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Anomalous dimensions and splitting functions beyond NNLO A. Vogt

1. Introduction

Up to power corrections, observables inepandpphard scattering can be schematically expressed as

Oep = fi ⊗ co
i , Opp = fi ⊗ fk ⊗ co

ik (1.1)

in terms of the respective partonic cross sections (coefficient functions) co and the universal parton
distribution functions (PDFs)fi (x,µ2) of the proton at a scaleµ of the order of a physical scale.
The dependence of the PDFs on the momentum fractionx is not calculable in perturbative QCD;
their scale dependence is given by the renormalization-group evolution equations

∂
∂ ln µ2 fi(x,µ2) =

∫ 1

x

dy
y

Pik

(

y,αs(µ2)
)

fk
( x

y
,µ2

)

. (1.2)

The splitting functionsPik , which are closely related to the anomalous dimensions of twist-2
operators in the light-cone operator-product expansion (OPE), and the coefficient functions in
eq. (1.1) can be expanded in powers of the strong couplingas ≡ αs(µ2)/(4π),

P = a
s
P(0) + a2

s
P(1) + a3

s
P(2) + a4

s
P(3) + . . . , (1.3)

co
a = ano

s

[

c(0)
o + a

s
c(1)

o + a2
s
c(2)

o + a3
s
c(3)

o + . . .
]

. (1.4)

Together, the first three terms of eqs. (1.3) and (1.4) provide the NNLO approximation for the
observables (1.1). This is now the standard accuracy of perturbativeQCD for many hard processes;
see refs. [1, 2] for the corresponding helicity-averaged and helicity-dependent splitting functions.
N3LO corrections have been obtained for inclusive lepton-hadron deep-inelastic scattering (DIS)
[3], Higgs production in proton-proton collisions [4,5], and jet production in DIS [6]. N4LO results
for inclusive DIS have been reported in refs. [7] (sum rules) and ref. [8] (low Mellin-N moments).

Using basic symmetries, the system (1.2) can be decomposed into 2nf −1 scalar ‘non-singlet’
equations and a 2×2 flavour-singlet system. The former includes 2(nf −1) flavour asymmetries of
quark-antiquark sums and differences,qi ± q̄i , and the total valence distribution,

q±
ns,ik = qi ± q̄i − (qk± q̄k) , qv = ∑

nf

r =1(qr − q̄r) . (1.5)

The singlet PDFs and their evolution are given by

q
s

=

nf

∑
r=1

(qr + q̄r) ,
d

d ln µ2

(

q
s

g

)

=

(

Pqq Pqg

Pgq Pgg

)

⊗

(

q
s

g

)

, (1.6)

whereg(x,µ2) denotes the gluon distribution.Pqq differs from the splitting functionP+
ns for the

combinationsq+
ns,ik in Eq. (1.5) by a pure singlet contributionPps which is suppressed at largex.

In this limit, the splitting functionsPqq andPgg in the standardMS scheme are of the form

P(n−1)
kk (x) =

xAn,k

(1−x)+
+ Bn,k δ (1−x) + Cn,k ln(1−x) + Dn,k + (1−x) -terms, (1.7)

whereAn,q andAn,g are the (light-like)n-loop quark and gluon cusp anomalous dimensions [9].
These and the ‘virtual anomalous dimensions’Bn,k are relevant well beyond the context of Eq. (1.2).

In this contribution we briefly report on recent N3LO (4-loop) results for the singlet splitting
functions in eq. (1.6), including the gluon cusp anomalous dimensionA4,g [10], and on the first
N4LO (5-loop) calculations of the non-singlet splitting functionsP±

ns. For the (more advanced)
status of the 4-loop non-singlet splitting functions the reader is referred torefs. [11–13].
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2. Low-NNN results for the N3LO singlet splitting functions

The results forN = 2 andN = 4 have been reported, in numerical form fornf = 4 flavours in QCD,
at the previous Loops & Legs Workshop [8]. In the meantime, the computations of four-loop DIS
with FORCER [14], which are conceptually straightforward extensions of the three-loop calcula-
tions in refs. [15], have been extended toN = 6 for P(3)

qg andP(3)
gg and toN = 8 for P(3)

qq andP(3)
gq .

The resulting perturbative expansions ofPik(N,nf = 4) are approximately given by

Pqq(2,4) = −0.28294α
s

(

1 + 0.6219α
s
+ 0.1461α2

s
+ 0.3622α3

s
+ . . .

)

,

Pqq(4,4) = −0.55527α
s

(

1 + 0.6803α
s
+ 0.4278α2

s
+ 0.3459α3

s
+ . . .

)

,

Pqq(6,4) = −0.71645α
s

(

1 + 0.6489α
s
+ 0.4264α2

s
+ 0.3248α3

s
+ . . .

)

,

Pqq(8,4) = −0.83224α
s

(

1 + 0.6328α
s
+ 0.4235α2

s
+ 0.3121α3

s
+ . . .

)

, (2.1)

Pqg(2,4) = 0.21221α
s

(

1 + 0.9004α
s
− 0.1028α2

s
− 0.2367α3

s
+ . . .

)

,

Pqg(4,4) = 0.11671α
s

(

1− 0.2801α
s
− 0.9986α2

s
+ 0.1297α3

s
+ . . .

)

,

Pqg(6,4) = 0.08337α
s

(

1− 0.8389α
s
− 1.1501α2

s
+ 0.4417α3

s
+ . . .

)

, (2.2)

Pgq(2,4) = 0.28294α
s

(

1 + 0.6219α
s
+ 0.1461α2

s
+ 0.3622α3

s
+ . . .

)

,

Pgq(4,4) = 0.07781α
s

(

1 + 1.1152α
s
+ 0.8234α2

s
+ 0.8833α3

s
+ . . .

)

,

Pgq(6,4) = 0.04446α
s

(

1 + 1.3019α
s
+ 1.0516α2

s
+ 1.1270α3

s
+ . . .

)

,

Pgq(8,4) = 0.03116α
s

(

1 + 1.4309α
s
+ 1.1830α2

s
+ 1.3184α3

s
+ . . .

)

(2.3)

and

Pgg(2,4) = −0.21221α
s

(

1 + 0.9004α
s
− 0.1028α2

s
− 0.2367α3

s
+ . . .

)

,

Pgg(4,4) = −1.21489α
s

(

1 + 0.3835α
s
+ 0.1220α2

s
+ 0.2405α3

s
+ . . .

)

,

Pgg(6,4) = −1.62755α
s

(

1 + 0.3937α
s
+ 0.1697α2

s
+ 0.1902α3

s
+ . . .

)

. (2.4)

The corresponding analytic expressions for a general gauge groupwill be presented elsewhere.

The relative size of the N2LO and N3LO contributions to eqs. (2.1) – (2.4) is illustrated in
fig. 1 for αs = 0.2: The N3LO corrections are less than 1%, and less than 0.5% of the NLO results
except forPgq, the quantity with the lowest LO values, atN ≥ 4.

The resulting low-N expansion for the singlet evolutions equations (1.6) is illustrated in fig. 2
for the sufficiently realistic order-independent model input

xq
s
(x,µ2

0) = 0.6x−0.3(1−x)3.5 (

1+5.0x0.8)

,

xg(x,µ2
0) = 1.6x−0.3(1−x)4.5 (

1−0.6x0.3)

(2.5)

with αs(µ2
0) = 0.2 andnf = 4, which was already used in ref. [1]. The N3LO corrections are very

small at the standard renormalization scaleµr = µ f ≡ µ0. They lead to a reduction of the scale de-
pendence to about 1% (full width) atN = 4 & N = 6 for the conventional range14 µ2

f ≤ µ2
r ≤ 4µ2

f .

Extending eqs. (2.2) and (2.4) toN = 8 would be extremely hard with the hardware and soft-
ware used to obtain these results; computing theN = 10 results in this way is virtually impossible.
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Figure 1: Moments of the singlet splitting functions at NNLO (lines) and N3LO (even-N points) for
αs = 0.2 andnf = 4, normalized to the respective NLO approximations.
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Figure 2: The dependence of the logarithmic factorization-scale derivatives of the singlet PDFs on the
renormalization scaleµr at N = 2 (where the very small scaling violations ofq

s
andg are related by the

momentum sum rule)N = 4 andN = 6 for the initial distributions (2.5).
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3. Quartic colour-factor contributions and the cusp anomalous dimensions

The computations of the four-loop splitting functions can be extended to higher N by using the
OPE, since there the complexity of the required self-energy integral increases by 2 forN → N+2
instead of by 4 in the case of DIS. For example,N = 16 has been reached for the complete N3LO
contribution toP+

ns. In the limit of a large number of coloursnc, it was possible to reachN = 20,
which led to the determination of the all-N expressions and hence ofP±(3)

ns (x) in this limit [12].

In general the higher-order application of the OPE in massless perturbative QCD is conceptu-
ally much more involved in the singlet case; for low-order treatments see refs. [16]. This situation
is far less severe for the contributions with quartic Casimir invariants,

d(4)
xy ≡ dabcd

x dabcd
y (3.1)

wherex,y labels the representations with generatorsTa
r and

dabcd
r =

1
6

Tr(Ta
r Tb

r Tc
r Td

r + five bcdpermutations) , (3.2)

which occur in the splitting functions for the first time at four loops. This effective ‘leading-order’
situation implies particular relations and facilitates calculational simplifications. These include

P(3)
qq (N)+P(3)

gq (N)−P(3)
qg (N)−P(3)

gg (N)
Q
= 0 (3.3)

(
Q
= denotes equality for the quartic Casimir contributions) for the colour-factorsubstitutions [8]

(2nf )
2d(4)

FF /na = 2nf d(4)
FA /na = 2nf d(4)

FF /nc = d(4)
FA /nc = d(4)

AA /na (3.4)

that lead to anN = 1 supersymmetric theory; for lower-order discussions see refs. [17]. Moreover
the off-diagonal quantities are found to be related by [10]

P(0)
qg (N)P(3)

gq (N)
Q
= P(0)

gq (N)P(3)
qg (N) . (3.5)

This second relation, which we have found empirically by inspecting our results, is consistent with
the implications ofN = 1 supersymmetry for QCD conformal operators investigated in ref. [18].
It is also a special case of the structure predicted in ref. [19] from the conformal symmetry of QCD
at some non-integer space-time dimensionD = 4−2ε.

We have used eqs. (3.4) and (3.5) partly to check the results of our diagrams calculations, and
partly to simplify our computational task at the highest values ofN. In this manner, we have been
able to derive alld(4)

xy contributions to the N3LO splitting functions atN ≤ 16. These results, and
the structurally interesting all-N expressions for theζ5-terms, can be found in ref. [10].

Analogous to the non-singlet quantities analyzed in ref. [12], the moments ofP(3)
gg at N ≤ 16

facilitate numerical determinations of the quartic-Casimir contributions to the four-loop gluon cusp
anomalous dimensionA4,g, recall eq. (1.7). The present status ofA4,q andA4,g is collected in table 1.

The coefficients ofA4,q which are known exactly have also been determined from the quark
form factor [20, 21]; the results are in complete agreement. Recently, the exact coefficient of
C3

Fnf has been obtained in ref. [22]. The only piece ofA4,g known exactly so far is theCAn3
f

contribution [11,23]. For numerical results inN =4 maximally supersymmetric Yang-Mills theory
see ref. [24].
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quark gluon A4,q A4,g

C4
F − 0 −

C3
F CA − 0 −

C2
FC2

A − 0 −

CFC3
A C4

A 610.25±0.1

d(4)
FA /NF d(4)

AA /NA −507.0±2.0 −507.0±5.0

nf C3
F nf C2

FCA −31.00554

nf C2
FCA nf CFC2

A 38.75±0.2

nf CFC2
A nfC

3
A −440.65±0.2

nf d(4)
FF /NF nf d(4)

FA /NA −123.90±0.2 −124.0±0.6

n2
f C2

F n2
f CFCA −21.31439

n2
f CFCA n2

f C2
A 58.36737

− n2
f d(4)

FF /NA − 0.0±0.1

n3
f CF n3

f CA 2.454258 2.454258

Table 1: Fourth-order coefficients of the quark and gluon cusp anomalous dimensions determined from the
large-x limit (1.7) of the quark-quark and gluon-gluon splitting functions. The errors in the quark case are
correlated due to the exactly known large-nc limit. The numerical value of−31.00±0.4 of ref. [12] for the
coefficient ofnfC

3
F in A4,q has been replaced by the exact result of ref. [22]. This and the values for then2

f

andn3
f coefficients have been rounded to seven digits. Entries leftblank forA4,g have not been calculated

from diagrams so far, but are related to those forA4,q by Casimir scaling. Entries marked by ‘–’ do not exist.

As up to the third order [1], the corresponding quark and gluon entries intable 1 have the same
coefficients (for now: as far as they have been computed, and within numerical errors). We refer to
this (for now: conjectured) relation asgeneralized Casimir scaling.

Unlike for the lower-order coefficients, this relation does not have the consequence that the
values ofA4,g andA4,q are related by a simple numerical Casimir scaling in QCD, i.e., a factor
of CA/CF = 9/4. However, this numerical Casimir scaling is restored in the large-nc limit of the
quartic colour factors, and therefore also in the overall large-nc limit, see also ref. [25].

The results in table 1 and the generalized Casimir scaling lead to the following numerical
results for the four-loop cusp anomalous dimensions in QCD, expanded in powers ofαs/(4π):

A4,q = 20702(2) − 5171.9(2)nf + 195.5772n2
f + 3.272344n3

f , (3.6)

A4,g = 40880(30) − 11714(2) nf + 440.0488n2
f + 7.362774n3

f , (3.7)

where the number(s) in brackets indicate the uncertainty of the preceding digit(s). Combining these
results with the lower-order coefficients, one arrives at the very benign expansions

Aq(αs,nf =3) = 0.42441αs [1+0.72657αs +0.73405α2
s
+0.6647(2)α3

s
+ . . . ] ,

Aq(αs,nf =4) = 0.42441αs [1+0.63815αs +0.50998α2
s
+0.3168(2)α3

s
+ . . . ] ,

Aq(αs,nf =5) = 0.42441αs [1+0.54973αs +0.28403α2
s
+0.0133(3)α3

s
+ . . . ] (3.8)
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and

Ag(αs,nf =3) = 0.95493αs [1+0.72657αs +0.73405α2
s
+0.415(2)α3

s
+ . . . ] ,

Ag(αs,nf =4) = 0.95493αs [1+0.63815αs +0.50998α2
s
+0.064(2)α3

s
+ . . . ] ,

Ag(αs,nf =5) = 0.95493αs [1+0.54973αs +0.28403α2
s
−0.243(2)α3

s
+ . . . ] . (3.9)

The remaining uncertainties of the N3LO coefficients are practically irrelevant for phenomenolog-
ical applications. Note that, due to the breaking of the numerical Casimir scalingespecially in
the n0

f parts of eqs. (3.6) and (3.7) and the cancellations between the terms withoutand withnf ,
the numerical Casimir scaling is completely broken for the N3LO terms in eqs. (3.8) and (3.9).

4. First results for the N4LO non-singlet splitting functions

Using the recent implementation [26] of the local R∗-operation [27], it is now possible, at least for
the lowest values ofN, to extend the FORCERcalculations of the splitting functions to the N4LO
contributionsP(4) in eq. (1.3). The computational setup is similar to (but includes some efficiency
improvements upon) that used for the beta function and Higgs decays at five loops in refs. [28,29].

As a check specific to the present case, we have explicitly verified thatP(4)−
ns (N=1) vanishes

in a calculation with one power of the gauge parameter. We have then calculated P(4)+
ns (N = 2) and

P(4)−
ns (N = 3) for a general gauge group. The latter computation required an effort comparable to

that for the N4LO corrections toH → gg in the heavy top-quark limit refs. [29], the hardest calcu-
lation performed so far with the program of ref. [26]. An extension toN = 4 would be extremely
hard with the present tools; higher values ofN are out of reach for now.

The analytic results will be presented elsewhere. Before turning to their numerical effects,
it is worthwhile to mention another, if not particularly strong check: besides rational numbers,
the moments of the N4LO splitting functions include values of Riemann’sζ -function up toζ7.
Consistent with the ‘no-π2 theorem’ for Euclidean physical quantities [30], theζ6 terms disappear
when theMS splitting functions are converted to physical evolution kernels for structure functions
in DIS, and theζ4 terms disappear after transforming to a renormalization scheme in which the
N4LO beta function does not includeζ4-terms, such as MINI MOM in the Landau gauge [31,32].

Our new results forN = 2 andN = 3 lead to the numericalMS expansions

P+
ns(2,0) = −0.2829α

s
(1 + 1.0187α

s
+ 1.5307α2

s
+2.3617α3

s
+4.520α4

s
+ . . .) ,

· · ·

P+
ns(2,3) = −0.2829α

s
(1 + 0.8695α

s
+ 0.7980α2

s
+0.9258α3

s
+1.781α4

s
+ . . .) ,

P+
ns(2,4) = −0.2829α

s
(1 + 0.7987α

s
+ 0.5451α2

s
+0.5215α3

s
+1.223α4

s
+ . . .) ,

P+
ns(2,5) = −0.2829α

s
(1 + 0.7280α

s
+ 0.2877α2

s
+0.1512α3

s
+0.849α4

s
+ . . .) (4.1)

and

P−
ns(3,0) = −0.4421α

s
(1 + 1.0153α

s
+ 1.4190α2

s
+2.0954α3

s
+3.954α4

s
+ . . .) ,

· · ·

P−
ns(3,3) = −0.4421α

s
(1 + 0.7952α

s
+ 0.7183α2

s
+0.7605α3

s
+1.508α4

s
+ . . .) ,

P−
ns(3,4) = −0.4421α

s
(1 + 0.7218α

s
+ 0.4767α2

s
+0.3921α3

s
+1.031α4

s
+ . . .) ,

P−
ns(3,5) = −0.4421α

s
(1 + 0.6484α

s
+ 0.2310α2

s
+0.0645α3

s
+0.727α4

s
+ . . .) . (4.2)
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Here we have includednf = 0 besides the physically relevant values, since it provides useful infor-
mation about the behaviour of the perturbation series. The N4LO coefficients in (4.1) and (4.2) are
larger than one may have expected from the NNLO and N3LO contributions.

It is interesting in this context to consider the effect of the quartic group invariants. For exam-
ple, thenf = 0 coefficients in eqs. (4.1) and (4.2) at N3LO and N4LO can be decomposed as

2.3617= 2.0878+ 0.1096d(4)
FA /nc

4.520 = 3.552 − 0.0430d(4)
FA /nc + 0.0510d(4)

AA /na (4.3)

and

2.0954= 2.0624+ 0.0132d(4)
FA /nc

3.954 = 3.371 − 0.0171d(4)
FA /nc + 0.0371d(4)

AA /na (4.4)

with d(4)
FA /nc = 5/2 andd(4)

AA /na = 135/8 in QCD, see, e.g., app. C of ref. [32]: Without the rather

large contributions ofd(4)
AA , which enter at N4LO for the first time, the series would look much

more benign with consecutive ratios of 1.4 to 1.6 between the N4LO, N3LO, NNLO and NLO
coefficients. This sizeablyd(4)

AA contribution (∼ n2
c + 36) also implies that the leading large-nc

contribution provides a less good approximation at N4LO than at the previous orders.

The numerical impact of the higher-order contributions to the splitting functions P±
ns on the

N = 2 andN = 3 moments of the respective PDFs (1.5) are illustrated in fig. 3. Atαs(µ2
f ) = 0.2

andnf = 4, the N4LO corrections are about 0.15% atµr = µ f , roughly half the size of their N3LO
counterparts. Varyingµr up and down by a factor of 2 – the required additional terms for the
splitting functions can be found to N4LO, e.g., in eq. (2.9) of ref. [33] – one arrives at a band with
a full width of about 0.7%. The N3LO and N4LO corrections are about twice as large at a lower
scale withαs(µ2

f ) = 0.25 andnf = 3.
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Figure 3: Left and middle panel: the renormalization-scale dependence of the logarithmic factorization-
scale derivatives of the PDFsq+

ns atN = 2 andq−
ns atN = 3 at our standard reference point withαs(µ2

f ) = 0.2
andnf = 4. Right panel: the correspondingN = 3 results at a lower scale withαs(µ2

f ) = 0.25 andnf = 3.
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