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1. Introduction

The top quark, being the heaviest particle of the Standard Model (SM), plays a significant role
in understanding the electro-weak symmetry breaking (EWSB). Besides, its heftiness generates a
strong potential for hidden beyond the SM (BSM) physics scenarios. Hence, a detailed study on
top quark observables is always a crucial topic. On the other hand, the abundance of top quark pair
production at the high energy colliders allows us to obtain accurate measurements. Especially at
the future linear or circular electron-positron colliders, the experimental accuracy for this channel
will reach ultimate precision. In order to match the experimental accuracy, precise predictions
are required on the theoretical side as well. Perturbative quantum chromodynamics (QCD) effects
constitute the major contributions in precision physics and one of the main ingredients of QCD
corrections is the form factor. Form factors are the matrix elements of local composite operators
between physical states. In scattering cross-sections, they provide important contributions to the
virtual corrections. The vector and axial-vector massive form factors are of importance for the
forward-backward asymmetry of bottom or top quark pair production at electron-positron colliders
while, the scalar and pseudo-scalar ones may shed light on the decay of a Higgs boson to a pair of
heavy quarks. They are also important to inspect the properties of the top quark [1, 2] during the
high luminosity phase of the LHC [3] and the experimental precision studies at future high energy
ete” colliders [4].

In this note, we present both the color—planar and complete light quark non-singlet three-
loop contributions to the massive form factors for vector, axial-vector, scalar and pseudo-scalar
currents. Our results except for the vector current, are presented in [5] and for the vector current,
including the technical details, will be presented elsewhere [6]. In [7, 8, 9, 10], the two-loop QCD
corrections to the massive vector, axial-vector form factors, the anomaly contributions, and the
scalar and pseudo-scalar form factors were first presented. In [11], an independent computation led
to a cross-check of the vector form factor, including the additional &(€) terms in the dimensional
parameter € = (4 — D) /2. The contributions up to &'(¢?) for all the massive two-loop form factors
were obtained recently in Ref. [12]. The color—planar contributions to the massive three-loop vector
form factor have been computed in [13, 14] and the complete light quark contributions in [15].
In a parallel and independent computation in [16], the authors also have obtained both the color—
planar and complete light quark non-singlet three-loop massive form factors for the aforementioned
currents. In [17], the large By limit has been considered.

2. Notation

The notations follow those used in Ref. [5, 12]. To summarize, we consider the decay of a virtual
massive boson of momentum ¢ into a pair of heavy quarks of mass m, momenta ¢; and ¢, and
color ¢ and d, through a vertex indicated by I = V,A, S, P for a vector, an axial-vector, a scalar and
a pseudo-scalar boson, respectively. Here ¢> = (g1 +¢2)? is the center of mass energy squared and
the dimensionless variable s is defined by

2.1
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By studying the Lorentz structure, the following general form of the amplitudes for the vector and
axial-vector currents can be obtained

—i8cq c(q1) |:VQ <y“ Fi+
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and for the scalar and pseudo-scalar currents
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i.(q1) and v;(q2) are the bi-spinors of the quark and the anti-quark, respectively. The scalar ob-
jects, Fy, with I =V, A, S, P, are the corresponding form factors, expanded in the strong coupling
constant o = g2/ (47) as follows

A=Y () A" 4

= 4w

otV = %[}/“, v'] and vp,ag,sp, po are the vector, axial-vector, scalar and pseudo-scalar coupling
constant, respectively. v = (ﬂGF)_]/ 2 is the SM vacuum expectation value of the Higgs field,
with Gr being the Fermi constant. Finally, we multiply appropriate projectors as provided in [12],
to obtain the unrenormalized form factors. Next, the trace over the color and spinor indices is
performed. For later purposes we denote the number of colors by N,. n; and nj, are the number of
light and heavy quarks, respectively.

Since we use dimensional regularization [ 18], the important factor for axial-vector and pseudo-
scalar currents, is a proper definition of 95 in D space-time dimensions. As both the color-planar
and complete light quark contributions belong to the so-called non-singlet case, where the axial-
vector or pseudo-scalar vertex is connected to open heavy quark lines, both y5-matrices appear
in the same chain of Dirac matrices. Hence we can conveniently use an anti-commuting 5 in D
space-time dimensions, with y52 = 1. This also implies the well-known Ward identity,

¢"Thca = 2mI 3o 2.5)
which in terms of the form factors, takes the following form
2ES + %F/{‘E —2FS. (2.6)

Here, the non-singlet contributions are denoted by ns. For convenience, we introduce the Landau

variable [19]
/2 — 4m2 — /a2 2 1 — )2
_ VI VI, =L (=" @.7)
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3. Computational details

We follow the generic procedure to compute the form factors. The Feynman diagrams are generated
using QGRAF [20]. The QGRAF output is then processed using 02e/Exp [21, 22] and FORM
[23, 24]. The color algebra has been performed using Color [25]. By decomposing the dot
products among the loop and external momenta, the diagrams can be expressed in terms of a linear
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Figure 1: The color-planar topologies

combination of a large set of scalar integrals. These integrals are then reduced using integration by
parts identities (IBPs) [26, 27] with the help of the program Crusher [28] to obtain 109 master
integrals (MIs), out of which 96 appear in the color-planar case. In the color-planar limit, the
families of integrals can be represented by eight topologies, shown in Figure 1, whereas for the
complete light quark contributions, three more topologies, cf. Figure 2, are required '.

Figure 2: The n; topologies

Finally, to compute the MIs, we use the method of differential equations [29, 30, 31, 32]. For
a recent review on the computational methods of loop integrals in quantum field theory, see [33].
The basic idea is to obtain a set of differential equations of the MIs by performing differentiation
w.r.t x and then to use the IBP relations. The first step to solve the corresponding linear system
of differential equations is to find out whether the system is first order factorizable or not. Using
the package Oresys [34], based on Ziircher’s algorithm [35, 36], we have found that the present
system is indeed first order factorizable in x-space. Without any need to choose a special basis, we
can now simply solve the system in terms of iterated integrals of whatsoever alphabet, cf. Ref. [6]
for details. The differential equations are solved order by order in € successively, starting at the
leading pole terms o< 1/&3. The successive solutions in & contribute to the inhomogeneities in the
next order. We compute the master integrals block-by-block, where for an m x m system, [ single
inhomogeneous ordinary differential equations are obtained, where 1 </ < m. The orders of these
differential equations are my,...,m; such that m| + - - - +m; = m. We have solved these differential
equations using the variation of constant. The other m — [ solutions result from the former solution
immediately. The constants of integration are determined using boundary conditions at x = 1. The
calculation is performed by intense use of HarmonicSums [37, 38, 39, 40, 41, 42, 43], which uses
the package Sigma [44, 45]. Finally, all the MIs have been checked numerically using FIESTA
[46, 47, 48].

The non-homogeneous contributions contain only rational functions of x and hence the results
can be written in terms of iterative integrals. While integration over a letter is a straightforward
algebraic manipulation, often k-th powers of a letter, k € N, appear which needs to be transformed
to the letter by partial integration. This method is partially related to the method of hyperloga-

Only sub-topologies with a maximum of eight propagators contribute.
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rithms [49, 50]. We obtain up to weight W=6 real-valued iterated integrals over the alphabet

1 1 1 1 X

¥ 1—x 14+x 1—x+x2" 1—x+x2

3.1

Y

i.e. the usual harmonic polylogarithms (HPLs) [51] and their cyclotomic extension [37], including
the respective constants in the limit x — 1, i.e. the multiple zeta values (MZVs) [52] and the cyclo-
tomic constants [37, 53, 54]. The use of shuffle algebra [55], implemented in HarmonicSums,
reduces the number of functions accordingly, which facilitates numerical evaluation. In the MZVs
and cyclotomic cases, there are proven reduction relations to weight w = 12 [52] and w = 6 [53, 54],
respectively, which have been used. The 188 cyclotomic constants which appear up to w = 6, re-
duce to 23 constants. Note that there are more conjectured relations, cf. [56], based on PSLQ [57].
If these conjectured relations are used, only MZVs remain as constants in all form factors. The
analytic result for the different form factors in terms of HPLs and cyclotomic HPLs [51, 37] can be
analytically continued outside x € [0, 1] by using the mappings x — —x,x — (1 —x)/(1 +x) on
the expense of extending the cyclotomy class in cases needed.

4. Ultraviolet renormalization and universal infrared structure

To perform the ultraviolet (UV) renormalization of the form factors, we choose a mixed scheme.
The heavy quark mass and wave function have been renormalized in the on-shell (OS) renormaliza-
tion scheme. We renormalize the strong coupling constant in the MS scheme, by setting the univer-
sal factor S, = exp(—&(ye —In(4x)) for each loop order to one at the end of the calculation. The re-
quired renormalization constants are already well known and denoted by Z,, os [58, 59, 60, 61, 62],
75 0s 158,59, 60, 63] and Z,, [64, 65] for the heavy quark mass, wave function and strong coupling
constant, respectively. For all the currents, the renormalization of the heavy-quark wave function
and the strong coupling constant are multiplicative, while the renormalization of massive fermion
lines has been taken care of by properly considering the counter terms. For the scalar and pseudo-
scalar currents, presence of the heavy quark mass in the Yukawa coupling employs another overall
mass renormalization constant, which also has been performed in OS renormalization scheme.

The universal behavior of infrared (IR) singularities of the massive form factors was first in-
vestigated in [66] considering the high energy limit. Later in [67], a general argument was provided
to factorize the IR singularities as a multiplicative renormalization constant. Its structure is con-
strained by the renormalization group equation (RGE), as follows,

Fr=Z(u)F™ (), (4.1)
where F1" is finite as € — 0. The RGE for Z(u) reads

InZ =TI 4.2
dln,u n (E,X,m,‘li) (x,m,,u), ( )

where I' is the corresponding cusp anomalous dimension, which is by now available up to three-
loop order [68, 69]. Notice that Z does not carry any information regarding the vertex. Both Z and
I" can be expanded in a perturbative series in ¢ as follows

n=0
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and one finds the following solution for Eq. (4.2)
o\ | To oa\2| 1 /T3 Boloy I
-1 (5[] () [ -2 2
t\an [28]+ A/ |2\ 8 4 ) g
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Eq. (4.4) correctly predicts the IR singularities for all massive form factors at the three-loop level.

5. Results and checks

We finally obtain the color—planar and the complete light quark non—singlet (7;) contributions for
the three-loop massive form factors for vector, axial-vector, scalar and pseudo-scalar currents. The
expressions, except for the vector current, are attached as supplemental material along with the
publication [5]. The corresponding results for vector current will be available in [6].
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Figure 3: The 0(£°) contribution to the vector three-loop form factors Fv(i) (left) and F‘532) (right) as
a function of x. Dash-dotted line: leading color contribution of the non-singlet form factor; Full line:
sum of the complete non-singlet »;-contributions for n; = 5 and the color-planar non-singlet form
factor; Dashed line: large x expansion; Dotted line: small x expansion.

In Figures 3-5 we illustrate the behaviour of the O(&°) parts of the different form factors as a
function of x € [0, 1]. We also show their small- and large-x expansions. The latter representations
are obtained using HarmonicSums. The different limits are characterized as follows :

Low energy region (x — 1): In the space-like case (¢> < 0) we have expanded the form factors,
redefining x = ¢/?, ¢ = 0.

High energy region (x — 0): Here we expand the form factors up to ¢'(x*). The chirality flipping
form factors Fy» and Fy > vanish and the effect of y5 gets nullified in this limit implying Fy 1 = Fy 3
and Fs = Fp. In the small quark mass limit, the form factors satisfy the Sudakov evolution equation.
A detailed study has been performed in [66, 70] to predict part of the vector form factors in this
limit from the then available components up to three and four loop level, respectively.

Threshold region (x — —1): We define f = /1 — 4(1&22 and expand the form factors around 8 = 0.

For the numerical evaluation of the HPLs and cyclotomic HPLs in the Kummer representation, we
use the GiNaC-package [71, 72].
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Figure 4: The O(£°) contribution to the axial-vector three-loop form factors FA(?I) (left) and FA(SZ) (right)
as a function of x. Dash-dotted line: leading color contribution of the non-singlet form factor; Full
line: sum of the complete non-singlet n;-contributions for n; = 5 and the color-planar non-singlet

form factor; Dashed line: large x expansion; Dotted line: small x expansion.
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Figure 5: The 0(£°) contribution to the scalar and pseudo-scalar three-loop form factors FS(3) (left)

and F}?) (right) as a function of x. Dash-dotted line: leading color contribution of the non-singlet
form factor; Full line: sum of the complete non-singlet n;-contributions for n, = 5 and the color-
planar non-singlet form factor; Dashed line: large x expansion; Dotted line: small x expansion.

We have performed a series of further checks. Through an explicit computation, the Ward identity
Eq. (2.6) has been checked. By maintaining the gauge parameter & to first order throughout the
calculation, a partial check on gauge invariance has been achieved. After o-decoupling, the UV
renormalized results satisfy the universal IR structure, confirming again the correctness of all pole
terms. Finally, we have compared our results with those of Ref. [16], which has been obtained
using different methods, and agree by adjusting the respective conventions.
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