken, nevertheless Fermi-
LAT data for the August-September 2016 flare is currently being studied. No orbital (assuming
ephemeris T0 = 2440949.892±0.001 JD, [39]) or daily modulation was detected either.

4. Discussion and conclusions

HE and VHE gamma-ray emission were proposed in the literature from both leptonic and hadronic
mechanisms (see e.g. [40, 41]). Among these mechanism, the most efficient process seems to be a
leptonic one, the IC. The target photons depend on the distance of the production site with respect
to the compact object: close to it, thermal photons from the disk or synchrotron photons would
dominate [42, 40]; at a binary scales (∼ Rorb, the size of the system), IC would take place on stellar
photons; and finally, gamma-ray emission could also be produced in the interaction between the jet
and the medium (as seen in radio for Cygnus X-1, [3]). In the first two scenarios, gamma rays may
suffer high absorption due to pair creation.
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Figure 4: SED of Cygnus X-3. Blue butterfly corresponds to Fermi-LAT spectrum during 2009 flare [18].
MAGIC ULs for the August-September flare are represented in light orange (∼ 52 hours, dark data) and
dark orange (∼ 70 hours, dark+moon data). Sensitivity curves for CTA-North for 50 hours (dot-dashed line)
and 200 hours (dashed lines) observations are shown.

4.1 Cygnus X-1

At the base of the jet, GeV photons would be absorbed by ∼ 1 keV X-rays. Given the detection
achieved with Fermi-LAT, and following [43] approach, we estimated the smallest region size for
HE gamma-ray production at 2× 109 cm. The radius of the corona is ∼ 20− 50 Rg ∼ 5− 10×
107 cm [44], which allows us to conclude that the observed GeV emission is not originated in
the corona, but most likely inside the jets. This scenario is reinforced by the fact that Fermi-
LAT detection only happens during HS. If the hint of orbital modulation here reported is finally
confirmed, GeV emission must arrive from inside the jets and not from their interaction with the
environment. Assuming so, we can set an UL on the largest distance of the production site at
< 1013 cm (few times Rorb for this source). On the other hand, this flux variability is only expected
if the radiative process that leads to GeV emission is anisotropic IC on stellar photons [45]. Given
that the density of stellar photons is dominant over other photon fields at distances > 1011 cm, we
place the GeV emitter at 1011–1013 cm from the BH.

On the other side, the MAGIC non-detection above 200 GeV allows us to discard jet-medium
interaction as possible region for VHE emission above MAGIC sensitivity level, since these regions
are not affected by photon-photon absorption. At binary scales this non-detection is less conclusive
because of the pair production. Although VHE radiation is predicted in the models (see e.g. [46,
47]), several factors can prevent detection: low flux below MAGIC sensitivity even under negligible
absorption [32], no efficient acceleration on the jets or strong magnetic field. Nevertheless, transient
events by relaxation of attenuation at some distance from the BH or extended pair cascade [48, 49]
cannot be discarded. Transient emission related to discrete radio-emitting-blobs between HS and
SS could also happen, as observed in the HE regime for Cygnus X-3. Hint of transient event was
indeed reported previously by MAGIC [13]. More sensitive instruments, like the future CTA (see
Figure 3), could provide interesting information on Cygnus X-1.
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4.2 Cygnus X-3

Despite observing the source during strong radio and HE outbursts, no significant excess was
found by MAGIC. One has to consider the extremely high absorption due to the WR, which
may affect VHE gamma-ray emission. At energies above 300 GeV, the maximum absorption is
produced by near-infrared (NIR) photons (Etarget ∼ 1.7 eV). Following [50], absorption can be
estimated as τ ∼ σγγ · nNIR · R, where σγγ ∼ 1× 10−25 cm2 is the cross-section of the process,
nNIR ∼ LNIR/(4πR2cEtarget) is the density of NIR photons and R the size of the emitting region.
Assuming the LNIR to be the bolometric luminosity, LNIR = 1038 erg s−1, the absorption is not neg-
ligible until a radius R ∼ 1013 cm, i.e. outside the binary scale (Rorb,CygX3 ∼ 2.5×1011 cm). Given
the MAGIC non-detection, acceleration up to VHE could still happen inside the jets at a distance
. 1013 cm, maybe related to the HE emission site (produced at > 1011 cm to avoid absorption by
X-rays). On the other hand, MAGIC observed the source simultaneously with the strongest radio
flare (at 9.5 Jy on MJD 57651), being the MAGIC significance for this day compatible with back-
ground. This could reinforce the idea that VHE gamma rays, if produced, are originated inside the
binary scale and not at the radio-emitting regions of the jets far from the compact object. Note,
however, that the amount of time observed during strong radio flares is very limited.

Figure 4 shows the Cygnus X-3 SED with the results at VHE during the 2016 flare, along with
Fermi-LAT spectrum taken from the 2009 flare [18]. As mentioned above, dedicated Fermi-LAT
analysis for the August-Sept 2016 flare is currently being performed. Our constraining ULs are also
put in context with the CTA-North sensitivity curve for 50 hours of observations2 and the scaled
one for 200 hours.
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[26] Aleksić J., et al., 2012a, J. Cosmology Astropart. Phys., 10, 032

[27] Trushkin, S. A., et al. 2016a, The Astronomer’s Telegram, 9416

[28] Cheung, C. C. et al. 2016, The Astronomer’s Telegram, 9502

[29] MAGIC Collaboration, et al., 2017, ArXiv e-prints [1704.00906]

[30] Rolke, W. A., et al. 2005, Nuclear Instruments and Methods in Physics Research A, 551, 493

[31] Grinberg V., et al., 2013, A&A, 554, A88

[32] Zdziarski A. A., et al., 2016, ArXiv [1607.05059]

[33] Gies D. R., et al., 2008, ApJ, 678, 1237

[34] DiSalvoT., et al., 2001, ApJ, 547, 1024

[35] Rodriguez J., et al., 2015, ApJ, 807, 17

[36] Zdziarski A. A., et al., 2012, MNRAS, 423, 663

[37] Krimm H. A., et al., 2013, ApJS, 209, 14

[38] Matsuoka M., et al., 2009, PASJ, 61, 999

[39] Singh, N. S., et al. 2002, A&A, 392, 161

[40] Bosch-Ramon V., et al., 2006, A&A, 447, 263

[41] Romero G. E., et al., 2003, A&A, 410, L1

[42] Romero G. E., et al., 2002, A&A, 393, L61

[43] Aharonian, F. A., et al., apss 115, 201–225 October (1985)

[44] Poutanen J. and Coppi P. S., Physica Scripta Volume T 77, p. 57 (1998)

[45] Khangulyan D., et al., The Astrophysical Journal 783, p. 100 (2014).

[46] Pepe C., Vila G. S., Romero G. E., 2015, A&A, 584, A95

[47] Khangulyan D., et al., 2008, MNRAS, 383, 467

[48] Zdziarski A. A., et al., 2009, MNRAS, 394, L41

[49] Bosch-Ramon V., et al., 2008, A&A, 489, L21

[50] Aharonian, F., et al. 2005, Science, 309, 746

7


