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1. Introduction

In these proceedings we review some recent developments in integrand reduction methods
for two-loop amplitudes and their application to five particle amplitudes in massless QCD. NNLO
QCD corrections to processes such as pp→ 3 j, pp→ H + 2 j and pp→W + 2 j are currently a
high priority within the community [1] where many measurements are already dominated by theo-
retical uncertainties. New methods to overcome the complexity of these amplitudes have been an
on-going effort for many years and useful techniques have been proposed from many directions.
High multiplicity multi-loop computations in maximally supersymmetric theories like N = 4 su-
per Yang-Mills (sYM) are now common place where the current state of the art is planar 6-point
amplitudes at 5-loops [2] with integrand representations known in principle to any loop order [3].
Understanding N = 4 sYM amplitudes has often provided valuable information when attempting
to construct efficient computational strategies for more complicated and phenomenologically rele-
vant gauge theories like QCD. On-shell methods such as unitarity [4, 5], generalised unitarity [6]
and BCFW recursion [7] have been essential tools for deriving the compact five-point two-loop
results in N = 4 sYM [8] and N = 8 supergravity [9].

Hadron collider phenomenology has gained significant precision thanks to automated codes
that employ numerical reduction procedures to avoid the traditional bottleneck of large intermediate
expressions. The integrand reduction procedure of Ossola, Papadopoulos and Pittau (OPP) [10] was
an important development in this story and has been used in combination with generalised unitarity
or a more traditional Feynman diagram approach to make phenomenological predictions for a wide
range of complex final states with mass effects.

While extensions of the OPP method to two-loops (or indeed the multi-loop case) are now
known [11, 12, 13, 14, 15, 16] applications had been previously restricted to specific ’all-plus’
helicity amplitudes [17, 18, 19] where additional simplicity led to compact analytic representations.
In the general case the integrand level expressions misses a large number of additional relations
between basis integrals which can be identified from integration-by-parts (IBP) identities [20]. The
standard method for approaching the computation of multi-loop amplitudes has been to construct a
basis of master integrals using Laporta’s algorithm [21] for solving systems of IBPs. This technique
quickly becomes complicated for systems with many scales which has prompted new developments
both in optimising current automated codes [22, 23, 24] and new approaches suitable for direct use
in unitarity based approaches [25, 26, 27, 28]. There have been successful attempts to include IBP
relations directly into the construction of the amplitudes from unitarity cuts using both the maximal
unitarity method [29, 30] and more recently through numerical unitarity [31, 32].

Of course the reduction to a basis of integral functions is only part of the problem. The
evaluation of multi-scale integral functions also presents a serious technical challenge. The first
contributions to be completed were the planar topologies with all particles massless computed
using (canonical) differential equation techniques [33, 34, 35]. Due to bottlenecks in the IBP
reduction the non-planar topologies are still unfinished and are a high priority though many groups
are working actively on the problem from different angles [36, 37].

In the last few months there has been increasing activity on the topic of five particle scattering
amplitudes. The numerical unitarity approach has been used to reduce the planar five-gluon ampli-
tudes to master integrals using finite field evaluations. Directly solving the system of IBP equations
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in the planar case has been possible by optimising the route through the Laporta algorithm to pro-
duce some analytic, though quite lengthy, expressions [38, 39].

In these proceedings we report on an approach using integrand reduction to obtain analytic
formulae for two-loop five-parton integrands and validate our expressions by providing numerical
benchmarks of the integrated amplitudes for the set independent helicity configurations.

2. Integrand parametrisations and reconstruction over finite fields

In a recent paper by one of the authors [40] it was demonstrated that numerical sampling of
generalised unitarity cuts over finite fields [41, 42, 43, 44] could be used together with integrand
reduction to extract analytic representation of the integrands of complex amplitudes in QCD.

We start by parametrising the partial amplitudes of a standard colour decomposition in terms
of irreducible numerators, ∆T ,

A(2) (1,2,3,4,5) =
∫ ddk1

iπd/2e−εγE

ddk2

iπd/2e−εγE
∑
T

∆T ({k},{p})
∏α∈T Dα

, (2.1)

where {k}= {k1,k2} are the (d = 4−2ε)-dimensional loop momenta, T is the set of independent
topologies and {p}= {1,2,3,4,5} are the ordered external momenta. The index α runs over the set
of propagators associated with the topology T . Our planar five-parton amplitudes are built from 57
distinct topologies, giving 425 irreducible numerators when including permutations of the external
legs. Each topology, T , has an associated irreducible numerator ∆T which depends on Lorentz
invariants of the loop momenta and external momenta.

We construct a basis of monomials in these invariants by performing a transverse decomposi-
tion of the loop momentum for each topology along the lines of the construction of van Neerven
and Vermaseren [45]. Specifically we keep track of both 4-dimensional and (−2ε)-dimensional
components in the transverse space: kµ

i = kµ

‖,i+k[4]⊥,i+k[−2ε]
⊥,i . Further details are given in references

[40, 46]. After this decomposition has been performed the numerator can be parametrised using
three classes of irreducible scalar products (ISPs). ISPs in the parallel space can be written in terms
dot products between loop momenta and external momenta ki.p j while ISPs in the transverse space
are either in the 4-d ’spurious’ space ki.ω j or extra dimensional space µi j =−k[−2ε]

⊥,i .k[−2ε]
⊥, j . We take

all external momenta to live in exactly four dimensions.
A basis for ∆T (ki.p j,ki.ω j,µi j) is then computed by first finding all possible monomials ac-

cording to the gauge theory power counting and then solving a linear system to relate these to an
independent basis that does not involve the µi j variables [46]. The choice of ordering within the
over-complete set of monomials affects the basis and the final form of the integrand. This method
avoids the polynomial division approach taken in previous integrand reduction methods [13, 14]
and the linear system can be analysed efficiently by sampling over finite fields.

Once the basis of monomials is determined the integrand can be constructed by solving a sys-
tem of generalised unitarity cuts. On each cut either a product of on-shell tree-amplitudes or a
set of ordered Feynman diagrams can be used as input to an integrand fit using finite field evalua-
tions. In our first applications of this procedure we have considered both tree-amplitude input us-
ing Berends-Giele recursion relations [47] in the six-dimensional spinor-helicity approach [48] and
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Feynman diagrams in which the ’t Hooft algebra has been used1 to evaluate the extra-dimensional
spinor strings. In the six-dimensional case we perform a dimensional reduction with scalar propa-
gators to find integrands with including dependence on the spin dimension gµ

µ = ds.
In order to control kinematic complexity and to allow for numerical evaluations over finite

fields, we use momentum twistor variables [52] to obtain a rational parametrisation of the multi-
particle kinematics. Analytical representation of our integrand is obtained by performing functional
reconstruction from finite fields evaluations. In this way, we avoid processing large intermediate
algebraic expressions that normally appear in the analytical computation. After the integrand is
reconstructed, the transverse space must be integrated [53] to obtain a form compatible with tradi-
tional integration-by-parts (IBP) relations. In this work, we integrate only over spurious space and
keep µi j dependence, that can further be removed through dimension shifting identities.

3. Evaluation of two-loop five-parton amplitudes at benchmark phase-space points

In this section we provide some benchmark results for five-parton scattering amplitudes at
two loops in QCD. Results are obtained in the leading colour approximation where only planar
diagrams, and integrals, appear. These results have been obtained using the analytic expressions of
the master integrals in [54], by-passing the time consuming step of integral evaluations with sector
decomposition [55, 56] used in our previous publication.

3.1 Colour decompositions of five-parton amplitudes

The amplitudes in this section are defined with the normalisation

n = mεNcαs/(4π), αs = g2
s/(4π), mε = i(4π)εe−εγE , (3.1)

where the dimensional regulator ε = d−4
2 , NC is the number of colours, and γE is the Euler–Mascheroni

constant. Their colour decompositions are given by

A (L)(1g,2g,3g,4g,5g) = nLg3
s ∑

σ∈S5/Z5

tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5))

×A(L) (σ(1)g,σ(2)g,σ(3)g,σ(4)g,σ(5)g) (3.2)

for five gluons,

A (L)(1q,2g,3g,4g,5q̄) = nLg3
s ∑

σ∈S3

(T aσ(2)T aσ(3)T aσ(4)) ī5
i1 A(L)(1q,σ(2)g,σ(3)g,σ(4)g,5q̄) (3.3)

for a quark pair and three gluons channel and,

A (L)(1q,2q̄,3g,4Q,5Q̄) = nLg3
s

[
(T a3) ī2

i4 δ
ī5

i1 A(L)(1q,2q̄,3g,4Q,5Q̄)+
(
1↔ 4,2↔ 5

)]
(3.4)

for the case of two distinct quark pairs and one gluon. In addition we normalise all amplitudes to
the leading order amplitudes which removes any complex phase,

Â(2)
λ1λ2λ3λ4λ5

=
A(2)(1λ1 ,2λ2 ,3λ3 ,4λ4 ,5λ5)

A(0)(1λ1 ,2λ2 ,3λ3 ,4λ4 ,5λ5)
. (3.5)

For helicity configurations that vanish at tree-level the leading term in the expansion around d =

4−2ε and ds = 4 at one-loop is used.
1We use QGRAF [49] to generate Feynman diagrams and FORM [50, 51] to perform algebraic manipulations
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ε−4 ε−3 ε−2 ε−1 ε0

Â(2),[0]
−−+++ 12.5 27.7526 -23.7728 -168.1162 -175.2103

Â(2),[0]
−+−++ 12.5 27.7526 2.5028 -35.8084 69.6695

Table 1: The (non-zero) leading colour primitive two-loop helicity amplitudes for the ds = 2 component of
Â(2)(1g,2g,3g,4g,5g) at the Euclidean phase space point given in the text.

ε−4 ε−3 ε−2 ε−1 ε0

Â(2),[1]
+++++ 0 0 -2.5 -6.4324 -5.3107

Â(2),[1]
−++++ 0 0 -2.5 -12.7492 -22.0981

Â(2),[1]
−−+++ 0 -0.625 -1.8175 -0.4869 3.1270

Â(2),[1]
−+−++ 0 -0.625 -2.7759 -5.0018 0.1807

Table 2: The leading colour primitive two-loop helicity amplitudes for the (ds − 2) component of
Â(2)(1g,2g,3g,4g,5g) at the Euclidean phase space point given in the text.

3.2 Evaluation of the master integrals

The master integrals were computed in [54] using first-order differential equations. All func-
tions needed are expressed in terms of iterated integrals, where the integration kernels are taken
from a set that was identified in [57]. The boundary conditions for the differential equations were
determined by constraints such as the absence of unphysical branch cuts. We determined such
boundary points for each of the physical regions, as well as for the Euclidean region.

Up to weight two, all master integrals are expressed in terms of logarithms and dilogarithms.
Weight-three contributions are expressed in terms of Li3 functions and in terms of one-dimensional
integrals of logarithms and dilogarithms. At weight four, we use a representation proposed in [58]
that allows to write the functions as a one-fold integral of known functions, leading to a fast and
reliable numerical evaluation, for all kinematic regions.

As a validation of these formulas, we have performed numerical comparisons with [59] and,
for the four-point subtopologies, with [60], finding perfect agreement.

3.3 Evaluation in the Euclidean region

We use the phase-space point defined by the invariants

s12 =−1, s23 =−
37
78

, s34 =−
2023381
3194997

, s45 =−
83
102

, s15 =−
193672
606645

, (3.6)

which corresponds to the following values of momentum twistor variables2,

x1 =−1, x2 =
79
90

, x3 =
16
61

, x4 =
37
78

, x5 =
83
102

. (3.7)

2The form of the momentum twistor parametrisation is given explicitly in Reference [46]
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Â(2),[2]
+++++ Â(2),[2]

−++++ Â(2),[2]
−−+++ Â(2),[2]

−+−++

ε0 3.6255 -0.0664 0.2056 0.0269

Table 3: The leading colour primitive two-loop helicity amplitudes for the (ds − 2)2 component of
Â(2)(1g,2g,3g,4g,5g) at the Euclidean phase space point given in the text.

ε−4 ε−3 ε−2 ε−1 ε0

Â(2)
++++− 0 0 -4 -13.53227 6.04865

Â(2)
+++−− 8 7.96829 -52.39270 -140.15637 47.56872

Â(2)
++−+− 8 7.96829 -32.22135 -47.92349 145.97201

Â(2)
+−++− 8 7.96829 -40.88511 -87.02993 101.23299

Table 4: The leading colour primitive two-loop helicity amplitudes for Â(2)(1q,2g,3g,4g,5q̄) in the HV
scheme at the Euclidean phase space point given in the text.

ε−4 ε−3 ε−2 ε−1 ε0

Â(2)
+−++− 4.5 2.28315 -32.09848 -41.39350 149.33050

Â(2)
+−−+− 4.5 2.28315 -4.61657 -6.32369 -32.03278

Â(2)
+−+−+ 4.5 2.28315 -38.29478 -43.52329 -56.71968

Â(2)
+−−−+ 4.5 2.28315 -26.71316 -69.75805 22.23653

Table 5: The leading colour primitive two-loop helicity amplitudes for Â(2)(1q,2q̄,3g,4Q,5Q̄) in the HV
scheme at the Euclidean phase space point given in the text.

The numerical results are shown in Tables 1 - 3, 4 and 5 for ggggg, qgggq̄ and qq̄gQQ̄ partonic
channels, respectively. We have compared the poles of our results against the known universal IR
structure [61, 62, 63, 64], and the ds dependence of the IR pole formula in the 5-gluon case is
extracted from the FDH results in [65].

3.4 Evaluation in the physical region

For numerical evaluation in the physical region, we use a phase space point defined by the
invariants

s12 =
113
7

, s23 =−
152679950
96934257

, s34 =
1023105842
138882415

, s45 =
10392723
3968069

, s15 =−
8362
32585

,

(3.8)
which corresponds to the following values of our momentum twistor variables

x1 =
113

7
, x2 =−

2
9
− i

19
, x3 =−

1
7
− i

5
, x4 =

1351150
13847751

, x5 =−
91971
566867

. (3.9)

The numerical results for the ggggg partonic channel are shown in Tables 6 - 8.
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ε−4 ε−3 ε−2 ε−1 ε0

Â(2),[0]
−−+++ 12.5 -9.17716 +

47.12389 i
-107.40046 -
25.96698 i

17.24014 -
221.41370 i

388.44694 -
167.45494 i

Â(2),[0]
−+−++ 12.5 -9.17716 +

47.12389 i
-111.02853 -
12.85282 i

-39.80016 -
216.36601 i

342.75366 -
309.25531 i

Table 6: The leading colour primitive two-loop helicity amplitudes for the ds = 2 component of
Â(2)(1g,2g,3g,4g,5g) at the physical phase space point given in the text.

ε−4 ε−3 ε−2 ε−1 ε0

Â(2),[1]
+++++ 0 0 -2.5 0.60532 -

12.48936 i
35.03354 +
9.27449 i

Â(2),[1]
−++++ 0 0 -2.5 -7.59409 -

2.99885 i
-0.44360 -
20.85875 i

Â(2),[1]
−−+++ 0 -0.625 -0.65676 -

0.42849 i
-1.02853 +
0.30760 i

-0.55509 -
6.22641 i

Â(2),[1]
−+−++ 0 -0.625 -0.45984 -

0.97559 i
1.44962 +
0.53917 i

-0.62978 +
2.07080 i

Table 7: The leading colour primitive two-loop helicity amplitudes for the ds − 2 component of
Â(2)(1g,2g,3g,4g,5g) at the physical phase space point given in the text.

Â(2),[2]
+++++ Â(2),[2]

−++++ Â(2),[2]
−−+++ Â(2),[2]

−+−++

ε0 0.60217 -
0.01985 i

-0.10910 -
0.01807 i

-0.06306 -
0.01305 i

-0.03481 -
0.00699 i

Table 8: The leading colour primitive two-loop helicity amplitudes for the (ds − 2)2 component of
Â(2)(1g,2g,3g,4g,5g) at the physical phase space point given in the text.

4. Outlook

The last few months have seen rapid progress in our ability to compute some of the missing
two-loop amplitudes needed to improve the precision of theoretical predictions at hadron colliders.
While benchmark numerical evaluations have been completed, the analytic representations of the
integrand are extremely large. Further study of the analytic structure and direct reduction with a
complete set of IBPs will be important to obtain representations suitable for flexible phenomenolog-
ical applications. Continuing studies into the structure of amplitudes in maximally supersymmetric
gauge theory such as local integrand structures in planar and non-planar sectors [66, 67, 68] may
prove to give useful insights when persuing this direction.
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