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Anomalous dimensions and splitting functions beyond NNLO A. Vogt

1. Introduction

Up to power corrections, observablegimandpp hard scattering can be schematically expressed as
O%P = fi®c’, OPP=ffac (1.2)

in terms of the respective partonic cross sections (coefficient fungSrand the universal parton
distribution functions (PDFsj; (x, u?) of the proton at a scalg of the order of a physical scale.
The dependence of the PDFs on the momentum frastismot calculable in perturbative QCD;
their scale dependence is given by the renormalization-group evolutiGtiens

o .. oo [tdyg 2 X 2

ain 2 fi(x,u%) = /X Vplk(yvas(u ) fk(glvll ) - (1.2)
The splitting function$, , which are closely related to the anomalous dimensions of twist-2

operators in the light-cone operator-product expansion (OPE), anddéfficient functions in

eq. (1) can be expanded in powers of the strong couplirgas(u?)/(41m),

P= aPO+a2p®4ap@ +alp@ (1.3)
cg = ar[ct” +acs’ +alch? +aicl? +..]. (1.4)

Together, the first three terms of eqdfs. [1.3) and] (1.4) provide the NNifPoaimation for the
observableq(1].1). This is now the standard accuracy of perturlg@zefor many hard processes;
see refs. [1, 2] for the corresponding helicity-averaged and heli@pendent splitting functions.
N3LO corrections have been obtained for inclusive lepton-hadron thestgstic scattering (DIS)
[3], Higgs production in proton-proton collisions [4,5], and jet praitucin DIS [6]. N*LO results
for inclusive DIS have been reported in refs. [7] (sum rules) ahd8g(low Mellin-N moments).

Using basic symmetries, the systgm(1.2) can be decomposechintdZzcalar ‘non-singlet’
equations and ax22 flavour-singlet system. The former includgs2—1) flavour asymmetries of
quark-antiquark sums and differencgst q;, and the total valence distribution,

— — n —
Onsik = GG — (GEG) . & = 3,11 (0 —C) - (1.5)
The singlet PDFs and their evolution are given by
Ny
0 ana(3) - (2)(5)
s = +0), s ) = ®( 2, 1.6
q rzl(qr ql’) dlnuz ( g qu ng g ( )

whereg(x, u?) denotes the gluon distributiorPyq differs from the splitting functiorP,; for the
combinationsq;;ik in Eq. (L}) by a pure singlet contributidfs which is suppressed at large
In this limit, the splitting function$,q andPyg in the standardS scheme are of the form

XAnk
(1-x)+
whereAn q and A, g are the (light-like)n-loop quark and gluon cusp anomalous dimensions [9].
These and the ‘virtual anomalous dimensidBs are relevant well beyond the context of Eg. |1.2).

Pk(lg_l) (x) = + Bnk0(1—X) + Chx IN(1—X) 4+ Dnx + (1—Xx)-terms, (1.7)

In this contribution we briefly report on recenfND (4-loop) results for the singlet splitting
functions in eq.[(1]6), including the gluon cusp anomalous dimen&ign[10], and on the first
N*LO (5-loop) calculations of the non-singlet splitting functioR§. For the (more advanced)
status of the 4-loop non-singlet splitting functions the reader is refernexf4o[11-13].
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2. Low-N resultsfor the N3L O singlet splitting functions

The results foN = 2 andN = 4 have been reported, in numerical form fipr= 4 flavours in QCD,
at the previous Loops & Legs Workshop [8]. In the meantime, the compusatibfour-loop DIS
with FORCER[14], which are conceptually straightforward extensions of the threp-talcula-
tions in refs. [15], have been extended\e= 6 for chg) andPéS) and toN = 8 for Pég) and Pé?.
The resulting perturbative expansionsRiN,n; = 4) are approximately given by

Py(2,4) = —0.28294a, (1 + 0.6219a; + 0.1461a2 + 0.362203 + ...) |
Pyq(4,4) = —0.55527a, (1 + 0.6803a; + 0.427802 + 0.345%2 + ...)
Pyq(6,4) = —0.716450, (1 + 0.64890; + 0.4264a2 + 0.324802 + ...)
Py(8:4) = —0.83224x, (1 + 0.63280, + 0.4235a2 + 0.3121a3 +...) , (2.1)
Py(2,4) = 0.21221a, (1 + 0.9004a, — 0.102802 — 0.2367a2 + ...) |
Py(4,4) = 0.11671a, (1 — 0.2801a, — 0.9986a2 + 0.1297a2 + ...) |
Pyy(6.4) = 0.083370, (1 — 0.83890, — 1.1501a2 + 0.4417a2 + ...) , (2.2)
Py (2,4) = 0.28294a, (1 + 0.62190; + 0.1461a2 + 0.362203 + ...) |,
Py(4,4) = 0.077810, (1+ 1.1152a, + 0.8234a2 + 0.883302 + ...) |
Py(6,4) = 0.044460a, (1 + 1.30190; + 1.051602 + 1.1270a3 +...) ,
Pyy(8,4) = 0.031160a, (1 + 1.43090; + 1.183002 + 1.3184a2 + ... ) (2.3)
and
Pyy(2,4) = —0.21221a, (1 + 0.9004a, — 0.102802 — 0.2367a2 + ...) |
Pyy(4,4) = —1.2148%r, (1 + 0.38350, + 0.122002 + 0.240502 + ...) |
Pyy(6,4) = —1.627550, (1 + 0.3937a + 0.1697a2 + 0.190203 + ...) . (2.4)

The corresponding analytic expressions for a general gauge giiblge presented elsewhere.

The relative size of the 8LO and N'LO contributions to eqs[(3.1) § (2.4) is illustrated in
fig. 1 for as = 0.2: The N'LO corrections are less than 1%, and less than 0.5% of the NLO results
except forPy,, the quantity with the lowest LO values, ldt> 4.

The resulting lowN expansion for the singlet evolutions equatidns](1.6) is illustrated in fig. 2
for the sufficiently realistic order-independent model input

XG (%, p3) = 0.6x %3(1—x)>° (1+5.0x%8) |
xg(x, 4§) = 1.6x3(1—x)*° (1-0.6x>3) (2.5)

with as(ug) = 0.2 andn; = 4, which was already used in ref. [1]. ThéND corrections are very
small at the standard renormalization sqale= u; = y,. They lead to a reduction of the scale de-
pendence to about 1% (full width) Bit=4 & N = 6 for the conventional ranggu? < p? < 4u?.

Extending eqs[(22) anfl (.4) k= 8 would be extremely hard with the hardware and soft-
ware used to obtain these results; computing\he 10 results in this way is virtually impossible.
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Figure 1: Moments of the singlet splitting functions at NNLO (lines)daNLO (evenN points) for
as = 0.2 andn; = 4, normalized to the respective NLO approximations.
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Figure 2. The dependence of the logarithmic factorization-scalévatives of the singlet PDFs on the
renormalization scal@, atN = 2 (where the very small scaling violations @f andg are related by the
momentum sum rule)l = 4 andN = 6 for the initial distributions|[(2]5).



Anomalous dimensions and splitting functions beyond NNLO A. Vogt

3. Quartic colour-factor contributions and the cusp anomalous dimensions

The computations of the four-loop splitting functions can be extended to thighey using the
OPE, since there the complexity of the required self-energy integrakisesdy 2 foN — N + 2

instead of by 4 in the case of DIS. For example= 16 has been reached for the complef ®

contribution toR;;. In the limit of a large number of colours, it was possible to reacN = 20,

which led to the determination of the &ll-expressions and henceRE® (x) in this limit [12].

In general the higher-order application of the OPE in massless pertwlégiiD is conceptu-
ally much more involved in the singlet case; for low-order treatments seq1éfs This situation
is far less severe for the contributions with quartic Casimir invariants,

d)g}) = d;(':lbcdd;lbcd (31)
wherex, y labels the representations with generafititand
dabed — éTr(TraTr'f’Tr‘:Trd + five bcd permutations, (3.2)

which occur in the splitting functions for the first time at four loops. Thisctiie ‘leading-order’
situation implies particular relations and facilitates calculational simplificationsseTimelude

Py (N) + P (N) —PS (N) —P§F (N) £ 0 (3.3)

(2 denotes equality for the quartic Casimir contributions) for the colour-fattbstitutions [8]

2n)2d /ng = 2nediD /ng = 20, AP /e = dY/ne = d Y /ng (3.4)

that lead to an/” = 1 supersymmetric theory; for lower-order discussions see refs. JAafleover
the off-diagonal quantities are found to be related by [10]

0 3 0 3
Pig (N)PSY (N) 2 P (N) PSS (N) . (3.5)

This second relation, which we have found empirically by inspecting ouftsess consistent with
the implications of /" = 1 supersymmetry for QCD conformal operators investigated in ref. [18].
Itis also a special case of the structure predicted in ref. [19] fromdh&cmal symmetry of QCD

at some non-integer space-time dimendibs 4 — 2¢.

We have used eqq. (.4) arid [3.5) partly to check the results of oundiagralculations, and
partly to simplify our computational task at the highest valuelsl.ofn this manner, we have been
able to derive ald)g,‘) contributions to the RLO splitting functions afN < 16. These results, and

the structurally interesting alt expressions for thé;-terms, can be found in ref. [10].

Analogous to the non-singlet quantities analyzed in ref. [12], the mome%’)oat N <16
facilitate numerical determinations of the quartic-Casimir contributions to theldoprgluon cusp
anomalous dimensioly g, recall eq. [[1]7). The present status\af, andA, 4 is collected in table 1.

The coefficients 0f\; q which are known exactly have also been determined from the quark
form factor [20, 21]; the results are in complete agreement. Recently,xdm eoefficient of
Cg’nf has been obtained in ref. [22]. The only piecefafy known exactly so far is thé:Anf3
contribution [11,23]. For numerical results.ifi =4 maximally supersymmetric Yang-Mills theory
see ref. [24].
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quark gluon Asq Asg
c? — 0 -
C3C, — 0 —
czc? - 0 -
C:C3 oy 6102540.1
d% /N di/Ny  —5070+20 —507.0+5.0
n C2 ng C2C,y —31.00554
nC2C,  n;C-C? 38.75+0.2
n; CeC2 nC3  —44065+0.2
ned /N nedld /Ny —12390+02 —1240+06
n?C? n?CrCp —21.31439
n?CrCx n?C2 58.36737
n?diY /N, - 0.0+0.1
ndCr ndCy 2.454258 2454258

Table1l: Fourth-order coefficients of the quark and gluon cusp anousalimensions determined from the
largex limit (E) of the quark-quark and gluon-gluon splittingnfttions. The errors in the quark case are
correlated due to the exactly known lamglimit. The numerical value of31.00+ 0.4 of ref. [12] for the
coefficient ofn,C2 in A4 4 has been replaced by the exact result of ref. [22]. This aedatues for then?
andn? coefficients have been rounded to seven digits. Entriesleftk for A4 have not been calculated
from diagrams so far, but are related to thoseMpg by Casimir scaling. Entries marked by ‘—’ do not exist.

As up to the third order [1], the corresponding quark and gluon entrieabla 1 have the same
coefficients (for now: as far as they have been computed, and withinrieaiherrors). We refer to
this (for now: conjectured) relation g&neralized Casimir scaling

Unlike for the lower-order coefficients, this relation does not have timseguence that the
values ofA; g and A4 4 are related by a simple numerical Casimir scaling in QCD, i.e., a factor
of Ca/Cr = 9/4. However, this numerical Casimir scaling is restored in the lagdenit of the
guartic colour factors, and therefore also in the overall laxginit, see also ref. [25].

The results in table 1 and the generalized Casimir scaling lead to the followingricaine
results for the four-loop cusp anomalous dimensions in QCD, expandevierp ofas /(41):

Asq = 207022) — 51719(2)n; + 1955772n? + 3.272344F , (3.6)
Asg = 4088030) — 117142) n; + 4400488n7 + 7.362774F (3.7)

where the number(s) in brackets indicate the uncertainty of the preceadit(g)d Combining these
results with the lower-order coefficients, one arrives at the very besigansions

Aq(as,n =3) = 0.42441a,[1+ 0.72657as +0.7340502 + 0.66472) a2 + ...
Aq(as,n; =4) = 0.424410,[1+0.638150, +0.5099802 4-0.31682) a2 + ...
Aq(as,n; =5) = 0.42441a,[1+0.549730, +0.2840302 4-0.01333) a2 + ...

I,
I,
] @38)
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and

Ag(as,n; =3) = 0.954930,[1+ 0.72657a, +0.73405a2 + 0.4152) al+...]

Ag(as,ne =4) = 0.954930 1+ 0.63815a, +0.50998q2 4 0.064(2) a2+ ...]

Ag(as,n; =5) = 0.9549305[1+0.549730, +0.2840302 — 0.2432) a2 +...] . (3.9)
The remaining uncertainties of theND coefficients are practically irrelevant for pnenomenolog-
ical applications. Note that, due to the breaking of the numerical Casimir sedimggcially in

the n? parts of eqgs.[(3]6) anf (B.7) and the cancellations between the terms vatioutithn;,
the numerical Casimir scaling is completely broken for tFe® terms in eqs.[(3.8) anf (3.9).

4. First resultsfor the N*L O non-singlet splitting functions

Using the recent implementation [26] of the loc&l&oeration [27], it is now possible, at least for
the lowest values dfl, to extend the BRCERcalculations of the splitting functions to the'IND
contributionsP® in eq. (I:B). The computational setup is similar to (but includes some efficiency
improvements upon) that used for the beta function and Higgs decays &idps in refs. [28, 29].

As a check specific to the present case, we have explicitly verifiecP,f@ét(N =1) vanishes

in a calculation with one power of the gauge parameter. We have then cadtlBjé?tE(N =2)and

Pn(;‘)*(N = 3) for a general gauge group. The latter computation required an efforparable to

that for the NMLO corrections tdd — ggin the heavy top-quark limit refs. [29], the hardest calcu-
lation performed so far with the program of ref. [26]. An extensioiNte- 4 would be extremely
hard with the present tools; higher valued\bére out of reach for now.

The analytic results will be presented elsewhere. Before turning to theiercal effects,
it is worthwhile to mention another, if not particularly strong check: besidédsmal numbers,
the moments of the NLO splitting functions include values of Riemanr{sfunction up toZ,.
Consistent with the ‘no# theorem’ for Euclidean physical quantities [30], #figterms disappear
when theMS splitting functions are converted to physical evolution kernels for stradunctions
in DIS, and the{, terms disappear after transforming to a renormalization scheme in which the
N4LO beta function does not includg-terms, such as MilMOM in the Landau gauge [31, 32].

Our new results foN = 2 andN = 3 lead to the numericalS expansions
Pis(2,0) = —0.282% (1 + 1.0187a, + 1.530702 4 2.3617a2 +4.520a2 + ...)

Pis(2,3) = —0.282%(1 + 0.86950, + 0.798002 +0.925802 +1.781a + ...)

Pis(2,4) = —0.282% (1 + 0.7987a, + 0.545102 4 0.521502 +1.223a2 + ...),

Pi(2,5) = —0.282%(1 + 0.72800, + 0.2877a2 4 0.151202 4+ 0.84%2 + ...)  (4.1)
and

P(3,0) = —0.4421a (1 + 1.01530, + 1.419002 4 2.095403 +3.9540% + ...)

Ps(3,3) = —0.4421a(1 + 0.79520, + 0.718%2 +0.760502 + 1.508a2 + ...)
Ps(3,4) = —0.44210,(1+ 0.7218x, + 0.4767a2 4 0.392102 +1.031a2 + ...) ,
Ps(3,5) = —0.4421a (1 + 0.6484a, + 0.231002 4 0.064502 +0.727a2 + ...). (4.2)
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Here we have included, = 0 besides the physically relevant values, since it provides usefut infor
mation about the behaviour of the perturbation series. TheNcoefficients in [4]1) and (4.2) are
larger than one may have expected from the NNLO afidd\contributions.

It is interesting in this context to consider the effect of the quartic grougriamts. For exam-
ple, then, = O coefficients in eqs[(4.1) ang (#.2) atldD and N'LO can be decomposed as

2.3617 = 2.0878-+ 0.1096d,7 /n
4520 = 3552 — 0.0430d% /n; + 0.0510d.% /n, (4.3)

and

2.0954 = 2.0624+ 0.0132d% /n¢
3954 — 3371 —0.0171d/nc + 0.0371d}) /n, (4.4)

with déi)/nc =5/2 andd,(:,i)/na =135/8 in QCD, see, e.g., app. C of ref. [32]: Without the rather
large contributions oﬂ,ﬁi), which enter at RLO for the first time, the series would look much
more benign with consecutive ratios of 1.4 to 1.6 between tHeON N3LO, NNLO and NLO
coefficients. This sizeablpl,gi) contribution (~ n? 4+ 36) also implies that the leading large-

contribution provides a less good approximation &4t ® than at the previous orders.

The numerical impact of the higher-order contributions to the splitting funefhon the
N = 2 andN = 3 moments of the respective PDFs [1.5) are illustrated in fig. 3aAt?) = 0.2
andn; = 4, the N'LO corrections are about 0.15% @t = L, roughly half the size of their LO
counterparts. Varying, up and down by a factor of 2 — the required additional terms for the
splitting functions can be found toNO, e.g., in eq. (2.9) of ref. [33] — one arrives at a band with
a full width of about 0.7%. The RLO and N'LO corrections are about twice as large at a lower
scale withas(u?) = 0.25 andn; = 3.
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Figure 3: Left and middle panel: the renormalization-scale depecelaf the logarithmic factorization-
scale derivatives of the PDigg; atN = 2 andg,; atN = 3 at our standard reference point witf( ?) = 0.2
andn; = 4. Right panel: the correspondifg= 3 results at a lower scale Wi'drg(ufz) =0.25 andn; = 3.
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