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1. Introduction

We review the current status of calculations of 2 QCD quantities: the HQET field anomalous
dimension γh and the cusp anomalous dimension Γcusp(ϕ). Due to non-abelian exponentiation, they
have only a subset of all possible color structures. At small angles Γcusp(ϕ) is a regular series in ϕ2;
at large angles Γcusp(ϕ)=Kϕ+O(ϕ0), where K is the light-like cusp anomalous dimension. These
quantities are known at 3 loops: [1, 2] and [3, 4]. The status of 4-loop calculations is summarized
in Table 1.

γh Γcusp(ϕ) ϕ � 1 ϕ � 1
CF(TFnl)

3 [5] [6]
C2

F(TFnl)
2 [4, 7] [4, 7]

CFCA(TFnl)
2 [8, 9] [9] [10, 11]

C3
FTFnl [12] [12]

dFFnl [13] [13] [14, 15]∗
C2

FCATFnl [8]∗ [14]∗
CFC2

ATFnl [8]∗ [14]∗
n1

l , Nc→ ∞ [10, 14]
CFC3

A [8]∗ [14]∗
dFA [8]∗ [14, 15]∗
n0

l , Nc→ ∞ [16, 14]
QED [12] [12]

Table 1: 4-loop contributions to γh and Γcusp(ϕ). The sign ∗ means that the contribution is only known
numerically.

The calculation of the CFCA(TFnl)
2 structure in Γcusp(ϕ) at ϕ � 1 is in progress [9]. The

C3
FTFnl structure is discussed in Sect. 2 [12], and the dFFnl structure (where dFF = dabcd

F dabcd
F /NF )

— in Sect. 3 [13]. Not much is known about the CFC3
A structure; when the Euclidean ϕ is π− δ ,

δ → 0, it has a log(δ )/δ term (Sect. 4 [17]) (calculation of the non-logarithmic 1/δ term is much
more difficult and not yet done).

It has been conjectured in [3, 4] that the cusp anomalous dimension can be represented in the
form

Γcusp(ϕ) =CF
a
π

[
Ω(ϕ)+CAΩA(ϕ)

a
π
+C2

AΩAA(ϕ)
( a

π

)2
]
+O(a4) (1.1)

containing no nl , via the effective coupling

a
π

=
αs

π
+(CABA +TFnlBl)

(
αs

π

)2
+
(
C2

ABAA +CFTFnlBFl +CATFnlBAl +(TFnl)
2Bll
)(αs

π

)3

+O(α4
s ) (1.2)

which is determined from the condition that at ϕ → ∞ the O(ϕ) asymptotics is given by the first
term in (1.1). This is true up to 3 loops. For example, the 3-loop CFCATFnl term in Γcusp(ϕ) (a
typical diagram is shown in Fig. 1) is a combination of 2- and 1-loop terms:

Γcusp(ϕ) = · · ·+CFCATFnl [BAlΩ(ϕ)+2BlΩA(ϕ)]
(

αs

π

)3
+ · · · (1.3)
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This conjecture has been disproved for a quartic Casimir color structure [13] (Sect. 3). Remarkably,
numerically the conjectured formula is very close to the exact one, cf. Sect. 3.

Figure 1: A diagram for the 3-loop CFCATF nl term in Γcusp(ϕ).

2. C3
FTFnl

This is a QED problem. Due to exponentiation, the coordinate-space propagator of the Bloch–
Nordsieck field (i. e. the straight Wilson line W ) is

W = exp
(
∑wi

)
, (2.1)

where wi are single-web diagrams. Due to C parity conservation in QED, webs have even numbers
of legs (Fig. 2). Webs with 4 legs (Fig. 2b) first appear at 4 loops (Sect. 3). All contributions to
logW (2.1) are gauge invariant except the 1-loop one, because proper vertex functions with any
numbers of photon legs are gauge invariant and transverse with respect to each photon leg due to
the QED Ward identities.

a b

Figure 2: Webs: (a) 2-leg (the thick line is the full photon propagator); (b) 4-leg (the blob is the sum of
connected diagrams).

In Landau gauge we obtain

γh =
α

4π

[
−6+nl

∞

∑
L=1

(
−6Π̄L +2β̄L

)( α

4π

)L
]
+(n>1

l terms)+(w>2 legs terms) , (2.2)

where the photon self energy is

ΠL =

(
β̄L

Lε
+ Π̄L

)
nl +(n>1

l terms) , βL = β̄Lnl +(n>1
l terms) (2.3)

(βL is the L-loop β function coefficient). Substituting Π̄L [18], restoring color structures and in-
serting the 1-loop gauge dependence, we obtain up to 5 loops [12]

γh = 2(a−3)CF
αs

4π
+TFnlCF

(
αs

4π

)2
[

32
3
−6(16ζ3−17)CF

αs

4π

2



P
o
S
(
L
L
2
0
1
8
)
0
1
8

Four-loop results for the cusp anomalous dimension A. G. Grozin

+
16
3
(180ζ5−111ζ3−35)

(
CF

αs

4π

)2

−6(2240ζ7−1960ζ5−104ζ3−5)
(

CF
αs

4π

)3
+O(α4

s )

]
+(other color structures) . (2.4)

Now we consider the cusped Wilson line W (ϕ) from x =−vt to 0 and then to x′ = v′t:

log
W (ϕ)

W (0)
= ∑(wi(ϕ)−wi(0)) . (2.5)

Diagrams in which all photon vertices are to the left (or to the right) of the cusp cancel in wi(ϕ)−
wi(0). The remaining 2-leg webs are represented by Fig. 3. At 4 loops 4-leg webs appear (Sect. 3).

0

−vt

−vt1

v′t

v′t2

Figure 3: Cusp: the 2-leg webs (the thick line is the full photon propagator).

The L-loop n1
l contribution is proportional to∫ t

0
dt1
∫ t

0
dt2 vµv′νD̄µν

L−1(vt1 + v′t2) , (2.6)

where D̄µν

L is the n1
l term in the L-loop photon propagator. Calculating the integral we obtain

Γcusp(ϕ) = 4(ϕ cothϕ−1)
α

4π

[
1+nl

∞

∑
L=1

Π̄L

(
α

4π

)L
]
+(n>1

l terms)+(w>2 legs terms) . (2.7)

The QCD result up to 5 loops is [12]

Γcusp(ϕ) = 4(ϕ cothϕ−1)CF
αs

4π

{
1+TFnl

αs

4π

[
−20

9
+

(
16ζ3−

55
3

)
CF

αs

4π

−2
(

80ζ5−
148

3
ζ3−

143
9

)(
CF

αs

4π

)2

+

(
2240ζ7−1960ζ5−104ζ3 +

31
3

)(
CF

αs

4π

)3
+O(α4

s )

]}
+(other color structures) .(2.8)

3. dFFnl

Casimir scaling holds for γh and Γcusp(ϕ) up to 3 loops. At 4 loops quartic Casimir color
structures dRFnl and dRA appear, where dRR′ = dabcd

R dabcd
R′ /NR, dabcd

R = Trt(aR tb
Rtc

Rtd)
R , NR = Tr 1R.

They cannot be represented as the quadratic Casimirs CR times a universal constant. Therefore,
Casimir scaling breaks at 4 loops, unless by some miracle the coefficients of both quartic Casimirs
identically vanish. But they don’t vanish: in Γcusp at Euclidean angle ϕE → π they are given by the

3
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corresponding coefficients in the 3-loop static potential, which are known [19] and non-zero. So,
Casimir scaling breaks at 4 loops, as expected. This breaking has been shown not to vanish in other
regions of ϕ , too: at Minkowsky angles ϕM � 1 (in N = 4 SYM [20, 21] and in QCD [14, 15])
and at ϕ � 1 [13].

The dFFnl contribution to the HQET self energy is given by 3 different diagrams (Fig. 4). It is
gauge invariant due to QED Ward identities. We reduce these diagrams at residual energy ω < 0
to master integrals, and obtain ε expansions of non-trivial master integrals using HYPERINT [22].
The result is [13]

γh

∣∣∣
dFF nl

=−dFFnl

(
αs

π

)4(5
4

ζ5−
2
3

π
2
ζ3−ζ3 +

2
3

π
2
)
. (3.1)

Figure 4: The dFF nl contribution to the HQET self energy (symmetric diagrams implied).

We have also calculated the vertex at the residual energies of its legs ω1 = ω2 expanded in ϕ .
It is given by 6 different diagrams (Fig. 5); of course, it reduces to the same master integrals. The
result is [13] (the ϕ6 term is new)

Γcusp(ϕ)
∣∣∣
dFF nl

= dFFnl

(
αs

π

)4
ϕ2

9

[
π

2
(
−4ζ3 +

5
12

π
2 +

5
6

)
+ϕ

2
(
−4ζ5−

16
75

π
2
ζ3 +

71
25

ζ3 +
49
900

π
4− 157

900
π

2− 23
100

)
+ϕ

4
(
− 64

147
ζ5−

32
1225

π
2
ζ3 +

983
3675

ζ3 +
421

66150
π

4− 1333
66150

π
2 +

797
29400

)
+O(ϕ6)

]

= dFFnl

(
αs

π

)4

ϕ
2(0.150721+0.00965191ϕ

2 +0.000925974ϕ
4 +O(ϕ6)

)
. (3.2)

Figure 5: The dFF nl contribution to the vertex (symmetric diagrams implied).

The conjecture from [3, 4] predicts

Γcusp(ϕ) =CFΩ(ϕ)
a
π
+ · · ·= · · ·+dFFnlBΩ(ϕ)

(
αs

π

)4
+ · · · , a

π
= · · ·+ dFFnl

CF
B
(

αs

π

)4
+ · · ·

(3.3)
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The normalization factor B can be found from the limit of euclidean ϕ = π−δ , δ → 0, where the
4-loop Γcusp(ϕ) is related to the 3-loop quark–antiquark potential which is known [23]. This gives
the prediction

Γcusp(ϕ)
∣∣conj
dFF nl

= dFFnl

(
αs

π

)4
ϕ2

192

(
1+

ϕ2

15
+

2
315

ϕ
4 +O(ϕ6)

)(
16π

4 log2 2−336π
2
ζ3 log 2

− 16
3

π
4 log 2−32π

2 log 2+
488
3

π
2
ζ3−

5
3

π
6 +

92
3

π
4− 632

9
π

2
)

= dFFnl

(
αs

π

)4

ϕ
2(0.14801+0.00986736ϕ

2 +0.000939748ϕ
4 +O(ϕ6)

)
. (3.4)

So, the conjecture has been disproved. Curiously, the numerical values (3.4) of the coefficients
predicted by the conjecture are quite close to the exact ones (3.2).

Adding (2.4), (3.1) and the known contributions with higher powers of nl , we obtain the
anomalous dimension of the Bloch–Nordsieck field in QED up to 4 loops, completely analyti-
cally. Adding (2.8), (3.2) and the known contributions with higher powers of nl , we obtain the
QED cusp anomalous dimension expanded up to ϕ6.

4. Γcusp(π−δ )

This Section is based on work in progress [17]. In Euclidean space the angle ϕ varies from 0
to π . When ϕ = π − δ , δ → 0, the two world lines forming the cusp come together. At 2 loops
Γcusp(π−δ )∼ 1/δ , and the coefficient is related to the 1-loop quark–antiquark potential V (r) [24].
This is explained by conformal symmetry; in QCD it is broken by the β function, and at 3 loops this
relation is broken by an extra term proportional to β0 [3]. At 4 loops a new log(δ )/δ term appears
(if no resummation is done). It is similar to the 3-loop log(µr) term in the static quark-antiquark
potential [25, 26].

~r =~ut

~r =~0

Figure 6: The Wilson line describing production of a heavy quark–antiquark pair with a small relative
velocity~u.

Let’s consider the cusped Wilson line in Minkowski space (Fig. 6). It is formed by the static
quark and antiquark world lines~r = 0 and~r =~ut, where~u is the small relative velocity (u= |~u|� 1).
At the end of calculation we’ll analytically continue the result to Euclidean space (u = iδ ). We
neglect all terms suppressed by powers of u. It is convenient to use Coulomb gauge. The static
quark and antiquark interact by exchanging instantaneous Coulomb gluons:

V (~q) =−CF
g2

0
~q2 , V (~r) =−CFκ0

g2
0

4π

1
r1−2ε

(4.1)

5
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0 t1 t2 T

Figure 7: The first transverse-gluon contribution.

(the power of r is obvious from dimensions counting). Here and below κi = 1+O(ε) are some
normalization factors (we don’t need their exact form).

Transverse gluons interact only with Coulomb ones, but not with static quarks. The first
transverse-gluon contribution is shown in Fig. 7. Here T is an infrared cutoff. We use the method
of regions to analyze this contribution. In the ultrasoft region t1 ∼ t2 ∼ t2− t1; Coulomb gluons
characteristic momentum is q ∼ 1/(ut1,2), and the transverse gluon characteristic momentum is
k ∼ 1/t1,2� q. In the soft region t2− t1 ∼ ut1,2, and k ∼ 1/(t2− t1) ∼ q. To determine the coeffi-
cient of the logarithm in the 1/δ term in Γcusp, it turns out to be sufficient to consider the ultrasoft
region [17]. Neglecting k in the 3-gluon vertex, we obtain in momentum and coordinate spaces

q

q

a1

a2

0
i
a = f aa1a2g3

0
2qi

(~q2)2 ,

~r

0

i
= i f aa1a2κ0

g3
0

4π

ri

r1−2ε
. (4.2)

The ratio of the Wilson line (Fig. 7) to the one without the transverse-gluon correction is
1+Rus +Rsoft. The ultrasoft contribution is

Rus =
∫ T

0
dt2
∫ t2

0
dt1 K(t1, t2) , (4.3)

where

K(t1, t2) =
1
4

CFC2
Aκ

2
0

g6
0

(4π)2
ri

1

r1−2ε

1

r j
2

r1−2ε

2
Di j(v(t2− t1))exp

[
−i
∫ t2

t1
dt ∆V (ut)

]
(4.4)

(v = (1,~0) is the 4-velocity of our small dipole). During the time interval between t1 and t2, the
static quark–antiquark pair is in the adjoint color state instead of the singlet one, and their leading-
order interaction potential Vo(r) is obtained from the expression for the singlet potential V (r) (4.1)
by replacing the color factor CF with CF−CA/2. Therefore, we get the integral of ∆V (r) =Vo(r)−
V (r). The characteristic sizes of the regions of the transverse gluon emission and absorption are
∼ ut1,2; we neglect them, so that this gluon propagates between the points vt1 and vt2:

Di j(vt) = 8(i/2)2ε Γ(2− ε)

3−2ε

t−2+2ε

(4π)2−ε
δ

i j . (4.5)

We obtain

K(t1, t2) =
2
3

CFC2
Aκ1

g6
0

(4π)4 u4εt2ε
1 t2ε

2 (t2− t1)−2+2ε exp
[
− i

4
CAκ0

g2
0

4π

t2ε
2 − t2ε

1
εu1−2ε

]
. (4.6)

6
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Now we consider just a single Coulomb gluon exchange between t1 and t2:

K(1)(t1, t2) =−
i
6

CFC3
Aκ2

g8
0

(4π)5
t2ε
1 t2ε

2 (t2ε
2 − t2ε

1 )(t2− t1)−2+2ε

εu1−6ε
. (4.7)

Calculating the integral (4.3) by the substitutions t1 = xt2 we obtain

∫ 1

0
dxx2ε(1− x2ε)(1− x)−2+2ε =

Γ(1+2ε)

1−2ε

[
3

Γ(1+4ε)

Γ(1+6ε)
−2

Γ(1+2ε)

Γ(1+4ε)

]
= 1+O(ε) , (4.8)

and

R(1)
us =− i

48
CFC3

Aκ3
g8

0
(4π)5

T 8ε

ε2u1−6ε
. (4.9)

The soft contribution is nearly local in time (t2− t1 ∼ ut1,2� t1,2), and can be described by a
soft potential. For a single Coulomb exchange between t1 and t2, it is

V (1)
soft(r) = cCFC3

A
g8

0
r1−8ε

(4.10)

by counting dimensions, so that

R(1)
soft =−i

∫ T

0
dt V (1)

soft(ut) =−icCFC3
A

g8
0T 8ε

8εu1−8ε
. (4.11)

The double pole 1/ε2 should cancel in R(1) = R(1)
us +R(1)

soft; this fixes the 1/ε term in c, and we
obtain

R(1) =− i
48

CFC3
A

g8
0T 8ε

(4π)5
κ3u6ε −κ4u8ε

ε2u
=

i
24

CFC3
A

α4
s (µ)(µT )8ε

4π

logu+ const
εu

. (4.12)

This leads to the following contribution to Γcusp [17]:

∆Γcusp =−
i
3

CFC3
A

α4
s

4π

logu+ const
u

. (4.13)

Finally, analytically continuing it to Euclidean space (ϕE = π + iϕM, ϕM = u), we obtain

∆Γcusp(π−δ ) =−1
3

CFC3
A

α4
s

4π

logδ + const
δ

. (4.14)
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