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Numerical evaluation of Mellin-Barnes integrals Johann Usovitsch

1. Introduction

Our starting point will be the loop-momenta integral representation of a scalar Feynman inte-
gral:

GL =
∫ L

∏
j=1

dDk j

iπD/2

1
Pν1

1 . . .PνN
N

. (1.1)

The functions Pνi
i in the denominator are expressed in terms of the L loop-momenta kl which are

not fixed through momentum conservation at each vertex and the E linearly independent external
momenta pe:

Pi =

(
L

∑
l=1

ailkl +
E

∑
e=1

bie pe

)2

−m2
i + iδ , ail, bie ∈ {−1,0,1}, (1.2)

where the mi denote the masses of the corresponding virtual particles. The iδ is the Feynman pre-
scription. In the most general case the Pi are a linear combination of N linearly independent scalar
products depending on the loop-momenta kl . The propagator exponents νi are complex variables
if not stated otherwise. Within dimensional regularization, D = 4− 2ε denotes the dimension of
space-time. As usual D 6= 4 is used to regularize infrared or ultraviolet divergences.

Before evaluating these integrals one often applies the Feynman trick:

(−1)ν

N
∏
j=1

(−Pν j
j )

=

(−1)νΓ(ν)

(
N
∏
j=1

ñ j

)
δ (1−

NG

∑
j=1

x j)

(−kµ

l Mll′kl′µ +2kµ

l Qlµ + J− iδ )ν
, ν =

N

∑
j=1

ν j, (1.3)

where

Mll′ =
N

∑
j=1

a jla jl′x j (1.4)

is an L×L symmetric matrix,

Qν
l =−

N

∑
j=1

x ja jl

E

∑
e=1

b je pν
e (1.5)

is a vector with L components and

J =−
N

∑
j=1

x j(
E

∑
e=1

b je pµ
e

E

∑
e′=1

pν

e′b je′gµν −m2
j), (1.6)

where x j are the Feynman parameters introduced with the Feynman trick. The set of Feynman pa-
rameters {x1, . . . ,xNG} corresponds to the set of functions {P1, . . . ,PNG} with positive {ν1, . . . ,νNG}
in Eq.(1.1). The metric tensor is gµν = diag(1,−1, . . . ,−1). The ñ j is defined as:

ñ jφ(~x) =


∫

{x j≥0}

dx j x
ν j−1
j

Γ(ν j)
φ(~x), ν j 6=−m,

(−1)ν j φ (−ν j)(0,xi6= j), ν j =−m,

m ∈ N0, (1.7)

where φ (−ν j)(0,xi6= j) means to take (−ν j) derivative in x j and then set x j to zero.
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The Feynman integral can now be written in the Feynman parameter integral representation:

GL = (−1)ν
Γ(ν−LD/2)

(
N

∏
j=1

ñ j

)
δ (1−

NG

∑
j=1

x j)
U (x)ν−(L+1)D/2

F (x)ν−LD/2 , (1.8)

where

U (x) = detM, (1.9)

F (x) = U (x)(Qµ

l M−1
ll′ Ql′µ + J− iδ ). (1.10)

From these definitions it follows that the functions F (x) and U (x) are homogeneous in the Feyn-
man parameters xi. The function U (x) is of degree L and the function F (x) is of degree L+ 1.
The functions U (x) and F (x) are also known as Symanzik polynomials.

1.1 Mellin-Barnes integral

Feynman integrals may be infrared and ultraviolet divergent. To treat these integrals in a
consistent and automated way two methods are known: The Mellin-Barnes integral approach [1, 2,
3, 4, 5] and the sector decomposition approach [6, 7, 8, 9, 10, 11].

To derive a Mellin-Barnes integral one will use either the loop-by-loop approach [12] or the
global approach [13]. Both techniques apply in their core to the F (x) and U (x) functions in
Eq. (1.8) the Mellin-Barnes integral master formula:

1
(a+b)ν

=

i∞∫
−i∞

dz
2πi

azb−z−νΓ(−z)Γ(ν + z)
Γ(ν)

, |arga− argb|< π, (1.11)

until the integrations over the Feynman parameters can be all carried out in terms of Euler’s Beta-
functions:

B(ξ ,χ) =
∞∫

0

xξ−1

(1+ x)ξ+χ
dx =

Γ(ξ )Γ(χ)

Γ(ξ +χ)
, ℜeξ > 0, ℜe χ > 0. (1.12)

These steps lead to Mellin-Barnes integrands depending on a ratio of Euler’s Gamma-functions Γ

depending on the integration variables zi and some kinematics raised to the powers of zi.
As an example we study the Feynman integral in Fig. 1, whose loop-momenta integral repre-

sentation contains one nontrivial numerator k1 p1:

I0h0w14r =
∫ dDk1

iπD/2

dDk2

iπD/2

k1 p1

k2
1((k1− k2)2−M2

Z)k
2
2((k2 + p1)2−M2

Z)(k1 + p1 + p2)2 , (1.13)

and its Mellin-Barnes integral representation is:

I0h0w14r =
− 1

3+i∞∫
− 1

3−i∞

dz1
2πi

− 1
3+i∞∫

− 1
3−i∞

dz2
2πi

Γ(−z1)Γ(−z2)Γ(z2+1)Γ(−ε−z1)Γ(2ε+z1+1)
(
−M2

Z
s

)z1

2Γ(1−z2)Γ(−3ε−z1+2)Γ(−2ε−2z1−z2)

×(−s)−2ε
Γ(−2ε− z1− z2)

2Γ(−ε− z1− z2)Γ(ε + z1 + z2 +1), (1.14)

where ε = (4−D)/2. A straight integration contour parallel to the imaginary axis is chosen, such
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0

0

s

0

0

0

MZ
MZ

Fig. 1: Two-loop vertex Feynman integral with two internal massive lines and the kinematics are p2
1,2 = 0

and 2p1 p2 = s. The Z-boson mass MZ indicates massive propagators.

1 20

−1−2−3

ℑmz1

ℜe z1

C1

Fig. 2: The black dots are the poles of the integrand in Eq. (2.1) in the z1 complex plane. The dashed line is
the integration contour parallel to the imaginary axis.

that all poles are well separated, see Fig. 2 for z1,2 =−1/3+ it, t ∈ [−∞,∞]. The expansion around
ε = 0 in Eq. (1.14) leads to a finite contribution in the lowest order:

I0h0w14r = −
− 1

3+i∞∫
− 1

3−i∞

dz1
2πi

− 1
3+i∞∫

− 1
3−i∞

dz2
2πi

Γ(−z1)
2Γ(z1+1)Γ(−z2)Γ(z2+1)

(
−M2

Z
s

)z1
Γ(−z1−z2)

3

2Γ(2−z1)Γ(1−z2)Γ(−2z1−z2)

×Γ(z1 + z2 +1)+O(ε). (1.15)

1.2 Minkowskian kinematics

Whether we derive the Mellin-Barnes integrals with the loop-by-loop or the global approach,
we face problems in the numerical treatment of these integrals in Minkowskian kinematics. To
illustrate this we apply the well known Stirling approximation formula

Γ(z) ≈
|z|→∞

zz−1/2e−z
√

2π, |argz|< π, (1.16)
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to the integrand in Eq. (1.15) and examine the asymptotic behavior for z1 = −1
3 + it1, and z2 =

−1
3 + it2, t1→−t and t2→ t:

I0h0w14r ≈
t→∞

t−2+2x1+2x2 |x1=x2=−1/3. (1.17)

In comparison to the Euclidean kinematics, where the asymptotic behavior is everywhere expo-
nentially damped, we see that for Minkowskian kinematics the asymptotic behavior is polynomial.
In the case of a Mellin-Barnes integral this polynomial asymptotic behavior leads to numerous
numerical instabilities, some of which are:

• Oscillations are less damped compared to the Euclidean case.

• Integrals may be not absolutely convergent if the asymptotic behavior is worse than 1/ta,
with a < 2.

• At any level of accuracy, we need to evaluate the integrands for bigger values ti than in the
case of Euclidean kinematics.

• In particular, if we are interested in high accuracy results, we have to evaluate the Γ functions
for very big arguments and this leads again to numerical instabilities.

2. Techniques to treat Mellin-Barnes integrals in Minkowskian kinematics

We assume that the treatment of one-dimensional Mellin-Barnes integrals is a solved problem
by means of contour deformation. We describe techniques which are applied to multi-dimensional
Mellin-Barnes integrals. These techniques are automatized in the Mathematica package MBnu-
merics, which was developed to treat numerically Feynman integrals appearing in the calculation
of the electroweak two-loop corrections to the pseudo observables at the Z-boson resonance [14],
[15].

2.1 Linear transformation of integration variables

In the case of the Mellin-Barnes integral the linear transformation of integration variables may
lead to improvements of the numerical integration. If we apply the variable change z2→ z2− z1 to
the example integral in Eq. (1.15) we get

I0h0w14 =−
− 1

3+i∞∫
− 1

3−i∞

dz1
2πi

− 2
3+i∞∫

− 2
3−i∞

dz2
2πi

(−M2
Z

s )z1 Γ(−z1)
2Γ(1+z1)Γ(z1−z2)Γ(−z2)

3

2Γ(2−z1)Γ(−z1−z2)Γ(1+z1−z2)

×Γ(1+ z2)Γ(1− z1 + z2). (2.1)

After this simple change of variable the asymptotic behavior of the Mellin-Barnes integrand has
been changed. If we apply again the Stirling formula in Eq. (1.16) to the integrand in Eq. (2.1), and
study the asymptotic behavior for z1 =−1

3 + it1, z2 =−2
3 + it2, t1→−t and t2→ 0, we find

I0h0w14 ≈
t→∞

t−2+2x2 |x2=−2/3, (2.2)

i.e. the polynomial asymptotic behavior depends only on x2. Linear integration variable transfor-
mations give a possibility for a nontrivial cross check of the numerical evaluation of the Mellin-
Barnes integrals, since the integrands have different asymptotic behavior before and after the linear
transformation.
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2.2 Integrand mappings

An obvious improvement is the application of the cotangent mapping t = 1
tan(−πd) , which maps

the integration boundaries from t ∈ [−∞,∞] to d ∈ [0,1]. We apply this mapping to a polynomial
function, which gives

1
ta = tan(−πd)a, (2.3)

and the Jacobian is:
π

sin(πd)2 , (2.4)

where the limits of the integrand at the boundaries of the new integration domain are:

lim
d→0,d→1

π tan(−πd)a

sin(πd)2 =


1
0 , a < 2,

π, a = 2,

0, a > 2.

(2.5)

Compared to the cotangent mapping, a logarithmic mapping, as it is advocated in the program
MB.m [4], always leads to infinities at the new integration boundaries, which would lead to numer-
ical instabilities.

Since we use the cotangent mapping it is mandatory to transform the integrand as follows:

∏
i

Γi→ exp

(
∑

i
logΓi

)
, (2.6)

where the key idea is that the logΓ(zi) functions grow slower than the Γ(zi) functions for large
values of |zi|.

2.3 Shifts

If we shift the Mellin-Barnes integration variables according to

zi = xi + iti +ni, ni ∈ R, (2.7)

the asymptotic behavior of a given Mellin-Barnes integrand may depend explicitly on the shifts ni:

I0h0w14 ≈
t→∞

t−2+2x2+2n2 |x2=−2/3. (2.8)

It is then possible to improve the polynomial asymptotic behavior by tuning the shifts ni. If, by
changing the values of ni, the contour crosses some poles of the Mellin-Barnes integrand, we have
to collect their residues.

The shifts may also be used as a method to evaluate Mellin-Barnes integrals in Minkowskian
regions due to one more observation: the integral along a shifted contour may be numerically
smaller by orders of magnitude compared to the original integral.

For example, the original integral in Eq. (2.1), with MZ =
√

s = 1, evaluated along the contour
C1, see Fig. 3, gives 0.3923828588857+ 0.7456388536613i. The shifted integral with n1 = −2,

5
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1 20

−1−2−3

ℑmz1

ℜe z1

C1C2
C3

Fig. 3: The original contour C1 is shifted by n1 = −2 to a contour C2. The third contour C3 encircles the
poles to correct the shift.

evaluated along the contour C2 gives −0.00974965823202. In addition the following equation
holds:

∫ dz2

2πi

∫
C1

dz1

2πi
I0h0w14 =

∫ dz2

2πi

∫
C2

dz1

2πi
I0h0w14 +

1 dim integrals︷ ︸︸ ︷∫ dz2

2πi

(
∑
z0

Resz0I0h0w14

)
. (2.9)

We have corrected the result of the integral along the shifted contour by calculating three residues„
corresponding to the three poles enclosed by the contour C3. Upon integrating them over z2, their
sum is 0.402132517117807+ 0.745638853661318i. In general, shifting the contour of an n-fold
Mellin-Barnes integral will yield residue terms, which will be (n−1)-fold Mellin-Barnes integrals
and hence simpler to evaluate.

3. Nontrivial example

The Feynman integral shown in Fig. 4,

∫ dDk1

iπD/2

dDk2

iπD/2

exp(2εγE)M2+2ε

Z (k2 p2)

(k1)2((k1− k2)2−m2
t )((k2)2−M2

W )((k1 + p1)2)((k2 + p1)2−m2
t )(k1 + p1 + p2)2 ,

(3.1)
depends in a nontrivial way on the scalar product k2 p2 in the numerator. We evaluate this integral
with MBnumerics, which implements the method of the shifts. The results are collected in Tab. 1.
The scales are fixed to:

√
s = MZ = 91.1876 GeV, MW = 80.385 GeV and mt = 173.2 GeV. In this

example the Mellin-Barnes integral representation is at most a three-dimensional integral. With the
sector decomposition approach the Feynman integral (3.1) is five-dimensional. If one can find a
Mellin-Barnes integral representation whose integration dimension is smaller than or equal to that
of the sector decomposition representation, the method of shifts turns out to be very successful to
compute numerically Feynman integrals in Minkowskian regions.
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0

0

s

0

mt

mt

MW

0

0

Fig. 4: This Feynman integral depends non-trivially on the scales s, MW and mt .

Method Numerics
MB 0.0602664865576999ε−2

SD - 90 Mio 0.06026648655ε−2

MB (−0.0315124890 +0.1893327514i)ε−1

SD - 90 Mio (−0.031512481 +0.189332716i)ε−1

MB (−0.22823186755 −0.08824794573i)+O(ε)

SD - 90 Mio (−0.2282265 −0.0882459i)+O(ε)

Tab. 1: The numbers labeled MB are evaluated with MBnumerics. The numbers labelled with SD are
evaluated with SecDec v.3 [16].
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