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We develop a new technology for calculating Feynman integrals by solving differential equations
derived from conformal symmetry. Singularities hidden in the collinear region around an exter-
nal massless leg may lead to conformal symmetry breaking in otherwise conformally invariant
finite loop momentum integrals. For an `-loop integral, this mechanism leads to a set of linear
2nd-order differential equations with a non-homogeneous part. The latter, due to the contact na-
ture of the anomaly in momentum space, is determined by (`−1)-loop information. Solving such
differential equations in general is an open problem. In the case of 5-particle amplitudes up to two
loops, the function space is known, and we can thus follow a bootstrap approach to write down
the solution. As a first application of this method, we bootstrap the 6D penta-box integral.
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1. Introduction

Whenever masses can be neglected, the Poincaré group can be extended to the conformal
group by the addition of dilatations and conformal boosts (or special conformal transformations).
An extensive study of conformal symmetry in position space has been fostered by the fact that the
generators of these transformations are only 1st-order differential operators there. Indeed, standard
methods for calculating correlation functions using conformal symmetry date back to the ’70s.

Now we want to investigate its implications for scattering amplitudes. Conformal symmetry
has thus to be considered directly in momentum space, as the presence of on-shell external mo-
menta prevents us from Fourier transforming from position to momentum space. The realization
of conformal symmetry in momentum space is however significantly more intricate, because the
generator of conformal boosts becomes a 2nd-order operator

Kµ =
n

∑
i=1

[
−piµ�pi +2pν

i
∂

∂ pν
i

∂

∂ pµ

i
+2(D−∆i)

∂

∂ pµ

i

]
, (1.1)

where pi are the on-shell massless external momenta, D is the spacetime dimension, ∆i is the
conformal dimension of the external particle with momentum pi, and �pi =

∂

∂ pi
· ∂

∂ pi
.

External on-shell massless legs, moreover, are also responsible of a subtle conformal symme-
try breaking mechanism. Consider finite Feynman integrals built out of a classically conformally
invariant Lagrangian. Given the absence of divergences, one might naïvely expect that such objects
are exactly conformally invariant. For this reason, we call them “naïvely conformal” Feynman in-
tegrals. Yet, singularities hidden in the collinear region around an external massless leg may lead to
the breakdown of conformal symmetry. Such collinear anomaly has an intrinsically holomorphic
nature, and has long been known at tree-level [1]. Its implications for finite loop integrals, however,
were only recently taken into account [2, 3].

In section 2 we will show how the anomalous conformal Ward identities resulting from this
mechanism naturally suggest a new technique for calculating finite loop integrals. We will then see
in section 3 that the direct solution of such equations is possible only in simple cases, such as the
6D 1-mass box integral, whereas a bootstrap strategy, described in section 4, is more convenient
for 5-particle scattering. In section 5 we will present how the symbol of the 6D penta-box integral
can be calculated through the proposed technique, and give an outlook in section 6.

2. Anomalous conformal Ward identities

Let us consider for simplicity massless scalar φ 3 theory in D = 6 dimensions. Acting on each
on-shell corner – see figure 1 – the generator of conformal boosts (1.1) produces a contact anomaly

Kµ

1
q2(p+q)2 = 4iπ3 pµ

∫ 1

0
dξ ξ (1−ξ )δ (6)(q+ξ p), (2.1)

localized on the collinear configuration q ∝ p [2].
If the diagram considered is tree-level, conformal symmetry is anomalous only for particular

configurations of the external momenta, and this effect can thus be neglected for generic kinematics.
If the internal momentum q is flowing in a loop, instead, the Dirac delta on the right-hand side of
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p
q

−p−q
...

Figure 1: Example of an on-shell corner in 6D massless scalar φ 3 theory: an external leg with on-shell
massless momentum p enters the diagram and meets two internal lines with off-shell momenta q and−p−q.
All momenta are considered as entering the vertex.

Kµ

∫
d6q ∝ pµ

∫ 1

0
dξ ξ (1−ξ )I (q=−ξ p, ...)I (q, ...) ...p

q

Figure 2: The generator of conformal boosts Kµ , acting on the highlighted on-shell corner, produces a
contact anomaly, which trades the loop integration for a 1-parameter integration of a lower order object.

eq. (2.1) freezes that loop integration, yielding a regular, non-contact anomaly, determined by lower
order information as shown in figure 2.

As a result, the conformal Ward identities for, say, a `-loop integral I (`) feature an anomaly
part A

(`−1)
µ , obtained from (`−1)-loop information

Kµδ
(6) (p1 + ...+ pn)I

(`) = δ
(6) (p1 + ...+ pn)A

(`−1)
µ . (2.2)

This set of non-homogeneous linear 2nd-order differential equations suggests a method for calcu-
lating multi-loop integrals from lower order ones, provided that such system can indeed be solved
for I (`). As we shall see in the following sections, this is a highly non-trivial problem, and the
direct solution is possible only in simple cases.

3. A toy example: the 6D 1-mass box

As a first simple application, let us consider the 6D box integral with one massive leg I1m

depicted in figure 3. In this case, the conformal Ward identities (2.2) can be directly solved. This
is mainly due to the fact that, once a dimensionful parameter has been factored out, this is just a
2-variable problem. Requiring the apparent graph symmetry under exchange of p1 and p3, and the
absence of u-channel singularities fixes entirely the solution.

However, there is a reason why we do not show here the explicit differential equations: even
in such a simple, directly solvable case, they look already rather involved. Indeed, the solution was
made possible by the following insightful observation, which will play a crucial role also in the
more complicated example discussed in section 5.

While the 1-mass box integral is a uniform transcendental weight-2 function, the projections of
the anomaly along the external momenta pi exhibit both weight-0 and weight-1 parts. A substantial
simplification is achieved by projecting the Ward identities along a vector q such that the anomaly
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p3

p2 p1

p4

Figure 3: Box integral with a massive leg p2
4 6= 0. Dashed blue lines highlight the on-shell corners.

is a weight-0 function

(q ·K) I1m︸︷︷︸
weight-2

= q ·A︸ ︷︷ ︸
weight-0

. (3.1)

In other words, the simplest projection of the anomalous conformal Ward identities is the one which
features the maximum weight drop.

Anyway, for integrals with kinematics depending on a greater number of variables, a different
approach is necessary.

4. The bootstrap strategy: pentagon functions

The bootstrap approach is a general method for solving a broad class of problems, from in-
tegrals to differential equations. The basic idea is simple, yet powerful: write down an ansatz
exploiting all the available information about the answer, and impose constraints to fix the free
coefficients. For a finite loop integral I , the ansatz has the general form

I (s) = ∑
i, j

ci jri(s) f j(s), (4.1)

where ci j are numeric coefficients to be fixed – in our case through conformal Ward identities –
whereas ri(s) and f j(s) are respectively algebraic and special functions of the kinematic variables s.

While the algebraic functions ri(s) are controlled by the leading singularities of the integral [4],
the class of special functions f j(s) involved is determined, for multiple-polylogarithmic functions,
by the so-called symbol alphabet [5].

4.1 Basics of symbol technology

Multiple-polylogarithms can be written as iterated integrals of logarithmic 1-forms d logαi,
where αi are algebraic functions of the kinematics. Such forms – usually omitting the logarithm
sign – are called letters. Together they form the alphabet A= {αi}. The symbol map, then, asso-
ciates to a logarithmic iterated integral the tensor product of relevant letters

S
[∫

γ

d logα1 ◦d logα2 ◦ ...◦d logαw

]
= α1⊗ ...⊗αw, αi ∈ A ∀i, (4.2)

where the number of iterated integrations w is called weight of the function.
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While differentiation only acts on the last entry of the symbol

d(α1⊗ ...⊗αw) = d logαw(α1⊗ ...⊗αw−1), (4.3)

the first entry encodes all the information about the discontinuities

Disc [α1⊗ ...⊗αw] = Disc [logα1] (α2⊗ ...⊗αw). (4.4)

Transcendental constants are mapped to 0. Therefore, the symbol uniquely fixes the highest
functional transcendality part of the function, but misses the lower ones. For instance,

Li2(x)+Li2(1− x)+ log(x) log(1− x) =
π2

6
⇒ S

[
Li2(x)+Li2(1− x)+ log(x) log(1− x)

]
= 0.

Some additional work is thus in general necessary to fix those as well.
Furthermore, given an alphabet A= {αi}, an arbitrary symbol

ω = ∑
i1,...,iw

ci1...iwαi1⊗ ...⊗αiw , ci1...iw ∈Q (4.5)

does not lie in the image of the symbol map in general. A necessary and sufficient condition for
the symbol ω to be integrable to a function is that

∑
i1,...,iw

ci1...iw
(
d logαia ∧d logαia+1

)
αi1⊗ ...⊗ α̂ia⊗ α̂ia+1⊗ ...⊗αiw = 0, ∀1≤ a < w, (4.6)

where hats denote letters which must be omitted, and
∧

is the usual exterior product.
Once the symbol is known, it might be desirable to upgrade it to a function which can be

evaluated numerically. Provided that a rational parametrization of the kinematics is available, this
procedure is completely algorithmic.

4.2 Pentagon functions

The scattering of five massless particles is described by five independent variables, which can
be conveniently chosen to be the adjacent scalar products vi = 2pi · pi+1, where the indices are
cyclic mod 5. The alphabet describing on-shell 5-particle scattering amplitudes is known up to two
loops [6, 7], and counts 31 letters

αi = vi, α5+i = vi+2 + vi+3,

α10+i = vi− vi+3, α15+i = vi + vi+1− vi+3,

α20+i = vi+2 + vi+3− vi− vi+1, α25+i =
ai−
√

∆

ai +
√

∆
,

α31 =
√

∆, (4.7)

where i runs from 1 to 5, ∆ is the Gram determinant ∆ = det(2pi · p j), and

ai = vivi+1− vi+1vi+2 + vi+2vi+3− vi+3vi+4− vi+4vi. (4.8)
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Weight 1 2 3 4 5 6
1st entry condition 5 25 126 651 3436 18426
2nd entry condition 5 20 81 346 1551 7201

Table 1: Number of integrable planar pentagon symbols up to weight 6 with first and second entry condition.

Of these letters, only 26 are relevant for planar diagrams

AP = {α1, ...,α20}
⋃
{α26, ...,α31}. (4.9)

Recalling from eq. (4.4) that the information about the discontinuities of a function is con-
tained in the first entries of its symbol, general considerations about the locations of physical
branch points lead to a first entry condition: only the 10 letters {α1, ...,α5}

⋃
{α16, ...,α20} are

allowed as first entries in the symbol of a non-planar function; in the planar case, this list reduces
to {α1, ...,α5}.

A second entry condition is conjectured in ref. [7]. Although it significantly constrains the
number of allowed functions, as can be seen in table 1, we are not going to take it into account.

5. A non-trivial example: the 6D penta-box

As first non-trivial application of the conformal symmetry method, we tackle the calculation
of the 6D penta-box integral I5 depicted in figure 4.

p1

p3

p2

p4

p5

Figure 4: Penta-box integral. All external momenta are on-shell massless and entering.

A 2-loop planar integral in D= 6 in general can have at most transcendental weight 6, resulting
in 18426 integrable symbols to be taken into account (see table 1). Quite remarkably, this number
can be significantly cut down by conformal symmetry even before calculating the anomaly.

To see this, note that the 6D penta-box has only one leading singularity, 1/
√

∆, which is
conformally invariant, and that for a generic weight-W symbol αi1⊗ ...⊗αiW[

(q ·K)
αi1⊗ ...⊗αiW√

∆

]
=

[
(q ·K)

logαiW√
∆

]
(αi1⊗ ...⊗αiW−1)+weight-(W −2), (5.1)

where Kµ is given by eq. (1.1), and q is a generic vector.
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Here comes into play the lesson we learnt from the 1-mass box example in section 3. If we
can find a vector q along which the weight drop is maximal

(q ·K) I5︸︷︷︸
weight-W

= q ·A︸ ︷︷ ︸
weight-(W−2)

, (5.2)

the whole weight-(W − 1) part of (q ·K)I5 would vanish. Via eq. (5.1), this would lead to a last
entry condition: only the letters αi ∈ AP fulfilling

(q ·K)

[
∑

i
ci

logαi√
∆

]
= 0 (5.3)

are allowed as last entries in the symbol of the 6D penta-box integral.
Such a projection does indeed exist. If we consider a vector q∗ ⊥ p2, p4, p5, we find that

(q∗ ·A ) =
(weight-3)

s12s14(s23− s45)
+(1↔ 3,4↔ 5), (5.4)

where si j = 2pi · p j. This result has two important implications.
First, I5 cannot have weight 6: the anomaly contains a weight-3 part, and a 2nd-order operator

can reduce the weight at most by 2. Therefore, and since there is only one leading singularity, we
can assume that I5 is a uniform weight-5 function, and our ansatz for the symbol of I5 is

S [I5] =
1√
∆

∑
i1,...,i5

ci1...i5 (αi1⊗ ...⊗αi5) , αk ∈ AP ∀k. (5.5)

Second, only 11 out of the 26 letters of AP are allowed as last entries. Supplying this constraint
with information about the symmetries of the integral, namely that

• I5 is even under complex conjugation and, since
√

∆ is odd, the symbol has to be odd,

• the diagram, see figure 4, is symmetric under the exchange {p1↔ p3, p4↔ p5},

the number of symbols allowed in the ansatz (5.5) can be cut down to only 33, see table 2.

Constraints weight-5 integrable symbols (AP)

1st entry condition 3436
odd under complex conjugation 161

last entry condition 59
exchange symmetry 33

Table 2: Number of weight-5 integrable symbols from the planar alphabet AP fulfilling gradual constraints.

Finally, plugging the ansatz into the explicit anomalous conformal Ward identities fixes all the
remaining coefficients, yielding an expression for the symbol of the 6D penta-box which agrees
with both the known result, and the conjectured 2nd-entry condition of ref. [7].

Not only all the coefficients are fixed, but just one projection of the conformal Ward identities
– along the vector q∗ ⊥ p2, p4, p5 – is sufficient to do so. On top of that, such projection is actually

6
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the simplest, as q∗ annihilates the contributions to the anomaly involving the pentagon sub-integral.
Instead, only the contributions from the on-shell corners p1 and p3 survive, which can be obtained
one from the other by exploiting the graph symmetry, and only involve the 1-mass box. Considering
that the symbol of the 6D penta-box counts around 10000 terms, this successful application gives
very solid evidence of the power of conformal symmetry in constraining finite loop integrals.

6. Outlook

Since the kinematics can be parametrized so as to rationalize the pentagon alphabet, the symbol
of the 6D penta-box can be algorithmically upgraded to function. However, the lower functional
transcendentality piece is still missing. In order to fix it, we plan to upgrade the bootstrap approach
to function level by writing an ansatz for it directly in terms of Goncharov polylogarithms. Which
transcendental constants should be accommodated in the ansatz is however an open problem.

Although this talk was only concerned with 6D φ 3 theory, the mechanism of conformal sym-
metry breaking is more general. Indeed, the anomalies of classically conformal 4D theories have
been derived in ref. [2] as well. Finite 4D loop integrals are currently under investigation.

The same mechanism has also been shown to lead to super-conformal symmetry breaking in
the Wess-Zumino model of N = 1 massless supersymmetric matter [3]. However, the generator of
super-conformal boosts is 1st-order: the (super)conformal Ward identities are thus easier, and more
powerful. Indeed, their direct solution was possible for a non-planar 2-loop 5-particle integral. We
therefore expect that this technique will enable the calculation of even more complicated integrals.
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