PROCEEDINGS

OF SCIENCE

End-to-end data acquisition pipeline for the
Cherenkov Telescope Array

E. Lyard*, R. Walter for the CTA Consortium
ISDC, University of Geneva, Switzerland
E-mail: etienne.lyard@unige.ch roland.walter@unige.ch

The Cherenkov Telescope Array (CTA) will operate several types of telescopes and cameras. The
individual camera trigger rates will vary much - from 0.6 to 15 kHz - while the content of the raw
data will be heterogeneous. Raw data streams of up to 43 Gbps per telescope must be handled
efficiently, from the camera front-ends down to the on-site repository and real-time analysis. In
addition, the system must transcode all raw data to a common, pre-calibrated format.

We will present the pipeline that we propose to implement this data acquisition pipeline. It will
format the raw data to a common structure, provide facilities to run camera-specific algorithms
and compress and write data to the on-site repository. We will also present the Python interface
that allows the analysis pipeline to access the data. Eventually, the two strategies foreseen to
interface the camera servers will be detailed and the current status of the developments for CTA
will be given, with the last performance figures measured.

35th International Cosmic Ray Conference — ICRC2017
10-20 July, 2017
Bexco, Busan, Korea

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:etienne.lyard@unige.ch roland.walter@unige.ch

Data acquisition pipeline for CTA E. Lyard

1. Introduction

The Cherenkov Telescope Array (CTA) [1] will operate more than 100 telescopes of different
sizes between 4 and 23 meters in diameter. Each type of telescope will have one or two different
kinds of Cherenkov camera, leading to very heterogenous data outputted by the telescopes. This
document presents the pipeline that we propose to deploy to handle these data along with perfor-
mance figures obtained from the prototype implementation of it.

The pipeline itself is composed of several modules as seen on figure 1 and it is the evolu-
tion of the prototyping activities presented at ICRC2015 [2]. The camera server interface allows
the pipeline to readout event data from the camera servers. It comes in two flavours: native and
bridged. The native interface delivers the unified format while the bridged version has a separate
component (or bridge) that transcodes the camera native format to the unified one. The parameter
extraction module pre-calibrates the events and extracts their high-level parameters, such as Hillas
parameters. This is done early in the pipeline to help reduce the overall throughput of the system.
The array event builder retrieves event parameters and assembles them into complete array events
that are then forwarded to the real-time analysis. Due to the high trigger rate of the array (between
30 and 50 kHz), array event building will be load-balanced across several physical nodes. The
Repository Writer receives raw, unified event data from a single telescope, applies a compression
algorithm and writes the data to the on-site repository. The current prototype uses the ZFITS file
format [3] and custom compression, but the module is flexible enough to allow other file formats
and compressions to be used.

SR
Camera Params. | Repo.
E . i
me—) Server 1 | xtract 1| ’ | Writer 1 |— ‘
I To on-site
Cherenkov
Cameras — storage
—» Camera Bridge Params. Repo. >
Server 2 CcSs2 Extract. 2 Writer 2
N
Array Array
Event Event
Builder 1 Builder 2

\J \J
To real-time analysis

Figure 1: Overview of a data acquisition pipeline (DAQ) architecture with two telescopes. Solid lines denote
raw event data while the dashed lines correspond to event parameters. Camera server 1 has a native interface
to the DAQ while camera server 2 has a bridged interface. Raw event data are compressed and written to the
on-site repository, while extracted event parameters are forwarded to array event builders.

Note that the selection of events based on stereo triggers is done entirely by the camera servers
and thus not included in this pipeline.

Data acquisition pipeline for CTA E. Lyard

The pipeline runs inside the Alma Common Software framework (ACS) [4] and makes heavy
use of ZeroMQ (ZMQ) [5] and of the Google protocol buffers [6]. It is modular and allows mod-
ules to be instantiated as stand-alone executables or ACS component, or distributed across several
compute nodes. Load-balancing is built-in and thus virtually any data rate can be managed as long
as the on-site infrastructure can handle it.

The pipeline comes with a raw-events reader class written in C++. This reader has been
interfaced with ctapipe [7] so that the ZFITS format can be used readily to analyse the data from
early telescopes.

2. Camera server readout

Camera interfacing is done in two different ways: native and bridged. In the native interface
the camera teams use the API provided by the DAQ pipeline to ship complete events downstream.
Provided that the hardware is fast enough, one output stream delivers a throughput of approxi-
mately 9Gbps to a 10Gbps Ethernet interface. The CPU usage is in the order of 1.5 cores. Using
infiniband and ip-over-ib instead of Ethernet suggests that better performances are to be expected,
in the order of 12Gbps per stream. The bridged interface was not investigated very deeply yet,
but performances up to 7Gbps for a single stream were achieved while interfacing Flashcam [8].
This test was done using a dummy Flashcam camera server producing events and sending them
downstream using the a custom library from the FlashCam project called TMIO. The bridge was
receiving events via TMIO in the Flashcam native format and was transcoding them to the unified
format in protocol buffers. Unified events were then sent to a ZMQ receiver.

2.1 Integration to camera servers

So far cameras servers used their own code and memory management to build complete single
telescope events. Complete events are then copied to a protocol buffers data structure before being
serialised to a ZMQ socket. This extra copy of the data in memory was avoided by the NectarCam
team. Not only did they use the provided API to send events, but they also used it to allocate the
memory used to buffer the data. This allows incoming event data to be put to the protocol buffer
structure with no intermediate copy, thus avoiding this extra copy. This approach produced the best
performances so far: 18Gbps using two parallel streams [9].

2.2 LST readout

It has been recently agreed that the maximum readout data rate for large size telescopes (LST)
would be 24Gbps. It is foreseen that the LST event builder will reuse the same software as for
NectarCam, thus ensuring maximum integration of the interface to DAQ. However, the current
DAQ software has only been verified up to 18Gbps and pushing the performances up to 24Gbps
might be challenging. Indeed, as shown on figure 2, preliminary tests done with several 10Gbps
interfaces indicate that the performances do not grow linearly if more interfaces / streams are added.
This is more likely due to a suboptimal usage of the available resources, for example if non uniform
memory access boundaries are crossed. The 24Gbps throughput from the requirement seems in our

Data acquisition pipeline for CTA E. Lyard

reach, however it may need 4 interfaces rather than 3 unless further optimisations are made in the
software. This will be closely investigated in the coming months, and the most simple solution will
be selected for the commissioning of LST1.

Achieved throughput with respect to CPU usage and number of
10gbps Ethernet link

30 (o) o
z FoBig
24 N g

21

Throughput (gbps)
o

0 100 200 300 400 500 600 700 800 900 1000
CPU %

o 1link O 2links 3 links O 4links

Figure 2: Throughput performances using 1, 2, 3 and 4 times 10Gbps interfaces with 1 ZMQ stream per
interface. The test was sending 100 GBytes of event data to remote clients. There was 2x more clients than
data producers and the clients just discarded the data. The tests was repeated 10 times for 1 to 3 interfaces,
and 20 times for 4 interfaces.

3. Processing facilities

The DAQ pipeline main task is to collect raw event data from the camera servers and to write it
to the on-site repository. Besides this task, it will also run the parameter extraction and array-event
reconstruction from these parameters.

3.1 Parameter extraction

The parameter extraction is located early in the pipeline to help reduce the overall throughput.
Indeed, event parameters are much smaller in size compared to raw events and can be extracted for
a single telescope. Sending event parameters to the array event builder rather than raw data makes
the extra throughput negligible compared to the bulk data transfer.

The algorithms used to pre-calibrate the event data will come from the camera teams as they are the
ones who know best how to calibrate their instrument. This algorithm will be reversible so that a
better calibration can be applied by the offline analysis pipeline. The algorithms used to extract the
event parameters will be common to all cameras and most likely run in python inside the ctapipe
framework.

As of now, it remains unclear what will be the details of the interface between the DAQ pipeline

Data acquisition pipeline for CTA E. Lyard

and ctapipe. Our first choice is to use the protocol buffers and ZMQ once again to interface the
DAQ component with a generic ctapipe component running in ACS. If better performances are
needed, then the ctapipe routines will be called directly from the DAQ C++ component. However,
as this approach is less flexible than our first choice, it will be implemented only if needed.

3.2 Array event builder

The array event builder is the interface between the DAQ pipeline and the real-time analysis.
It collects single telescope image parameters and assembles them into array events based on the
stereo trigger information. Due to the high trigger rate of CTA it is foreseen that more than one
instance will be needed.

As there might be more than one parameter extraction instances in case of high throughput
telescopes (e.g. LSTs), it is not trivial how to route each event parameter to its array building in-
stance. Early prototyping activities made the array builder request a given event ID to all parameter
extraction nodes. Only the node that had processed this event would in-turn forward the data to the
requesting event builder.

This approach was successful during prototyping, but it was not implemented up to the scale of
CTA. As soon as the final data rates for all telescopes will be known, along with the performances
of the parameter extraction algorithms, then we will repeat the prototyping with a more realistic
setup.

4. Interface to the on-site repository

The interface to the on-site repository is two-fold: read and write. The writing is done by
a Repository Writer ACS component while the reading is done by interfacing a C++ class to the
ctapipe framework.

4.1 Repository Writer

We implemented the repository writer as an ACS C++ component. It listens to ZMQ streams,
sorts incoming events and writes them in ZFITS format. The compression used in ZFITS is a
custom scheme, yet to be finalised once real CTA data will be available. Various compression
schemes were tried out so far, as depicted on figure 3. It seems obvious that a compromise has
to be made between speed and compression ratio. Considering the long-term storage foreseen for
CTA data it looks to us that it would be worth applying a specific compression algorithm per kind
of data stored, as ZFITS allows to do.

4.2 ctapipe reader

A prototype implementation of a ZFITS reader for ctapipe was implemented. To avoid extra
developments, it reuses the C++ class from the DAQ pipeline instead of reading the data natively in
python. The data are read and uncompressed by the C++ code, serialised in protocol buffer format
and given to python as a binary block. A lightweight python layer then decodes this binary block

Data acquisition pipeline for CTA E. Lyard

320.0

100k events Comp i Comp i MB/s per 300.0
version ratio time thread to :

shm 280.0
260.0

raw 1 6.51 798.8
240.0
1zo 1.35 2554 203.6 220.0
split+lzo 1.50 16.98 306.2 200.0
rice 1.55 140.06 371 e 1800
g 160.0
zlib 2.05 952.51 55 140.0
split+zlib 221 487.99 10.7 120.0
huffman16 233 44.36 17.2 100.0
80.0
fact 237 51.01 101.9 60.0
diff+huffman16 2.44 49.80 104.4 40.0
specific 2.89 42,62 1220 200
0.0

1 1.25 15 1.75 2 2.25 25 275 3
Comp. Ratio

Figure 3: Compression ratios and throughput per core for various compression schemes. raw means that no
compression was applied. /zo is the well-known real-time compression algorithm [10]. sp/it means that the
data are pre-processed by splitting the high and low part of the binary words. rice is the rice compression
[11]. zlib uses the well-known gzip algorithm [12]. huffinanl6 is an implementation of the huffman coding
on 16 bits [13]. fact is the scheme used by the FACT project to store their data [14]. diff means that the
difference between each sample is stored rather than the samples themselves. specific means that the best
performing algorithm on each type of data (indices, samples, ...) was used for each column of the ZFITS
file.

and delivers it to the expected ctapipe structure. A detailed view of the architecture of the reader
can be seen on figure 4.

protozfitsreader.cpp rawzfitsreader.py

Protobuf | Serialize! | Protobuf ' De-serialize_| Protobuf |Convert to'
:Decompress Events : Serial |: Events ctapipe :

ctapipe
Events

Figure 4: Architecture of the ZFITS reader prototype for ctapipe. The DAQ C++ class ProtoZFitsReader
is used to perform the low level operations and obtain the events in a protocol buffer object. This object is
then serialised and passed to the python side of the interface. The serial data are then de-serialised using
the protocol buffers for python and converted to the data structure expected by ctapipe. This architecture
has been easy to implement as only protocol buffer serial data are passed between C++ and python. It is
obviously suboptimal as extra format conversions take place. However, because most of the computation
time is spent decompressing the data, the overhead remains small, in the order of 3 percent of the total time.

This approach had the advantage that it has been fast and effective to implement, thus allowing
immediate usage by the early prototypes. The reader could be made more efficient if the interface
between the C++ class and python would be made natively rather than via the protocol buffers.
Even though the overhead is very small, if ZFITS is selected as CTA raw data format then we will
consider to make the effort to improve this interface.

5. Future work

The prototyping activities to interface remaining Cherenkov cameras is ongoing. As soon as

Data acquisition pipeline for CTA E. Lyard

the LST event builder becomes available we will perform the benchmark required to understand if
the proposed architecture could work for such data rates.

In parallel, a prototype interface to the real-time analysis is being developed. We are currently
focused in embedding the parameter extraction into the DAQ pipeline and will soon move to the
updated version of the array event builder.

Once the data format for the raw data of CTA will be selected, we will make the required
adjustments to the Repository Writer component.

6. Acknowledgments

This work was conducted in the context of the ACTL working group of the CTA Consor-
tium. We gratefully acknowledge financial support from the agencies and organisations listed here:
http://www.cta-observatory.org/consortium_acknowledgments

References
[1] B.S. Acharya et al., Introducing the CTA concept., Astroparticle Physics, Volume 43, 2013, Pages
3-18, ISSN 0927-6505, http://dx.doi.org/10.1016/j.astropartphys.2013.01.007.

[2] E. Lyard et al. Modern middleware for the data acquisition of the Cherenkov Telescope Array. In: vol.
ICRC2015. 2015-08. arXiv: 1508.06473 [astro-ph.IM]

[3] W. Pence et al. A Tiled-Table Convention for Compressing FITS Binary Tables., ArXiv
e-printsarXiv:1201.1340.

[4] G. Chiozzi et al., The ALMA common software: a developer-friendly CORBA-based framework. in
Advanced Software, Control, and Communication Systems for Astronomy, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series 5496, 205-218, 2004

[5] Hintjens, P., ZeroMQ: Code Connected., http://zeromq.org, 2014
[6] Google Inc., Protocol Buffers, http://developers.google.com/protocol-buffers, 2014

[7] Kosack, K., ctapipe: Low-level data processing pipeline prototype,
https://github.com/cta-observatory/ctapipe, 2017

[8] G. Puehlhofer et al. FlashCam: a fully-digital camera for the medium-sized telescopes of the
Cherenkov Telescope Array. In: vol. ICRC2015.2015-08. arXiv:1509.02434 [astro-ph.IM]

[9] D. Hoffmann and J. Houles, 40-Gbps data-acquisition system for NectarCAM CHEP 2016
Conference, 2016.

[10] Lempel-Ziv-Oberhumer(LZO) https://en.wikipedia.org/wiki/Lempel-Ziv-Oberhumer, retrieved June
2017

[11] R.F. Rice et al., Algorithms for high-speed universal noiseless coding., in: 9th AIAA Computing in
Aerospace Conference, 1993. doi:10.2514/6.1993-4541.

[12] P. W. Katz, String searcher, and compressor using same, US Patent num. 5051745 (09 1991).

[13] D. Huffman, A method for the construction of MinimumRedundancy codes., Proceedings of the IRE
40 (9) (1952) 1098-1101. doi:10.1109/jrproc.1952.273898

Data acquisition pipeline for CTA E. Lyard

[14] M. L. Ahnen et al. Data compression for the First G-APD Cherenkov Telescope, Astronomy and
Computing 12 (2015), pp. 191-199. issn: 2213-1337.

