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1. Introduction

In spite of the absence of direct signals for physics beyond the Standard Model (BSM) at the

LHC, important experimental results indirectly constrain BSM physics via loop effects. Two exam-

ples are the mass of the Higgs boson Mh and the anomalous magnetic moment of the muon aµ . The

Higgs boson mass Mh is measured very precisely and can be predicted in SUSY models, leading to

very nontrivial constraints on the possible SUSY parameter space. The measurement of aµ shows

a 3–4σ deviation from the corresponding SM prediction which is significant in terms of the uncer-

tainty and large in absolute terms when compared to typical SM and BSM contributions. Trying to

explain this deviation in concrete BSM scenarios therefore again leads to nontrivial constraints on

BSM parameters.

In the following two sections we review first a proof that regularization by dimensional reduc-

tion is consistent with SUSY calculations of Mh at the 3-loop level [1]; then we review an analysis

of aµ in the 2-Higgs doublet model showing that the measured value of aµ can be explained only

in a very small, specific part of the 2-Higgs doublet model parameter space and the maximum

achievable value is only slightly larger than the measured value [2].

2. Higgs boson mass in the MSSM and regularization by dimensional reduction

A hallmark of renormalizable SUSY theories is that quartic scalar interactions are no free

parameters but related to gauge and/or Yukawa couplings via SUSY relations. As a result, the

Higgs boson mass is predictable. Specifically, in the minimal supersymmetric Standard Model

(MSSM) the tree-level Higgs mass is related to electroweak gauge couplings and predicted to be

smaller than MZ . Calculable loop corrections can push the Higgs mass up to the observed value;

hence the comparison of the measured value of Mh to its SUSY prediction provides important

information on details of the SUSY parameters which enter the loop corrections to Mh.

Evaluating the MSSM prediction for Mh with ever increasing accuracy is an intense ongoing

effort. Recent progress includes progress on fixed-order computations [3, 4, 5, 6, 7, 8, 9], the

development of EFT-based evaluations [10, 11, 12, 13] and hybrid calculations [14, 15, 16]. In-

terestingly, the code FlexibleSUSY provides a common platform for implementations of all three

kinds of calculations [15, 5, 9, 13]. Comparing these recent state-of-the-art calculations shows that

the theory uncertainty of the MSSM predictions is still significantly larger than the experimental

error. Hence further future improvements on the theory predictions are mandatory.

Here we focus on one question relevant for these theory predictions: the question whether reg-

ularization by dimensional reduction is consistent with SUSY at the required level for fixed-order

3-loop calculations of Mh in the MSSM in the limit of vanishing electroweak gauge couplings (the

so-called “gaugeless limit”). The corresponding question for the 2-loop level has been discussed

and answered in Ref. [17] and further progress on this question has been made in the meantime in

Refs. [18, 19].

The question is nontrivial since for ordinary dimensional regularization it is well known that

SUSY is broken, and even for regularization by dimensional reduction there is no all-order proof

of the consistency with SUSY [20]. On a technical level the question is equivalent to the question
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whether the counterterm structure generated by the usual renormalization transformation of fields

and parameters of the MSSM is correct. In order to answer it, two main steps are carried out:

• Step 1: derive suitable SUSY Slavnov-Taylor identities which determine the counterterms in

question.

• Step 2: verify that these Slavnov-Taylor identities are valid on the regularized level in di-

mensional reduction.

These two steps then imply that dimensional reduction is indeed consistent with SUSY and the

usual renormalization transformation generates the correct counterterm structure.

The proof is given in detail in Ref. [1]; here we briefly illustrate the main steps. As a first

example of a SUSY Slavnov-Taylor identity consider

0 =∑
φi

ΓH̃l
kLYφi

ε̄ Γφaφbφcφi
+∑

λ

ΓφaφbYλ ε̄ ΓH̃l
kLφcλ +perm.+fin. (2.1)

Here φi, H̃ i
j, λ denote Higgs, Higgsino and gaugino fields; Yi denote sources of BRST transforma-

tions; the abbreviation “fin.” summarizes terms which vanish at tree-level and which don’t receive

n-loop counterterm contributions at n-loop order; “perm” denotes terms corresponding to all pos-

sible permutations of φa,b,c. This identity describes the fundamental SUSY relation between the

quartic Higgs-boson self-coupling and the electroweak gauge couplings. The gauge couplings are

reflected in the second term of Eq. (2.1). In the gaugeless limit this identity (which has to hold in

the renormalized theory, i.e. after adding counterterms) unambiguously determines the counterterm

for the quartic Higgs self interaction [17].

As a second example of SUSY Slavnov-Taylor identities consider

0 =−Γ
ũ

†
R ε̄ yuR

Γ
qi

L H
j

2 ūR
−Γ

H
j

2 ε̄ yH̃m
l

CΓ
qi

L ũ
†
R H̃m

l

C + . . . ⇒ Yukawa couplings (2.2)

0 = Γ
ũ

†
R ε̄ yuR

ΓuR ε̄ Y
ũ

†
R

+known ⇒ SUSY transformations (2.3)

0 =−Γ
ũ

†
R ε̄ yuR

ΓuR ūR
−ΓuR ε̄ Y

ũ
†
R

Γ
ũR ũ

†
R

⇒ self energies (2.4)

As indicated, this set of identities correlates Yukawa couplings (either quark–quark–Higgs or

quark–squark–Higgsino) with SUSY transformations, SUSY transformations with one another, and

SUSY transformations with self energies. Combining identities of these kinds allows to eliminate

the SUSY transformations and to relate counterterms to Yukawa couplings to field renormalization

counterterms defined via self energies.

Now we illustrate the second main step, for the case of the Slavnov-Taylor identity (2.1). The

identity must hold after renormalization, but the question is whether it holds already on the regu-

larized (and subrenormalized) level in dimensional reduction. In order to check this we can apply

the quantum action principle in dimensional reduction [20], which relates the potential breaking of

the identity on the regularized level to the quantity

(

[∆≤2L] ·ΓDRED
)

φaφbφcH̃l
kLε̄

, (2.5)

i.e. the 1PI Green function with the indicated external fields and one insertion of the operator

∆≤2L, given by applying the Slavnov-Taylor operator to the classical action (including up to 2-loop

2
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ε̄ H̃

q q̃g̃

q ε̄ H̃Lg̃
q

q q
q̃

q̃

ε̄ H̃

q

Figure 1: Sample diagrams for the Green function (2.5), representing the potential breaking of the

Slavnov-Taylor identity (2.1). For the full set of diagrams see Ref. [1].

counterterms for subrenormalization). This Green function is represented by Feynman diagrams

like the ones in Fig. 1; the insertion ∆≤2L is given by particular 4-fermion operators determined in

Ref. [20]. In spite of the complicated structure of these Feynman diagrams one can show that all

diagrams in Fig. 1 and all further contributing diagrams vanish due to the numerator algebra in the

appropriate limit. Hence Eq. (2.5) vanishes and the identity (2.1) is valid on the regularized level

(in the appropriate order and limit).

Ref. [1] presents this kind of analysis for all relevant Slavnov-Taylor identities. All Slavnov-

Taylor identities were found to be valid on the regularized level in dimensional reduction at the

appropriate order. As a result, the usual renormalization transformation generates the correct coun-

terterm structure and no explicit SUSY-restoring counterterms are required in the following sectors

of the MSSM in the gaugeless limit:1

• quartic Higgs couplings and Higgs mass counterterms at the 3-loop level

• Yukawa interactions between Higgs/Higgsino and quark/squark at the 2-loop level

• quartic interactions between Higgs bosons and squarks at the 2-loop level

• quartic interactions between Higgs bosons and ε-scalars at the 2-loop level

3. Muon g−2 in the 2-Higgs doublet model

The anomalous magnetic moment of the muon aµ constitutes one of the very few observables

with a significant deviation between the SM prediction and the measured value [21]. The most

up-to-date SM theory evaluations [22] find deviations with a significance of 3–4σ ; the absolute

deviation is in the range (26.8 . . .30.6)× 10−10. This deviation might be a hint for BSM physics.

Future measurements at Fermilab and J-PARC promise to increase the accuracy substantially.

The absolute deviation should be compared to the contribution of the electroweak SM of

15.36(10)×10−10 [23]. Typically, BSM contributions are suppressed compared to the electroweak

SM contributions by a factor (MW/MBSM)2; hence it is not obviously straightforward to explain

the deviation in terms of new physics. In view of this situation it is motivated to ask: what are the

possible aµ values in any given BSM scenario, and in which parameter region can a given BSM

1In addition, Refs. [18, 19] have shown the corresponding results for triple interactions between gluon/gluino and

quark/squarks.
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scenario accommodate an aµ deviation as large as the observed one? An example of a past study

of this kind is the one by Ref. [24], which showed that the MSSM can accommodate the observed

deviation even if the lightest SUSY particle mass is as heavy as MLSP = 1 TeV.

Here we review the analysis of Ref. [2] of aµ in the 2-Higgs doublet model (2HDM). The

2HDM provides a much less promising explanation of the aµ deviation than SUSY since the leading

contributions arise only at the 2-loop level and are thus suppressed. Nevertheless, a series of recent

works [25, 26, 27, 28, 29, 30, 31, 32, 33] have demonstrated that the 2HDM remains a viable

explanation in a certain part of its parameter space. The goal of the analysis of Ref. [2] was to

identify precisely the viable parameter space and to find the overall maximum contribution to aµ

that could be explained in the 2HDM.

The analysis takes as a basis the flavour-aligned 2HDM with general Higgs potential, but as-

suming CP conservation. This model has the following important input parameters: the four phys-

ical Higgs masses Mh,MH ,MH± ,MA and three Yukawa coupling parameters ζl,u,d (which specify

the A-couplings to leptons, up- and down-type quarks in units of the SM Yukawa couplings).2

Further input parameters are the mixing angle cos(β −α) (which must be very small because of

LHC Higgs coupling measurements) and further Higgs potential parameters (which enter the aµ

analysis only via the Higgs self couplings ChAA and CHH+H−). In terms of these parameters, useful

approximations for the most important contributions to aµ in the flavour-aligned 2HDM (in terms

of variables x̂S ≡ MS/100 GeV and for MH± = MH) are given by [2]

a
2HDM,1
µ ≃

( ζl

100

)2{−3−0.5ln(x̂A)

x̂2
A

}

×10−10 1-loop contributions (3.1)

aµ
Fτ ≃

(

ζl

100

)2
{8+4x̂2

A +2ln(x̂A)

x̂2
A

}

×10−10 2-loop τ-loop Barr Zee (3.2)

aµ
Ft ≃

(

−ζlζu

100

)

{

54−14ln(x̂A)−15ln(x̂H)

}

×10−10 2-loop top-loop Barr Zee (3.3)

|aB
µ | ≃ ρ

∣

∣

∣

∣

CHH+H−

1GeV

∣

∣

∣

∣

|ζl|×10−15, where ρ = (1 . . .6) 2-loop bosonic loops (3.4)

These formulas show that very small MA < 100 GeV and large lepton Yukawa coupling ζl =

O(100) are needed to come close to the observed deviation of ∆aµ ∼ 30×10−10.

The precise analysis of Ref. [2] then proceeds in two steps:

• Step 1: derive experimental constraints on the relevant parameters (Higgs boson masses,

Yukawa couplings, Higgs self couplings). These constraints are also interesting in their own

right in view of LHC searches for extra Higgs bosons.

• Step 2: derive the possible range of aµ in the 2HDM, depending on relevant input parameters,

and derive the parameter range in which the current deviation can be accommodated.

Figure 2 shows the most important results of the analysis of the relevant parameter constraints.

Most importantly, a light pseudoscalar Higgs boson mass MA is experimentally allowed. But for

2The more common 2HDM types I, II, X, Y correspond to special cases: e.g. in type II, ζl = ζd =− tanβ =−1/ζu,

and hence in type II, |ζdζu|= 1 always. In type X or the so-called lepton-specific model, ζl =− tanβ =−1/ζu,d .
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Figure 2: (a,b) Maximum possible values of the lepton and up-quark Yukawa parameters ζl and ζu

in the flavour-aligned 2HDM, given experimental constraints discussed in the text. (c) The overall

maximum aµ (including one-loop and all two-loop contributions) as a function of MA, for several

fixed values of MH = MH± , in the flavour-aligned 2HDM. The result without top-loop and bosonic

contributions (which would correspond to the maximum in the 2HDM type X) is shown in blue;

the result without bosonic two-loop contributions in red; the total maximum result, including the

maximum bosonic contributions in black. The yellow band indicates the current aµ deviation. The

plots are taken from Ref. [2].

each value of MA, there are maximum values of the Yukawa parameters ζl and ζu.3 The constraints

on ζl arise from τ-decays, Z-boson decays and from LEP ee → ττA searches; interestingly, the

upper limit is in the range 50 . . .100, which is just the interesting range for aµ . The constraints

on ζu arise from the B-decays b → sγ and Bs → µµ and from LHC Higgs searches for either

gg → A → ττ or gg → H → ττ . Depending on the parameter region, the bounds from B-physics

or from LHC can be stronger. In either case, ζu is constrained to be at most of the order of 0.5.

Figure 2c shows final results for the possible values of aµ . For each value of MA, the Yukawa

couplings are set to the maximum allowed values as determined before. aµ is then evaluated either

in the 2HDM type X (where only the 1-loop and 2-loop τ-contributions are relevant) or in the

general flavour-aligned 2HDM with or without bosonic contributions computed in Ref. [33].

We see that the type X model barely explains the current deviation in aµ , and only in a very

small parameter space with MA = 20 . . .40 GeV and with ζl =− tanβ set to its maximum allowed

value. On the other hand, in the general flavour-aligned 2HDM the 2-loop top-contributions (and to

a smaller extent the bosonic contributions) can significantly increase aµ if the top Yukawa coupling

is of the order of its maximum value around 0.5.

By maximizing the τ- and top-Yukawa couplings, the currently observed value for aµ can be

explained for Higgs masses up to MA = 100 GeV. Interestingly, there is an absolute maximum value

of a2HDM
µ ≈ 45× 10−10 which can be accommodated in the flavour-aligned 2HDM. This value is

not far above the currently observed value. Hence the future aµ measurements will significantly

3There is also a maximum value of ζd , which is not shown since it is not of importance for aµ . However, the

combination of these constraints rules out the entire low-MA region in the 2HDM type II. On the other hand, the 2HDM

type X trivially fulfils the constraints on ζu for large tanβ .
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constrain the 2HDM parameter space and might even exclude the model entirely. At the same

time the result in Fig. 2c also highlights the importance of further dedicated searches for low-mass

pseudoscalar Higgs bosons at the LHC.
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