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1. Introduction

When studying the physics of a hot system of strongly interacting matter (where we have

mainly quarks and gluons in mind), dimensionally reduced thermal effective theories prove most

valuable for a systematic understanding of effects originating from separate energy scales [1, 2, 3].

In this brief review, we will focus on equilibrium thermodynamics of quantum chromodynamics

(QCD), where interesting questions such as for example the study of phase transitions connected

to confinement and chiral symmetry breaking, can be addressed. Answers to these questions are

relevant for a wide spectrum of phenomenological applications, such as in the fields of compact

star astrophysics or early-universe cosmology, or in heavy-ion collision experiments that probe a

quark-gluon plasma (QGP).

At very large temperatures, asymptotic freedom asserts the existence of a theoretically tractable

limit of QCD, where the gauge coupling becomes small and weak-coupling methods are applica-

ble. This opens the prospect of first-principles studies of this QCD regime, with analytic methods

and possibility of systematic improvements, without the need to resort to models. Besides the tem-

perature T , other dimensionful parameters of the system can be quark chemical potentials µq and

quark-masses mq, as well as dimensionless characteristics of the fermion and gauge representations

(Nf and Nc). We will focus here on a pure gauge SU(Nc) theory only, and hence be concerned with

dependence on only T and Nc.

Close to a phase transition (or crossover), such as the deconfinement-confinement transition

at the critical temperature Tc of the order of 175 MeV, the QGP is strongly coupled and has to be

treated by non-perturbative methods, such as e.g. lattice Monte Carlo simulations. However, as

already mentioned above, at T ≫ Tc a weak-coupling approach can be used. One caveat is that, as

has been pointed out long ago [4], a strict loop expansion is not well-defined, due to infrared (IR)

divergences at higher loop orders. While we will see below why and how this matters, and how

IR effects can be systematically accounted for, let us remark here that in general, one uses a mix

of discrete (lattice) and continuum (perturbative) methods, each one where it works best, in order

to make predictions over a sizable energy interval. Again, the focus here will be on the continuum

side.

At high T (and/or µq), interactions make QCD a multi-scale system. Indeed, the expansion

parameter is not simply the strong coupling constant αs ∼ g2, where g denotes the gauge coupling

parameter, but it gets multiplied by a (bosonic) distribution function that accounts for the mul-

tiple interactions (with typical momentum k, say) in the gluon-plasma: g2 nb(|k|) =
g2

e|k|/T−1
. At

asymptotically high T we have g ≪ 1, such that three momentum scales can be cleanly separated.

Parametrically, these are of the order |k|∼ {T,gT,g2T}; they correspond to the typical momentum

scale of particles in a heatbath of temperature T , and to dynamically generated mass-scales for the

two gluon polarizations; they are conventionally called ‘hard’, ‘soft’ and ‘ultrasoft’ scales; and, as

can be seen by expanding the Bose function at small |k|/T as nb(|k|) ≈ T/|k|, induce expansion

parameters that are of order g2 (g) for hard (soft) modes, but of order unity for the ultrasoft ones,

rendering the latter non-perturbative even at high temperatures. Due to confinement-like behavior

in the ultrasoft sector, there are no smaller momentum scales. Hence, this multi-scale system with

three well separated (at high T ≫ Tc or equivalently g ≪ 1) scales allows for a most transparent

treatment in terms of effective field theory (EFT), as will be made precise below.
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2. Effective theory setup

At high temperatures, the dynamics of QCD is contained in a 3-dimensional (3d) effective

theory [5, 6], which is conventionally called ‘electrostatic QCD’ (EQCD) [7]. One essentially ‘in-

tegrates out’ the effects of the hard momentum scales, |k| >∼ πT , keeping only field components

with smaller (soft and ultrasoft) momenta dynamical. In this manner, one integrates out the quark

fields completely (since they do not possess a Matsubara zero mode and are hence ‘heavy’ specta-

tors), and one integrates out the non-zero Matsubara modes of the gauge fields, ending up with the

purely bosonic EQCD with Lagrangian

LEQCD = −
1

2g2
E

Tr [Di,D j]
2 +Tr [Dk,A0]

2 +m2
E TrA2

0 +λ
(1)
E (TrA2

0)
2 +λ

(2)
E TrA4

0 + . . . . (2.1)

Here, A0 is a scalar (the notation specifying it as a remnant of the 4-dimensional (4d) gauge field

Aµ ), and the 3d gauge field sits in the covariant derivative Dk = ∂k − igEAk. All fields A0, Ak are in

the fundamental representation of SU(Nc). In Eq. (2.1), we have not shown the gauge fixing term

and have omitted higher-order operators; for the latter, see Sec. 3.2 below. Note that in 3d, the

gauge coupling acquires a mass dimension, see e.g. Eq. (2.2).

The parameters are of course not arbitrary, but fixed in terms of the parameters of the parent

theory, 4d QCD. They can be determined systematically by requiring weak-coupling expansions of

a set of n-point functions to coincide for scales where both descriptions (4d QCD and 3d EQCD)

hold, resulting in perturbative expressions such as

g2
E = T

[

g2 +n0 g4 +n1 g6 +n2 g8 + . . .
]

, (2.2)

m2
E = T 2

[

n3 g2 +n4 g4 +n5 g6 + . . .
]

, (2.3)

λ
(1),(2)
E = T

[

n6 g4 +n7 g6 + . . .
]

. (2.4)

The determination of the coefficients ni has a long history; 2- and 3-loop results have been presented

in [8, 9, 10, 11]. All ni shown above are known analytically, except for n2 on which we will report

in Sec. 3 below.

Having performed the QCD → EQCD reduction, one realizes immediately that LEQCD con-

tains a mass term for the scalar A0, which calls for another reduction step. Indeed, integrating out

effects of the soft momentum scales, |k|>∼ gT , allows to systematically eliminate A0 (whose mass

according to Eq. (2.3) is mE ∼ gT ), ending up with a 3d pure gauge theory, which is conventionally

called ‘magnetostatic QCD’ (MQCD). It is defined by

LMQCD = −
1

2g2
M

Tr [Di,D j]
2 + . . . , (2.5)

where we have again not shown higher-order operators beyond the superrenormalizable ones (they

will be briefly discussed in Sec. 3.4 below), and where the covariant derivative now contains the

gauge coupling gM, which can be determined in terms of the parameters of the parent theory, 3d

EQCD, as [12, 8]

g2
M = g2

E

[

1+n8
g2

E

mE

+n9
g4

E

m2
E

+ . . .

]

. (2.6)

According to the effective theory setup QCD→EQCD→MQCD as sketched above, IR effects are

now captured by 3d MQCD.
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Figure 1: Typical 3-loop contributions to the 2-point function in the background field gauge. The diagrams

have been drawn with the help of Axodraw [13].

3. Determination of matching coefficients: 3-loop gauge coupling

Let us now discuss how the parameters of the effective theory, or matching coefficients, are

determined in practice, with precision, and in a systematically improvable manner. For mE and the

λE we refer to the literature [9, 8], but discuss the effective gauge coupling gE in more detail here.

3.1 Hard contributions

When reducing QCD to EQCD, an efficient way to determine matching coefficients is to shift

the gauge field A → A+B and evaluate the effective action for a background field B [14]. For

example, the effective gauge coupling parameter g2
E = g2/[ZB + δZB] can then be read from the

quadratic part of the background-field effective action Γ
(2)
EQCD[B] =

1
2Ba

i (p)Ba
j(q)δ (p+ q)(q2δi j −

qiq j)[ZB +δZB]. The main ingredient can hence be seen to be the transverse part of the two-point

function, or background-field self-energy; in particular, we need the second term of its expansion

around small external momenta, Π′
T (0) [8].

An evaluation of the required Feynman diagrams up to three loops starts with a chain of

standard computer algebra tools and algorithms, adapted to 4d thermal field theories. In a first

step, diagrams are generated with QGRAF [15], resulting in ∼ 450 two-point diagrams at 3 loops,

some representatives of which are shown in Fig. 1. Secondly, symbolic manipulation in FORM

[16] projects the calculation onto ∼ 107 vacuum sum-integrals. Third, systematic use of linear

integration-by-parts (IBP) relations [17] applied to the 3d piece of the sum-integrals achieves a

reduction to ∼ 102 so-called ‘master’ sum-integrals, of which ∼ 101 are bosonic [18]. Using the

IBP tables, a basis transformation of the bosonic masters can be performed in order to render the

actual polynomial pre-factors of non-trivial masters finite as d → 4, such that it suffices to evaluate

them up to their constant parts. The structure of the resulting set of six non-trivial bosonic 3-loop

master sum-integrals is depicted in Fig. 2.

Turning to the evaluation of the master sum-integrals, we remind the reader that at finite tem-

peratures we have a compact (imaginary) time interval that leads to (Matsubara) sums in momen-

tum space, whence the integral measure is

∑

∫

P

= T
∞

∑
n=−∞

∫

d3−2ε p

(2π)3−2ε
. (3.1)

Massless propagators are then 1
P2 = 1

P2
0+p2 with (in the bosonic case that we are discussing here)

P0 = 2πnT . While 1-loop massless vacuum sum-integrals are trivial (they evaluate to Zeta values)

and at two loops factorize into products of 1-loop cases, they start to be nasty objects starting at 3

loops. The evaluation of masters such as those shown in Fig. 2 is a highly non-trivial task, as no

standard algorithmic methods are known for higher-loop sum-integrals. As a consequence, most
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Figure 2: The six non-trivial bosonic 3-loop master sum-integrals that we need for the hard contribution to

g2
E. A single line corresponds to a massless propagator 1/P2; a line with a cross carries an extra numerator

factor P2
0 ; and a line decorated with one (two, three) dots stands for the 2nd (3rd, 4th) power of a massless

propagator, respectively.

available 3-loop results are very specific cases that utilize the specific (spectacle- and basketball-

type) structures of the cases at hand, exploiting their 1-loop sub-structure. Pioneering work has

been done in the nineties [19], based on which many other beautiful methods have been developed,

such as e.g. lifting Tarasov’s T-operators [20] to finite temperature [21] in order to trade tensors for

dimension shifts. The general strategy is a careful dissection of the sum-integral into divergent and

finite pieces, with divergences evaluated analytically and finite parts containing numerical results,

the transcendental number content of which is still an interesting open question. To appreciate the

structure of such results for 3-loop sum-integrals, we refer the reader to consult some of our earlier

contributions to this conference series, where the first and last of the six masters of Fig. 2 have been

presented [22, 23].

Finally, after accounting for gauge coupling and wave function renormalization [24, 25], one

arrives at the renormalized NNLO result for effective gauge coupling [10, 11] (from above, recall

the representation g2
E = g2/[ZB +δZB+O(g8)])

ZB = 1−G

[

22

3
L+

1

3

]

−G2

[

68

3
L+

341

18
−

10

9
ζ3

]

−G3

[

748

9
L2+

(

6608

27
−

10982

135
ζ3

)

L+(finite)

]

,

δZB = G3

[

61ζ3

5ε

]

, G =
g2Nc

16π2
, L = ln

(

µ̄eγE

4πT

)

. (3.2)

Interestingly, the result contains a remaining 1/ε divergence, which we have separated in δZB. The

origin (and cure) of this remaining logarithmic divergence will be investigated in what follows.

3.2 Dimension-six operators in EQCD

To shine some light on the fate of the divergence in Eq. (3.2), let us now examine higher-

order operators in the effective theory that have been omitted from the EQCD Lagrangian. The

dimension-six operators that can be added to Eq. (2.1) have been classified in [26], albeit in strictly

4d, which (in view of the fact that we have divergences and work in dimensional regularization) we

have to generalize to general d. Their structure is

δLEQDC =

(

∑

∫ ′

P

2g2
E

P6

)

tr
{

c1 (DµFµν)
2 + c2 (DµFµ0)

2

+igE

[

c3 FµνFνρFρµ + c4 F0µFµνFν0+ c5 A0(DµFµν)F0ν

]

(3.3)

+g2
E

[

c6 A2
0F2

µν + c7 A0FµνA0Fµν + c8 A2
0F2

0µ + c9 A0F0µA0F0µ

]

+g4
E

[

c10A6
0

]

}

,

where, to facilitate comparison with [26], we have now written the color traces in the adjoint

representation, tr(AB)=AabBba with e.g. (A0)ab =−i f abcAc
0 etc. The operator basis is actually non-
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Figure 3: Contributions to the 5-point function in the background field gauge. Here, wiggly and dotted lines

stand for gluons and ghosts, respectively.

minimal, as there is one linear relation between c4, . . . ,c7; we keep this redundancy for crosschecks.

The 1-loop sum-integral in the first line of Eq. (3.3), where the prime on the sum excludes the

Matsubara zero mode n = 0, evaluates to Gamma and Zeta functions and is finite,

∑

∫ ′

P

T 2

P6
=

2ζ3

(4π)4

[

1+O(ε)

]

. (3.4)

For perturbative expansions involving the operators of Eq. (3.3), we clearly need their coeffi-

cients ci in d dimensions. This has been done in [27]; one can evaluate e.g. 1-loop contributions to

the 5-point function, see Fig. 3, which contains 20 independent Lorentz structures that allow to fix

the LO results for the ci as (restricting to Feynman gauge here)

c1 =
41−d

120
, c2 =

(d −1)(d −5)

120
, c3 =

1−d

180
, c4 −2c7 =

(41−d)(5−d)

60
, (3.5)

c5 −2c7 =
(21−d)(5−d)

30
, c6 + c7 =

(d−25)(5−d)

24
, c8 =

(5−d)(3−d)(d−1)

20
, (3.6)

c9 =
(5−d)(3−d)(d −1)

30
, c10 =

(5−d)(3−d)(d −1)2

180
. (3.7)

To check these expressions, the 2-, 3- and 6-point functions have been evaluated as well in [27],

finding full agreement. Recalling that EQCD is defined in d = 3−2ε dimensions, we see that c8,

c9 and c10 couple to ‘evanescent’ operators (and were therefore not accounted for in [26]).

3.3 Soft contributions

What is now the effect of considering the dimension-six operators of δLEQDC? When integrat-

ing out the soft scales, i.e. reducing EQCD → MQCD, one needs to determine the MQCD gauge

coupling g2
M. In full analogy to the above, it is convenient to determine g2

M = g2
E/[ZB + δZB] from

2-point functions in background-field gauge. Note that, since we are dealing with a 3d computa-

tion here, we need at least two loops to see a logarithmic divergence. The corresponding diagrams

containing some of the new vertices arising from δLEQDC are shown in Fig. 4, where graphs with

closed loops of massless lines have already been omitted.

After accounting for coupling and mass-renormalization, the next-to-leading order result for

the 2-point correlator reads [27]

ZB = 1 + G2
E

mE

2πT

(

875ζ3

72

)

−G3
E

(

1097ζ3

549

)

61

5

{

L+2ln

(

µ̄

2mE

)

+
ζ ′

3

ζ3

− γE +
103771

52656

}

,

δZB = G3
E

(

−
1097

1098

)[

61ζ3

5ε

]

, GE =
g2

ENc

16π2T
, L = ln

(

µ̄eγE

4πT

)

. (3.8)

Taking into account the matching of the gauge couplings from Eq. (2.2) and comparing with

Eq. (3.2), we note that this cancels 1097
1098 of the IR divergence from the hard scales.
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Figure 4: Contributions to the 2-loop 2-point function involving the new 2-, 3-, 4-, 5- and 6-point vertices

arising from Eq. (3.3), which are denoted by a blob. Solid lines represent the massive adjoint scalar A0.

3.4 Ultrasoft contributions

So far, we have integrated out hard (∼ T ) and soft (∼ gT ∼ mE) scales, and managed to under-

stand a large fraction of the puzzling leftover divergence of Eq. (3.2). To proceed in the full spirit

of the effective theory setup outlined in Sec. 2, it clearly remains to check potential contributions

from ultrasoft (∼ g2T ) scales.

The story of the preceding two sections repeats itself: classifying dimension-six operators of

MQCD that had been omitted from Eq. (2.5), one possible representation is [27]

δLMQCD =

(

∑

∫ ′

P

2g2
M

P6

)

tr
{

c1 (DiFi j)
2 + igMc3 Fi jFjkFki

}

, (3.9)

where to leading order, the ci are proportional to those given in Eq. (3.5) [28, 27]. To extract UV

divergences, it is sufficient here to screen the IR by a common (unphysical) mass, which results in

∑

∫ ′

P

g6
MN3

c

P6

T 2 c3

32π2 ε

[

1+O(ε)
]

∋ δZB = G3

(

−
1

1098

)[

61ζ3

5ε

]

, (3.10)

where we have shown only the divergence (coming from 2-loop diagrams, recalling that MQCD is

defined in 3d).

Finally, adding up Eqs. (3.2), (3.8) and (3.10), the remaining logarithmic divergence cancels

perfectly!
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4. Conclusions

Summarizing, for the 3-loop computation of the effective gauge coupling gE, we indeed needed

to consider dimension-six operators in both effective theories, EQCD and MQCD, in order to not

miss any contributions from soft and ultrasoft momentum scales. In retrospect, this had been

signaled by IR divergences of the hard sector, which duly cancel only after the full tower of effective

theories has been considered.

A curious observation is that, although the soft scale mE ∼ gT is formally larger than the

ultrasoft scale ∼ g2T , it apparently plays an essential role in IR dynamics. In fact, comparing their

respective impact (in terms of the IR divergence in the 3-loop gauge coupling; see Eqs. (3.8) and

(3.10)), the contribution of the ultrasoft scale is numerically dwarfed by that of the soft scale.

For future work, once all finite contributions to the 3-loop EQCD gauge coupling are available,

one can envision an update of the comparison between 3d EFT- and 4d lattice-evaluations of the

spatial string tension, as had been done at the 2-loop level in [8, 29]. This would serve as an

important verification of the validity of the effective field theory framework, and provide motivation

to generalize the Yang-Mills results discussed in Sec. 3.1 to full QCD.
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