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1. Introduction

In this talk, we discuss the calculation of scattering amplitudes from the perspective of in-

tegrand reduction methods [1 – 4]. We report the recent developments on the automation of the

adaptive integrand decomposition algorithm (AIDA) [5, 6]. At one-loop level, we present, as an

example, the evaluation of Einstein-Yang-Mills amplitudes. From this example, we emphasise that

AIDA can also deal with integrands generated from non-renormalisable theories.

Furthermore, we study the analytical integrand reduction of the two-loop QED correction µe-

elastic scattering [7, 8]. For this amplitude, AIDA provides the decomposition in terms of integrals,

which can be reduced by integration-by-parts identities [9 – 11]. Then, as a final step, that will

be presented elsewhere, we evaluate the master integrals, which were obtained in the companion

papers [12, 13] and presented in this conference [14].

This contribution is organised as follows: in Sec. 2 we briefly describe the main ingredients

of the adaptive integrand decomposition. We recap the decomposition of the space-time dimension

into parallel and perpendicular components, d = d‖+d⊥. As well, the straightforward classification

of spurious terms, and the usual polynomial division is replaced by algebraic substitutions. In

Sec.s 3 and 4, we provide one- and two-loop examples in which AIDA has been applied on.

2. Adaptive Integrand Decomposition in a nutshell

In this section, we explain the main features of the Adaptive Integrand Decomposition Al-

gorithm (AIDA), the automation of [5]. We remark that this method decomposes the space-time

dimension, d = 4− 2ε , into parallel (or longitudinal) and orthogonal (or transverse) dimensions,

d = d‖+d⊥. Parallel and orthogonal directions show particular properties for topologies with less

than five external legs.

In the structure of the Feynman integrals,

I
(ℓ)

i1···in [N ] =

∫

(

ℓ

∏
i=1

dd l̄i

πd/2

)

Ni1···in(l̄i)

∏ j D j(l̄ j)
, (2.1)

loop momenta become

l̄α
i = lα

‖ i +λ α
i , (2.2)

with

l̄α
‖ i =

d‖

∑
j=1

x ji eα
j , λ α

i =
4

∑
j=d‖+1

x ji eα
j +µα

i , λi j =
4

∑
l=d‖+1

xli xl j +µi j . (2.3)

In Eq. (2.2), l‖ i is a vector of the d‖-dimensional space spanned by the external momenta, and λi

belongs the d⊥-dimensional orthogonal subspace. In this parametrisation, all denominators become

independent of the transverse components of the loop momenta.

Let us indicate with z the full set of ℓ(ℓ+9)/2 variables

z ={x‖ i,x⊥ i,λi j}, i, j = 1, . . . ℓ , (2.4)
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where x‖ i (x⊥ i) are the components of the loop momenta parallel (orthogonal) to the external

kinematics, the denominators are reduced to polynomials in the subset of variables

τ ={x‖,λi j}, τ ⊂ z, (2.5)

so that the general r-point integrand has the form

Ii1...ir (τ,x⊥)≡
Ni1...ir(τ ,x⊥)

Di1(τ) · · ·Dir(τ)
. (2.6)

Since numerator and denominators depend on different variables, the adaptive integrand decompo-

sition suggests the following algorithm:

1. Divide: we divide the numerator Ni1...ir(τ ,x⊥) modulo the Gröbner basis Gi1···ir (τ) of the

ideal Ji1···ir (τ) generated by the set of denominators. The polynomial division is performed

be adopting the lexicographic ordering λi j ≪ x‖,

Ni1...ir (τ,x⊥) =
r

∑
k=1

Ni1...ik−1ik+1...ir(τ ,x⊥)Dik(τ)+∆i1...ir (x‖,x⊥) . (2.7)

The Gröbner basis does not need to be explicitly computed, since, with the choice of vari-

ables and the ordering described here, the division is equivalent to applying the set of linear

relations described above.

2. Integrate: Since denominators do not depend on transverse variables, x⊥, we can integrate

the residue ∆i1...ir over transverse directions. This integration is carried out by expressing

∆i1...ir in terms of Gegenbauer polynomials, i.e.,

∆int
i1...ir(τ) =

∫

d(4−d‖)ℓΘ⊥∆i1...ir(τ ,Θ⊥) . (2.8)

Where ∆int
i1...ir

is a polynomial in τ whose coefficients depend on the space-time dimension d.

3. Divide: the structure of the integrated residue suggests a second division. This can be seen

from the dependence ∆int
i1...ir

has on the variables τ . In fact, after applying the division, simi-

larly as in the first step of this algorithm, we get

∆int
i1...ir(τ) =

r

∑
k=1

N int
i1...ik−1ik+1...ir

(τ)Dik(τ)+∆′
i1...ir(x‖), (2.9)

where the new residue ∆′
i1...ir

(x‖) can only depend on x‖.

3. One-loop Einstein-Yang-Mills amplitudes

In this section, we show that AIDA can also deal with integrands generated from non-renormalised

theories, e.g. gravity. For the purpose of the discussion, we focus on the Einstein-Yang-Mills the-

ory.

Let us start with the Yang-Mills Lagrangian,

LYM =−1

2

√−ggµρgνσ tr
[

FµνFρσ

]

+LYM;GF +LFP , (3.1)
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and the Einstein-Hilbert Lagrangian,

LEH =
2

κ2

√−gR+LEH;GF , (3.2)

whose sum,

LEYM = LYM +LEH , (3.3)

leads to the Einstein-Yang-Mills Lagrangian. In Eq.s (3.1) and (3.2), g is the complete metric with

the Ricci scalar R and Fµν the field strength tensor, whereas the suffixes stand for “gauge fixing”

and “Faddeev-Popov” terms.

In order to couple gravitons with gluons, we split the metric tensor g in

gµν = ηµν +κ hµν , (3.4)

with ηµν the flat Minkowski metric and hµν our graviton field. The coefficient κ is the gravitational

coupling constant, κ =
√

32π/MPlanck. For a pedagogical derivation of the Feynman rules of this

Lagrangian, we refer to [15, 16].

From the Lagrangian (3.3), we extract the Feynman rules needed to compute the Einstein-

Yang-Mills one-loop amplitudes, A
(1)
4 (1,2,3,4). In these proceedings we report only the divergent

amplitude A
(1)
4 (1−,2−,3+,4++), the other rational amplitudes with up to two gravitons have also

been computed, finding agreement with Ref. [17].
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Figure 1: Feynman diagrams contributing to the Einstein-Yang-Mills one-loop amplitudes

A
(1)
4 (1,2,3;4).

Since we are interested in an approach based on first principles, we generate the integrands

from the diagrams of Fig. 1 with the use of the MATHEMATICA packages FEYNARTS [18] and

FEYNCALC [19, 20]. Then, we follow the steps of AIDA:

1. Identify parent topologies and group diagrams: according to the numbering of diagrams of

Fig. 1, we end up with three groups,

{{19,1,2,5,6,7,8,13,14,15,16,17,18,22,23,25,26,29,30,31,32,33,34},

3
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{20,3,4,9,10,11,12,24,27,28,35,36},{21}} . (3.5)

being the first element of each sublist the parent topology.

2. Generate cuts: the parent topology of the group 1,

♣✹

♣✶

♣✸

♣✷

� ✁

✂

✄

, (3.6)

generates

{{1,2,3,4},{2,3,4},{1,3,4},{1,2,4},{1,2,3},{2,4},{1,3}} . (3.7)

We remark that terms that vanish in dimensional regularisation, like massless tadpoles and

bubbles, are never computed.

3. Define adaptive variables and prepare substitution rules for all cuts: for instance, the parametri-

sation of the diagram 22 becomes

x
(13)
1 → d1

2
− d3

2
+

1

2
, (3.8)

λ
(13)
11 →−d2

1

4t
+

(

d3

2t
+

1

2

)

d1 +
d3

2
− d2

3

4t
− t

4
. (3.9)

4. Organise cuts in jobs: let us illustrate this organisation by considering the bubble contribu-

tion, cut {{1,3}}, to the amplitude coming from the first group:

{

N
{{1,2,3,4}
{{1,3} ,N

{{1,3,4}
{{1,3} ,N

{{1,2,3}
{{1,3} ,N

{{1,3}
{{1,3}

}

, (3.10)

where the first term corresponds to the bubble contribution coming from the reduction of the

4-point Feynman diagrams and the other contributions represent triangle and bubble reduc-

tions.

5. Divide: apply substitution rules of 3 to the numerator.

6. Collect powers of denominators to read off residue and numerators of lower cuts.

7. Integrate (substitute) transverse variables appearing in the residues.

8. Divide again, using as input numerators the residues.

After performing these steps, we obtain a decomposition in terms of one-loop scalar integrals,

whose expansion in d → 4, in the four-dimensional-helicity scheme, gives

A
(1)
4

(

1−,2−,3+;4++
)

= A
(0)
4 cΓ

(

−µ2

s

)ε
[

− 3

ε2
− 11

3ε
− 1

ε

(

log

(−s

−t

)

+ log

( −s

s+ t

))

− 11

3
log

(−s

−t

)

+
t
(

14s2 +9st +6t2
)

3s3
log

( −t

s+ t

)

4
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+

(

t(s+ t)
(

2s2 + st + t2
)

s4
+

1

2

)

(

log2

( −t

s+ t

)

+π2

)

+π2

+
t(s+ t)

s2
− 64

9
] . (3.11)

4. µe elastic scattering

Motivated by the new experiment MUonE proposed at CERN [21] that provides a new and in-

dependent determination of the leading hadronic contribution to the muon g-2 [21, 22], we consider

as an application of AIDA, the two-loop reductions of the µe elastic scattering,

e− (−p1) µ− (−p4)→ e− (p2) µ− (p3) , (4.1)

The electron is treated as massless, m2
e = 0, while we retain full dependence on the muon mass,

m2
µ 6= 0. We focus on the spin summed/averaged squared matrix elements,

M(1) = 2Re〈A(0)
eµ |A(1)

eµ 〉 , M(2) = 2Re〈A(0)
eµ |A(2)

eµ 〉 , (4.2)

to obtain the results of the corresponding two-loop amplitude.

Hence, we define the kinematical variables this amplitude depends on to be

s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 =−s− t +2m2

µ . (4.3)

For the calculation of the two-loop amplitude of the µe elastic scattering, we have to evaluate

the Feynman diagrams of [8, Fig. 3]. We follow the very same procedure as the one described in

✽

✖ ✖

❡❡

✶✼

✖ ✖

❡ ❡

✸✻

✖ ✖

❡❡

❡

✸✽

✖ ✖

❡❡

❡

✺✵

✖ ✖

❡❡

✺✷

✖ ✖

❡❡
❡

✺✹

✖ ✖

❡ ❡

✺✽

✖ ✖

❡ ❡

❡

Figure 2: Selected Feynman diagrams contributing to the two-loop µe-scattering amplitude.

the previous section. Nevertheless, we describe the steps that could give a different interpretation

1. Identify parent topologies and group diagrams:

{

{1,46},{3,5},{6,35,41,67},{7},{16},{17,8,36,38,50,52,54,58},{18,60,65},{19},
{20},{21,14,51,56},{22},{23,57},{24,55,59},{25,2,4,9,11,13,34,47,66},
{26,10,12,15,37,39,40,43,44,48,68,69},{27},{28},{29,61,62},{30,64},{31},
{32,63},{33},{42},{45},{49},{53}

}

. (4.4)

5
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2. Generate cuts: let us focus on the sixth group (see Fig. 2), whose parent topology

♣✸

♣✹

♣✷

♣✶

✼

�

✁

✂

✻✺

✄

, (4.5)

gives contribution to the following cuts

{

{{1,6},{2,4,5,7},{3}},{{6},{2,4,5,7},{3}},{{1,6},{4,5,7},{3}},{{1,6},{2,4,5,7}},
{{1,6},{2,5,7},{3}},{{1,6},{2,4,7},{3}},{{1},{2,4,5,7},{3}},{{1,6},{2,4,5},{3}},
{{6},{4,5,7},{3}},{{6},{2,4,5,7}},{{6},{2,5,7},{3}},{{6},{2,4,7},{3}},{{2,4,5,7},
{3}},{{6},{2,4,5},{3}},{{1,6},{4,5,7}}, . . . ,{{1},{3}},{{1},{2}}

}

. (4.6)

4. Organise cuts in jobs: in order to consider the full contribution of all possible diagrams,

there is a subtlety w.r.t. the one-loop case, which relies on the treatment of the diagrams that

contain squared propagators, e.g. diagrams 36-58 in Fig. 2. For instance, the contribution to

the cut {{1,6},{2,4,5},{3}} with linear propagators gets contributions from

{

N
{{1,6},{2,4,5,7},{3}}
{{1,6},{2,5,7},{3}} ,N

{{1,6},{2̇,5,7},{3}}
{{1,6},{2,5,7},{3}} ,N

{{1,6},{2,5,7̇},{3}}
{{1,6},{2,5,7},{3}}

}

, (4.7)

where dots represent squared propagators.

Unless the one-loop case, the two-loop result AIDA provides yet needs the evaluation of the Feyn-

man integrals or reduce them to master integrals by means of integration-by-parts (IBPs) identi-

ties [9 – 11]. Nevertheless, the calculation of these master integrals has been carried out for the

planar [12] and non-planar [13] (see references therein).

5. Interface with IBP generators

Since AIDA provides a decomposition in terms of Feynman integrals, which can be reduced

to the so called master integrals, we also interface our results with the available IPB generators. To

start with, we use REDUZE [23] and KIRA [24]. Nevertheless, the interface with many other IBP

generators can be straightforwardly done.

In addition, the evaluation of (master) integrals is currently performed by SECDEC [25].

6. Conclusions

For the evaluation of one- and two-loop scattering amplitudes, we have reported on the progress

of the implementation of the Adaptive Integrand Decomposition Algorithm (AIDA). This imple-

mentation automates, numerically and analytically, the method of [5]. We have also shown results

for the analytic reduction of the one-loop Einstein-Yang-Mills amplitudes and two-loop QED cor-

rection to the µe-elastic scattering.

We have also interfaced our results with the integration-by-parts identities generators, as well

as the evaluation of the (master) integrals.

6
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