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We describe new developments in the OPENLOOPS framework based on the recently introduced
on-the-fly method [1]. The on-the-fly approach exploits the factorisation of one-loop diagrams
into segments in order to perform various operations, such as helicity summation, diagram merg-
ing and the reduction of Feynman integrands in between the recursion steps for the amplitude
construction. This method significantly reduces the complexity of scattering amplitude calcula-
tions for multi-particle processes, leading to a major increase in CPU efficiency and numerical
stability. The unification of the reduction to scalar integrals with the amplitude construction in
a single algorithm, allows to identify problematic kinematical configurations and cure numerical
instabilities in single recursion steps. A simple permutation trick in combination with a one-
parameter expansion for a single topology, which is now implemented to any order, eliminate
rank-two Gram determinant instabilities altogether. Due to this any-order expansion, the numeri-
cal accuracy of the algorithm can be determined with a rescaling test. The on-the-fly algorithm is
fully implemented for double and quadruple precision, which allows for true quadruple precision
benchmarks with up to 32 correct digits as well as a powerful rescue system for unstable points.
We present first speed and stability results for these new features. The on-the-fly algorithm is part
of the forthcoming release of OPENLOOPS 2.

Loops and Legs in Quantum Field Theory (LL2018)
29 April 2018 - 04 May 2018
St. Goar, Germany

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:buccioni@physik.uzh.ch
mailto:jlang@physik.uzh.ch
mailto:pozzorin@physik.uzh.ch
mailto:hantian.zhang@physik.uzh.ch
mailto:zoller@physik.uzh.ch


P
o
S
(
L
L
2
0
1
8
)
0
4
5

On-the-fly reduction of open loops Max Zoller

1. Automated amplitude generation in OpenLoops

OPENLOOPS [2, 3] is a fully automated tree-level and one-loop tool for the numerical calculation
of high-energy scattering amplitudes, which are a key ingredient in multi-purpose Monte Carlo
generators. The helicity- and colour-summed n-particle scattering probability densities

WLO = ∑
hel,col

|M0|2, W virtual
NLO = ∑

hel,col
2Re

[
M ∗

0 M1

]
with Ml = ∑

d
M

(d)
l (1.1)

are given by the sums of Feynman diagrams d with l = 0,1 loops and n external particles. A
one-loop diagram amplitude can be written as

M
(d)
1 = C

(d)
1

∫
dDq̄

Tr
[
N (q)

]

D̄0(q̄) · · · D̄N−1(q̄)
=

wN−1wN

w1 w2

D0

D1

D2

DN−1

q (1.2)

with D̄i(q̄) = (q̄+ pi)
2−m2

i and the colour factor C
(d)
1 . The loop momentum q̄ is a vector in

D= 4−2ε dimensions (marked by the bar), whereas the external momenta pi are four-dimensional.
The numerator is constructed by cutting the loop open at one propagator D̄0 and dressing the initial
open loop N0 = 11 in recursion steps

Nn(q) = Nn−1(q)Sk(q), n≤ N, (1.3)

exploiting the factorisation of the numerator into segments,

Tr
[
N (q)

]
= Tr

[
NN(q)

]
=
[
S1(q)

]β1

β0

[
S2(q)

]β2

β1
· · ·
[
SN(q)

]βN

βN−1
δ

β0
βN

= Tr




wN

w1

βN

β0


 . (1.4)

The Lorentz or spinor indices β0,N of the cut propagator are contracted in the last step. A segment
consists of a loop vertex and propagator and one or two external subtrees wi,

[
Si(q)

]βi

βi−1
= βi−1

wi

ki

Di

βi or
[
Si(q)

]βi

βi−1
= βi−1

wi1
wi2

ki1
ki2

Di

βi . (1.5)

Dressing steps are performed numerically for the tensor coefficients N
(n)

µ1...µr of the partially con-
structed open loop,

Nn(q) = β0

w1

k1

D1

w2

k2

D2

wn

kn

Dn

βn

wn+1

kn+1

Dn+1

wN−1

kN−1

DN−1

wN

kN

D0

βN =
k

∏
i=1

Si(q) =
R

∑
r=0

N
(n)

µ1...µr qµ1 · · ·qµr , (1.6)

︸ ︷︷ ︸
dressed segments

︸ ︷︷ ︸
undressed segments

while the analytical structure in the loop momentum and the scalar denominators D̄i is fully re-
tained. Each dressing step increases the rank R by zero or one in renormalisable models, using
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Figure 1: Evolution of the tensor rank and number of independent tensor coefficients in (1.6) with the num-
ber n of dressed segments for the example of a seven-gluon scattering amplitude. While in OPENLOOPS 1 [2]
tensor integrals are only reduced after dressing the diagrams, OPENLOOPS 2 [3] allows for an on-the-fly re-
duction of tensor integrands. Here a reduction step is performed after the second dressing step, reducing the
rank in q to one, before the third dressing step increases the rank again to two. This procedure is continued
until the loop is fully dressed.

the Feynman gauge. While in the previous version OPENLOOPS 1 [2] the tensor reduction was
performed a posteriori with external libraries, such as COLLIER [4] or CUTTOOLS [5], leading
to a high tensor rank and number of independent coefficients, the recently introduced on-the-fly
reduction [1], implemented in OPENLOOPS 2 [3], keeps the rank and hence the complexity of in-
termediate results low (see Fig. 1). In the on-the-fly approach operations such as tensor reduction,
diagram merging and partial helicity summations are performed interleaved with the dressing steps
(see [1]).

2. The on-the-fly reduction

The on-the-fly reduction formulas are based on [6] and have the form

qµqν =
3

∑
i=−1

(
Aµν

i +Bµν

i,λ qλ

)
Di(q) with D−1(q) = 1, (2.1)

where the coefficients Aµν

i and Bµν

i,λ are q-independent. This is also valid for triangles in renormal-
isable theories [1,6] if we set terms involving D̄3 and p3 to zero. The loop momentum dependence
resides in the reconstructed denominators Di = D̄i− q̃2 which cancel denominators in the full inte-
grand, leading to four new topologies with pinched propagators. The terms ∝ q̃2, where q̃ = q̄−q
is (D−4)-dimensional, lead to rational terms of type R1 [6]. A reduction step (2.1) can be applied
to the partial integrand of an open loop, before it reaches rank three, due to the factorised structure
of Feynman diagrams,
[

N µνqµqν

D̄0D̄1D̄2D̄3

] N

∏
i=k+1

Si(q)
D̄i−1

=

[
N µ

−1qµ +N−1 + ˜N−1q̃2

D̄0D̄1D̄2D̄3
+

3

∑
i=0

N µ

i qµ +Ni

D̄0 · · · /̄Di · · · D̄3

]
N

∏
i=k+1

Si(q)
D̄i−1

. (2.2)
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q
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− p2
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p2
2 = −p2(1+δ ), 0≤ δ � 1,

(p2− p1)
2 = 0

⇒
√

∆ =
p2

2
δ

Figure 2: Triangle configuration leading to Gram determinant instabilities.

While the complexity due to the tensor rank is kept low throughout the calculation, the creation
of pinched topologies potentially leads to a huge proliferation of open loops to be processed. This
problem is solved very efficiently by the on-the-fly merging of pinched open loops with open loops
of the same topology and the same undressed segments, which can also stem from pinches or
correspond to lower-point Feynman diagrams (for details see [1, 7]). The final rank-zero and rank-
one tensor integrals are reduced to scalar box, triangle, bubble and tadpole integrals using integral
level identities [1, 6], which are then evaluated with COLLIER [4] or ONELOOP [8].

3. Numerical stability and any-order expansions

The main source of numerical instabilities in on-the-fly reduction steps is the appearance of
small Gram determinants, especially those constructed from two external momenta,

∆ =−∆12 = (p1 · p2)
2− p2

1 p2
2. (3.1)

The three external momenta p1, p2, p3 in the Di in (2.1) do not play equal roles, since only p1, p2

are used in the construction of a basis l1, . . . , l4, in which qµ is decomposed. A simple permutation
of the propagators in (2.1),

{D1,D2,D3} −→ {Di1 ,Di2 ,Di3}, (3.2)

such that

|∆i1i2 |
Q4

i1i2

= max
{ |∆12|

Q4
12

,
|∆13|
Q4

13
,
|∆23|
Q4

23

}
, Q2

i j = max{|pi · pi|, |p2
i |, |p2

j |} (3.3)

allows us to avoid this type of instability completely in topologies with four or more propaga-
tors. As a result, a single t-channel topology (Fig. 2) accounts for all rank-two Gram determinant
instabilities in the hard phase space region.

In this case, we expand the reduction formula (2.1) (without the D̄3-term) in the small param-
eter δ = 2

√
∆

−p2
1
. Consider for example the rank-one massless-propagator triangle

Cµ =
∫

dDq
qµ

D̄0D̄1D̄2
=

1
δ

C0
(

p2
1, p2

1(1+δ )
)[
−pµ

1 (1+δ )+ pµ

2

]

+
2

δ 2 p2

{
B0
(

p2
1
)[
−pµ

1 (1+δ )+ pµ

2

]
+B0

(
p2

1(1+δ )
)[
(pµ

1 − pµ

2 )(1+δ )
]}

, (3.4)
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with
C0(p2

1, p2
2) =

∫
dDq

1
D̄0D̄1D̄2

, B0(p2
1) =

∫
dDq

1
D̄0D̄1

. (3.5)

Separating the reduction formula and the master integral evaluation leads to 1
δ n -poles in intermedi-

ate results and hence severe numerical instabilities. If, however, the scalar integrals B0 and C0 are
expanded in δ directly in (3.4), these poles cancel completely,

Cµ =
pµ

1 + pµ

2
2p2

[
−B0(p2

1)+1
]
+δ

pµ

1 +2pµ

2
6p2

[
B0(p2

1)
]
+O(δ 2). (3.6)

The same behaviour was found for tensor rank up to three in all cases with massless and massive
propagators relevant for QCD [1].

A disadvantage of this procedure is that the truncation of the expansion at a fixed order spoils
the rescaling test used to estimate the numerical uncertainty of the calculation [1, 2]. In order to
avoid this issue we developed and implemented an any-order expansion. Since the 1

δ n -poles in (3.4)
cancel, we can substitute

1
δ n B0(p2

1(1+δ ))→ B0,n(p2
1,δ ),

1
δ nC0(p2

1, p2
1(1+δ ))→C0,n(p2

1,δ ) (3.7)

with

B0,n(p2
1,δ ) =

∞

∑
m=n

δ
m−n

[
1

m!

(
∂

∂δ

)m

B0
(

p2
1(1+δ )

)]

δ=0
(3.8)

C0,n(p2
1,δ ) =

∞

∑
m=n

δ
m−n

[
1

m!

(
∂

∂δ

)m

C0
(

p2
1, p2

1(1+δ )
)]

δ=0
. (3.9)

Our rank-one example (3.4) then takes the form

Cµ = (p1− p2)
µ

[
B0,1 +2B0,2

p2 −C0,1

]
+ pµ

1

[
B0,1

p2 −C0

]
. (3.10)

Closed formulas were derived and implemented for
(

∂

∂δ

)m
B0 and

(
∂

∂δ

)m
C0 for all topologies rele-

vant in QCD, and are applied order by order until the relative truncation error becomes smaller than
the target precision of 10−16 or 10−32 in double or quadruple precision calculations respectively.
In this way, the truncation error is avoided entirely and the rescaling test of the numerical accuracy
is valid. The details of the any-order expansion will be discussed in [9].

In order to illustrate the effect of the various improvements in the on-the-fly reduction of
OPENLOOPS 2, we show the correlation between the instability and the smallest rank-two Gram
determinant ∆ in a calculation, taking a sample of 106 random phase space points for the process
gg→ tt̄gg. The results without any special treatment of Gram determinants in Fig. 3 (a) show
a strong correlation with rank-two Gram determinants over twenty orders of magnitude. In fact,
we observe a quadratic or faster scaling in Q4

12/∆, consistent with the explicit ∆-dependence of
the coefficients in (2.1). These results are stabilised using the permutation trick (3.2) and analytic
expressions, such as (3.4) for the triangle reduction, as shown in in Fig. 3 (b). Adding fixed-order
Gram-determinant expansions, such as (3.6), up to δ 2, introduces a horizontal discontinuity in
Fig. 3 (c) due to the threshold, below which the exact formula is replaced by the expansion. Using

4
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Figure 3: Correlation between the instability A in double precision and the largest (Q4
12/∆)2 in the event,

with any rank-two Gram determinant ∆ and corresponding Q2
12 from (3.3), in a sample of 106 phase space

points for gg→ tt̄gg. The on-the-fly reduction was used without special treatment of Gram determinants in
(a), and with the permutation trick (3.2) and analytic expressions for triangle reduction in (b). In addition to
these improvements, the fixed-order Gram-determinant expansions up to δ 2 for δ < δthr = 10−3 were used
in (c), and the any-order expansion in (d).

the any-order expansion instead leads to an extremely stable result which does not suffer from a
threshold discontinuity as shown in Fig. 3 (d).

We now present numerical stability studies for the on-the-fly algorithm in various modes of
OPENLOOPS. In Fig. 4 we show the fraction of points with an accuracy A < Amin plotted against
Amin for a sample of 106 homogeneously distributed random phase space points at

√
s = 1 TeV, for

the process gg→ tt̄g. Infrared regions are excluded through cuts, pi,T > 50 GeV and ∆Ri j > 0.5 for
massless final-state partons.

The numerical accuracy of the double precision (dp) results is defined w.r.t. a quadruple preci-
sion (qp) benchmark, A = log10 |(Wdp−Wqp)/min{|Wdp|, |Wqp|}|. The qp benchmark is derived in
OPENLOOPS 2 with the on-the-fly reduction (OL2), which is fully implemented in dp and qp, in-
cluding all stability improvements. The final scalar integrals are evaluated with ONELOOP 3.6.1 [8]
in qp. The accuracy of the benchmark OL2_qp is determined with the rescaling test. This is the
first full qp implementation of a one-loop amplitude generator, yielding up to 32 correct digits. For
this process only one out of a million phase space points has less than 20 correct digits. This is in
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Figure 4: Stability distributions for a sample 2→ 3 process.

contrast to OPENLOOPS 1 (OL1) with CUTTOOLS 1.9.5 [5] in qp, where dp-contamination inside
CUTTOOLS prevents more than 16 correct digits. The scalar integrals for OL2 calculations in dp
were evaluated with COLLIER 1.2 [4].

For this process, OL2 in dp yields an improvement of 1−3 orders of magnitude in numerical
accuracy as compared to OL1+COLLIER in dp, which in turn gains many orders of magnitude com-
pared to OL1+CUTTOOLS in dp, especially in the tail, where the latter becomes unreliable. In fact,
the accuracy of OL2 in dp is comparable to OL1+CUTTOOLS in qp, which used to be the bench-
mark in OPENLOOPS 1. The accuracy of OL2 was measured once against the OL2_qp benchmark
and once with the rescaling test, the results of which are in excellent agreement. In OPENLOOPS 2
we use a stability rescue system for dp calculations similar to the one in OPENLOOPS 1, which
is based on the rescaling test in dp and a re-run in qp for phase space points, for which a target
accuracy is not reached.

4. CPU efficiency

In this section we briefly discuss the speed of the on-the-fly algorithm. The upper frame
in Fig. 5 shows the runtime versus the number of one-loop Feynman diagrams for four 2→ 2+n
process classes with n= 0, . . . ,3 additional gluons in the final state. We find in good approximation,
that the order of magnitude of the runtime scales linearly with the order of magnitude of the number
of one-loop diagrams. Computing a phase space point in qp takes a factor 20− 80 longer than in
dp, depending on the process. In high-multiplicity processes, this factor tends to be larger than in
simple 2→ 2 processes. The lower frame shows the ratio between the OL2 runtime in qp to the
OL1+CUTTOOLS runtime in qp, where we find a gain in speed of a factor 3−5 due to the on-the-fly

6
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Figure 5: CPU runtimes per phase space point on a single Intel i7-4790K core with gfortran-4.8.5 for a
one-loop scattering probability density plotted versus the number of one-loop diagrams in double (dp) and
quadruple precision (qp). From left to right, the number of additional gluons is n = 0, . . . ,3 in dp and
n = 0, . . . ,2 in qp. In the lower frame the ratio of the runtime in OPENLOOPS 2 (OL2) in qp to the runtime
in OPENLOOPS 1+CUTTOOLS (OL1) in qp is presented.

method. Hence, the efficiency improvement in OPENLOOPS due to the on-the-fly method is even
more pronounced in qp than in dp, where we found a speed-up of a factor 2−3 [1].

5. Conclusion

We have presented the on-the-fly method for the automated calculation of scattering ampli-
tudes at one loop. Exploiting the factorised structure of open loops in a systematic way, we per-
form operations, such as tensor reduction, helicity summation and diagram merging, on-the-fly
during the open-loop recursion. This approach reduces the complexity of intermediate results and
operations significantly, leading to a substantial gain in CPU efficiency.

The on-the-fly integrand reduction allows us to isolate Gram determinant instabilities in tri-
angle topologies with a particular kinematic configuration and to cure them by means of simple
analytic expansions, which can be performed to any order. With a small set of simple optimisa-
tions the on-the-fly algorithm achieves an unprecedented level of numerical stability, which is a
particularly attractive feature for the calculation of real–virtual contributions at NNLO.
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This algorithm is fully implemented in double and quadruple precision, and validated for a
wide range of SM processes at NLO QCD. It will become publicly available in the upcoming
release of OPENLOOPS 2.

Acknowledgements

This research was supported in part by the Swiss National Science Foundation (SNF) under
contracts PP00P2-128552 and BSCGI0-157722.

References

[1] F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C78 (2018)
70, [1710.11452].

[2] F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys.Rev.Lett.
108 (2012) 111601, [1111.5206].

[3] F. Buccioni, J. Lindert, P. Maierhofer, S. Pozzorini and M. Zoller, OpenLoops 2, in preparation.

[4] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in
Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220–238, [1604.06792].

[5] G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction
method to compute one-loop amplitudes, JHEP 03 (2008) 042, [0711.3596].

[6] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07
(2004) 017, [hep-ph/0404120].

[7] F. Buccioni, S. Pozzorini and M. Zoller, A new method for one-loop amplitude generation and
reduction in OpenLoops, PoS RADCOR2017 (2017) 024, [1801.03772].

[8] A. van Hameren, OneLoop: For the evaluation of one-loop scalar functions, Comput.Phys.Commun.
182 (2011) 2427–2438, [1007.4716].

[9] F. Buccioni, J.-N. Lang, S. Pozzorini, H. Zhang and M. Zoller, Numerical stability of the on-the-fly
method in OpenLoops 2, in preparation.

8

http://dx.doi.org/10.1140/epjc/s10052-018-5562-1
http://dx.doi.org/10.1140/epjc/s10052-018-5562-1
http://arxiv.org/abs/1710.11452
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://arxiv.org/abs/1111.5206
http://dx.doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/1604.06792
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://arxiv.org/abs/0711.3596
http://dx.doi.org/10.1088/1126-6708/2004/07/017
http://dx.doi.org/10.1088/1126-6708/2004/07/017
http://arxiv.org/abs/hep-ph/0404120
http://dx.doi.org/10.22323/1.290.0024
http://arxiv.org/abs/1801.03772
http://dx.doi.org/10.1016/j.cpc.2011.06.011
http://dx.doi.org/10.1016/j.cpc.2011.06.011
http://arxiv.org/abs/1007.4716

