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1. Introduction

We aim at the simplification of loop Feynman integrals to expressions in terms of special
functions and constants. More precisely, we consider µ-loop massive Feynman parameter integrals
(e.g., µ = 3) emerging in renormalizable Quantum Field Theories, like Quantum Electrodynamics
or Quantum Chromodynamics, see e.g. [24, 70], which can be transformed to a linear combination
of s-fold multiple integrals of the form

F(m1, . . . ,mr,n,ε) =
∫ 1

0
· · ·
∫ 1

0
f (m1, . . . ,mr,n,ε,x1, . . . ,xs)dx1 . . . dxs; (1.1)

m1, . . . ,mr are the involved masses, the discrete parameter n stands for the Mellin variable, and
D := 4+ ε with ε ∈ R is the analytic continuation of the space-time dimension. Often one can
consider m1, . . . ,mr and ε as indeterminates (and reinterprets them, only if necessary, as concrete
parameters that can be evaluated within certain ranges). In the following we assume that the masses
are contained in a field K of characteristic 0. A crucial property is that the integrand f of such
a Feynman integral is hyperexponential1 in each of the integration variables xi (1 ≤ i ≤ s) and
hypergeometric in the discrete parameter n.

Given such an integral2 F(n,ε), one seeks for the first coefficients of their Laurent series
expansion

F(n,ε) = Fl(n)ε l +Fl+1(n)ε l+1 + · · ·+Fr(n)εr +O(εr+1)

where the coefficients are given in terms of special functions and constants; usually, we have l =
−µ for a µ-loop Feynman integral and r = 0,1,2. More precisely, we applied the following general
strategies in the course of our calculations:

Feynman integral

symbolic integration

��

pFq-/Mellin-Barnes
technologies

##
multi-sum expressions

symbolic summation

qqspecial function expressions

First one may apply directly symbolic integration algorithms (see Section 2.1) in combination
with recurrence solving technologies (see Section 2.2) to simplify these integrals in terms of spe-
cial functions. Second one can transform in a preprocessing step these integrals to expressions in
terms of multiple nested sums. Namely, by applying successively Newton’s binomial theorem and
Mellin-Barnes decompositions on the integrand, implemented in different packages [33, 36, 65],
one can carry out all integrals by introducing Mellin-Barnes integrals. Finally, applying the residue
theorem to these introduced Mellin-Barnes integrals yields multiple sums over hypergeometric ex-
pressions. We emphasize that this mechanism has to be applied very carefully in order to arrive at

1h(x) is hyperexponential (resp. hypergeometric) in x if h′(x)
h(x) (resp. h(x+1)

h(x) ) is a rational function in x.
2In the following we will suppress the mass dependencies.

1



P
o
S
(
L
L
2
0
1
8
)
0
5
2

Computer algebra tools for Feynman integrals and related multi-sums Carsten Schnneider

expressions that are suitable for our symbolic summation methods. In general, we will end up at a
linear combination of hypergeometric multi-sums of the form

S(n,ε) =
L1(n)

∑
k1=1

. . .
Lv(n,k1,...,kv−1)

∑
kv=1

f (n,ε,k1, . . . ,kv) (1.2)

over K(n,ε). Here the upper bounds L1(n), . . . ,Lv(n,k1, . . . ,kv−1) are integer linear (i.e., linear
combinations of the variables over the integers) in the dependent parameters or ∞, and f is hyper-
geometric in n and the summation variables ki. Then given such a sum representation, we are in
the position to apply our symbolic summation tools summarized in Section 2.3.

In many applications, one is faced with thousands (even millions) of Feynman integrals that
describe an underlying physical problem. To treat them directly with the above methods is usu-
ally out of scope. As a preprocessing step, one utilizes integration by parts (IBP) methods [31,
42, 46, 47, 67]. They crunch the given expression to a more compact form in terms of only few
integrals, that have to be treated individually. Similarly, while transforming Feynman integrals
to multiple sums, one obtains enormous expressions consisting of up to thousands of multiple
sums. To simplify these sums successively using these summation tools is not only problematic
because of time limitations, but also because of the following intrinsic problem. Often the scat-
tered sums themselves cannot be simplified in terms of indefinite nested sums, but only a suitable
combination of them can be simplified in this way. In order to bypass these problems, the package
SumProduction [23, 61] built on Sigma [57, 60] can be utilized. It reduces the sum expres-
sions to compact forms where the arising sums are merged appropriately. Afterwards the symbolic
summation can be applied to these expressions within reasonable time and without dealing with
sums that cannot be handled within the difference ring setting [49, 63, 64]. Summarizing, the fol-
lowing simplification techniques are applied in addition in order to reduce the given problem to a
reasonable size of integrals or sums.

huge expression of
Feynman integralsIBP methods

��

pFq-/Mellin-Barnes
technologies

��
huge expression in terms of

few master integrals
huge expression

of (small) multi-sums

merging/reduction
��

huge expression in terms
of few (large) multi-sums

An extra advantage of the IBP approach is that most of the produced master integrals are described
as solutions of coupled systems of linear differential equations. Only few integrals (usually of sim-
pler type) arise in the inhomogeneous part of these systems which themselves are not represented
as solutions of coupled systems. Thus the remaining task is to simplify these few integrals by sym-
bolic summation/integration methods and to derive the remaining (and usually more complicated)
integrals by solving the provided coupled systems of linear differential equations.
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In a nutshell, one is faced with the problem to simplify Feynman integrals by means of sym-
bolic integration (see Section 2.1 in combination with Section 2.2), symbolic summation (see Sec-
tion 2.3) or solving coupled systems of linear differential equations (see Section 2.4).

2. Computer algebra methods

In the following we will present the most relevant computer algebra tools, that were crucial to
carry out the challenging QCD-calculations described in [2–4, 8, 18–20, 22]. For a comprehensive
summary of further available tools we refer to the recent survey article [28].

2.1 Symbolic integration: the multivariate Almkvist-Zeilberger algorithm

Concerning symbolic integration tools we heavily utilized the multivariate Almkvist-Zeil-
berger algorithm [16, 17], in particular an optimized and improved version [1, 4] for Feynman
integrals that can tackle the following problem.

Recurrence finding.
Given an integral in the form (1.1) where f is hyperexponential in xi for i = 1,2, . . . ,s and hyper-
geometric in n. Compute a linear recurrence of the form

a0(n,ε)F(n,ε)+a1(n,ε)F(n+1,ε)+ · · ·+ad(n,ε)F(n+d,ε) = 0 (2.1)

with polynomials ai(n,ε) ∈K[ε,n] where ad(n,ε) 6= 0.

Internally, the problem is reduced to solve linear systems of equations in K(n,ε). The complexity
to solve the underlying systems depends heavily on the involvement of the constructed field K, the
number of the integration variables x1, . . . ,xs and on the structure of the integrand f (in particular
how the variables are intertwined). However, for various concrete situations this method works
very well.

Example 1. If one applies the package MultiIntegrate [1, 4] to the multi-integral

F(n,ε) =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1−u

0

(x+y−1)nxε/2(1−x)ε/2yε/2(1−y)ε/2(1−u−v)n
(

1−u x
x−1−v

y
y−1

)−1+3/2ε

u1+ε/2v1+ε/2 dxdydudv,

(2.2)
one can compute a recurrence of the form (2.1) with order d = 5 in about 8 hours.

Remark 1. For some special cases we could also utilize an extended version [45] of the hyperlog-
arithm method [30, 50] in order to tackle massive Feynman integrals.

2.2 Recurrence solving

Suppose we calculated a recurrence of the form (2.1) or more generally of the form

a0(n)F(n)+a1(n)F(n+1)+ · · ·+ad(n)F(n+d) = b(n) (2.3)

with ai(n) ∈K[n] for 0≤ i≤ d where ad(n) 6= 0 and where b(n) ∈K for n≥ 0. Let δ = max({i ∈
N | ad(i) = 0}∪{−1})+ 1. Then it follows immediately that there is a unique sequence solution

3
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F(n) with n≥ δ of (2.3) if one fixes the first d initial values F(δ ), . . . ,F(δ +d−1) ∈K.
An important task is then to represent, if possible, such a solution in terms of special functions.
Within the summation package Sigma [57, 60] difference ring algorithms have been encoded [14,
15, 37, 39, 49, 53, 55, 56, 58, 59, 62–64], that find such a representation in terms of indefinite
nested sums over hypergeometric products, whenever this is possible.

Definition 1. Let K be a field of characteristic 0. A product ∏
k
j=l f ( j), l ∈ N, is called hypergeo-

metric in k over K if f (y) is an element from the rational function field K(y) where the numerator
and denominator of f ( j) are nonzero for all j ∈ Z with j ≥ l. An expression in terms of indefi-
nite nested sums over hypergeometric products in k over K is composed recursively by the three
operations (+,−, ·) with

• elements from the rational function field K(k),

• hypergeometric products in k over K,

• and sums of the form ∑
k
j=l f ( j) with l ∈N where f ( j) is an expression in terms of indefinite

nested sums over hypergeometric products in j over K; here it is assumed that the evaluation
of f ( j)| j 7→λ for all λ ∈ Z with λ ≥ l does not introduce any poles.

If K and k are clear from the context we simply say that f (k) is an expression in terms of indefinite
nested sums (over hypergeometric products).

Example 2. The class of indefinite nested sums over hypergeometric products in n over K covers
as special cases harmonic sums [25, 69] like

S2,1(n) =
n

∑
i=1

1
i2

i

∑
j=1

1
j
,

generalized harmonic sums [12, 48] like

n

∑
k=1

2k

k

k

∑
i=1

2−i

i

i

∑
j=1

1
j
,

cyclotomic harmonic sums [11] like

n

∑
k=1

1
(1+2k)2

k

∑
j=1

1
j2

j

∑
i=1

1
1+2i

or nested binomial sums [10] like

n

∑
k=1

1(2k
k

)2

k

∑
j=1

1
j2

j

∑
i=1

(2i
i

)
1+2i

.

We can solve the following problem with the summation package Sigma for the class of indefinite
nested sums.
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Recurrence solving.
Given ai(n) ∈ K[n] for 0 ≤ i ≤ d where ad(n) 6= 0 and given b(n) that can be calculated by an
expression in terms of indefinite nested sums over hypergeometric products; given δ as above
and cδ , . . . ,cδ+d−1 ∈ K. Decide constructively if the solution F(n) of (2.3) with F(i) = ci for
δ ≤ i ≤ δ + d− 1 can be calculated by an expression in terms of indefinite nested sums over
hypergeometric products.

In QCD-calculations the recurrence (2.3) usually depends on ε . In this case we could treat
ε just as an extra parameter which is contained in K and seek for a solution within the class of
indefinite nested sums over hypergeometric products over K. However, in most cases such an all n
and ε representation does not exist. A more flexible strategy is to hunt for a solution F(n,ε) given
in its ε-expansion

F(n,ε) = Fl(n)ε l +Fl+1(n)ε l+1 + . . . (2.4)

More precisely, consider a recurrence of the form

a0(n,ε)F(n,ε)+a1(n,ε)F(n+1,ε)+ · · ·+ad(n,ε)F(n+d,ε) = b(n,ε) (2.5)

with ai(n,ε) ∈ K[n,ε] where not all3 ai(n,0) are zero and with a right-hand side given in its ε-
expansion

b(n,ε) =
∞

∑
i=l

bi(n)ε i (2.6)

where bi(n) ∈ K for i ≥ l and n ≥ 0. Let o be the largest integer such that ao(n,0) 6= 0 and δ =

max({i ∈ N | ao(i,0) = 0}∪{−1})+1. Then by a slight variation of [24] it follows that there is a
unique Laurent series solution (2.4) for n ≥ δ when fixing Fi( j) ∈ K for i ≥ l and δ ≤ i ≤ δ + o.
In particular, the following holds. If there are two solutions, say F(n,ε) with (2.4) and F ′(n,ε) =
F ′l (n)ε

l +F ′l+1(n)ε
l+1+ . . . and if Fi( j) = F ′i ( j) for l ≤ i≤ r and δ ≤ i≤ δ +o, then Fi(n) = F ′i (n)

for all l ≤ i ≤ r and n ≥ δ . In short, knowing the first initial values determines uniquely the first
coefficients of a Laurent series solution. In particular, they can be prolonged stepwise to a full
Laurent series solution by fixing further initial values of higher ε-orders.

With this preparation step we can now introduce the following machinery from [24] implemented
in Sigma.

Recurrence solving for ε-expansions.
Given ai(n,ε) ∈K[n,ε] for 0≤ i≤ d where not all ai(n,0) are zero and given b(n,ε) with (2.6)
where bl(n), . . . ,br(n) are represented in terms of indefinite nested sums over hypergeometric
products; given o,δ as given above, and given ci, j ∈ K for l ≤ i ≤ r and δ ≤ i ≤ δ + o. Decide
constructively if the first coefficients Fl(n), . . . ,Fr(n) of a Laurent series solution (2.4) of the
recurrence (2.5) with Fi( j) = ci, j can be calculated by expressions in terms indefinite nested
sums over hypergeometric products.

Example 3. We continue Example 1 by taking the recurrence of order 5 (see [4, pp. 49–52]) for
the integral F(n,ε) given in (2.2). In addition, we take the five initial values F(2,ε), . . . ,F(6,ε)

3If all ai(n,0) are zero, we can divide the equation by εr for some r ∈ N yielding again polynomial coefficients on
the left-hand side where not all are zero when setting ε to 0.

5
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expanded up to ε−1. E.g., we have

F(2,ε) =
20

27ε3 −
40

27ε2 +
1
ε

(
1393
486

+
5ζ2

18

)
+O(ε0).

Then using the above algorithm we can calculate the first three coefficients in

F(n,ε) = F−3(n)ε
−3 +F−2(n)ε

−2 +F−1(n)ε
−1 +O(ε0)

of the ε-expansion within a few seconds. More precisely, we get

F−3(n) =
8(−1)n

3(n+1)(n+2)
+

8(2n+3)
3(n+1)2(n+2)

,

F−2(n) =−
4(−1)n

(
3n3 +18n2 +31n+18

)
3(n+1)3(n+2)2 −

4
(
6n3 +32n2 +51n+26

)
3(n+1)3(n+2)2 ,

F−1(n) = (−1)n

(
2
(
9n5 +81n4 +295n3 +533n2 +500n+204

)
3(n+1)4(n+2)3 +

ζ (2)
(n+1)(n+2)

)

+
2
(
18n5 +150n4 +490n3 +755n2 +536n+132

)
3(n+1)4(n+2)3 +

(2n+3)ζ (2)
(n+1)2(n+2)

+

(
− 4
(n+1)2(n+2)

+
4(−1)n

(n+1)(n+2)

)
S2(n)

+

(
4(−1)n

3(n+1)(n+2)
− 4(n+9)

3(n+1)2(n+2)

)
S−2(n);

here Sa(n) = ∑
n
k=1

sign(a)k

ka are the generalized harmonic numbers and ζ (z) = ∑
∞
k=1

1
kz denotes the

Riemann zeta function.

As illustrated in the previous example, one can combine the Almkvist-Zeilberger method with the
above recurrence solver to obtain a method4 for the following problem.

Simplifying multiple integrals.
Given an integral in the form (1.1) where f is hyperexponential in xi for i = 1,2, . . . ,s and hy-
pergeometric in n. Compute the first coefficients of its ε-expansion in terms of indefinite nested
sums over hypergeometric products.

2.3 Symbolic summation: the difference ring approach

Given a sum representation of the form (1.2), symbolic summation algorithms in the setting of
difference rings and fields [14, 15, 37, 39, 49, 53, 55, 56, 58, 59, 62–64] can be utilized to derive
an alternative representation in terms of indefinite nested sums over hypergeometric products.

Simplifying multiple sums.
Given a multiple sum of the form (1.2) where f is hypergeometric in n and ki for i = 1,2, . . . ,v.
Find a simplified version in terms of indefinite nested sums over hypergeometric products.

4If the integrand has a particularly nice shape (e.g., if it is proper hyperexponential in the xi and proper hypergeo-
metric in n), the multivariate Almkvist Zeilberger method will provide such a recurrence (2.5) with b(n,ε) = 0. In short,
for such special input the method under consideration turns to a complete decision procedure.

6
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The proposed method works from inside to outside of such a multiple sum and transforms in
each step the arising definite summation quantifier to an indefinite nested version by using the
Mathematica package Sigma [57, 60]. Namely, suppose that we transformed already a sub-
sum of (1.2) to an expression in terms of indefinite nested sums w.r.t. k yielding the expression
f (. . . ,m,k). Moreover, suppose that we have to deal with an extra summation quantifier, say with
F(. . . ,m) = ∑

L(...,m)
k=0 f (. . . ,m,k). If this summation quantifier is the outermost sum in (1.2), then m

is precisely the Mellin variable n. Otherwise, m will be the summation variable of the next summa-
tion quantifier that is applied to F(. . . ,m). Then the following three steps lead often to the desired
simplification.

1. Given the definite sum F(m) (we suppress further variables), try to compute a linear recur-
rence relation of the form (2.3) (n replaced by m) using the creative telescoping paradigm [51]
in the setting of difference rings [58, 62–64]. Here ai(m) are polynomials in m and b(m) is
an expression in terms of indefinite nested sums over hypergeometric products.

2. Solve afterwards the recurrence in terms of indefinite nested sums over hypergeometric prod-
ucts w.r.t. m using the toolbox described in Section 2.2.

3. Finally, try to combine5 the solutions to derive a simpler representation of the original input
sum in terms of indefinite nested sums over hypergeometric products w.r.t. m.

Suppose that all three steps can be carried out. If n = m is the Mellin parameter in (1.2) then we
are done. Otherwise, F(. . . ,m) will take over the role of f (. . . ,k) and we repeat this game to treat
the next summation quantifier in (1.2).
In some rare cases, this machinery even works if the input sum depends on ε . However, in most
cases one will arrive at linear recurrences that depend on ε and that does not have sufficiently many
solutions in terms of indefinite nested sums. As a consequence, step 3 from above will fail. A
very successful strategy is based on calculating an ε-expansion of the summand of (1.2) up to the
desired order and applying6 the summation quantifiers to each of the coefficients (which are free
of ε). Afterwards, the summation mechanism described above is applied to each of the arising
summation problems. In many applications, the derived recurrences (now free of ε) are completely
solvable in terms of indefinite nested sums and all three steps 1–3 from above can be carried
out successfully. The package EvaluateMultiSums [60, 61] based on Sigma combines all
these steps and variants thereof in a very efficient way in order to carry out such simplifications
automatically.

5This will works in general if one finds d linearly independent solutions of the homogeneous version of the recur-
rence and one particular solution of the recurrence itself.

6If infinite sums are involved, properties such as uniformal convergence have to be taken extra into account.
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Example 4. Consider the 2-mass 3-loop Feynman diagram7

, (2.7)

that arose in the calculation of the gluonic operator matrix element A(3)
gg,Q [7]. The corresponding

integral is transformed to an expression of size 95MB given as a linear combination of multiple
sums of the form (1.2). More precisely, the expression is built by 150 single sums, 1000 double
sums, 12160 triple sums and 1555 quadruple sums. A typical triple sum is

n

∑
j=0

j

∑
i=0

i

∑
k=0

(4+ ε)(−2+n)(−1+n)nπ(−1)2−k

2+ ε
×2−2+εe−

3εγ

2 η
k×

× Γ(1− ε

2−i+ j+k)Γ(−1− ε

2 )Γ(2+
ε

2 )Γ(1+n)Γ(1+ε+i−k)Γ(− 3ε

2 +k)Γ(1−ε+k)Γ(3−ε+k)Γ(− 1
2−

ε

2+k)
Γ(− 3

2−
ε

2 )Γ(
5
2+

ε

2 )Γ(2+i)Γ(1+k)Γ(2−i+ j)Γ(2−ε+k)Γ( 5
2−ε+k)Γ(− ε

2+k)Γ(5+ ε

2+n)

where η = m1
m2

is the quotient of the two arising masses. Applying the above tools for the ε−1-
contribution yields a simplification in terms of indefinite nested sums in about 30 minutes. This
suggests that the full ε−1 contribution of the above diagram will require about 1 year of calculation
time. Interestingly enough, our summation tools failed to produce the ε0 contribution. More pre-
cisely, we obtained recurrences that could not be solved in terms of indefinite nested sums.
As a consequence, we used the package SumProduction to crunch the derived expression con-
sisting of 14865 sums to an expression consisting only of 8 sums (which are rather large). After-
wards, we applied our summation tools to these 8 sums. The calculations can be summarized in
the following table [7].

sum size of sum summand size of time of number of
(with ε) constant term calculation indef. sums

n−3

∑
i4=2

i4−2

∑
i3=0

i3
∑

i2=0

∞

∑
i1=0

17.7 MB 266.3 MB 177529 s (2.1 days) 1188
n−4

∑
i3=3

i3−1

∑
i2=0

∞

∑
i1=0

232 MB 1646.4 MB 980756 s (11.4 days) 747
n−4

∑
i2=3

∞

∑
i1=0

67.7 MB 458 MB 524485 s (6.1 days) 557
∞

∑
i1=0

38.2 MB 90.5 MB 689100 s (8.0 days) 44
n−3

∑
i4=2

i4−2

∑
i3=0

i3
∑

i2=0

i2
∑

i1=0
1.3 MB 6.5 MB 305718 s (3.5 days) 1933

n−4

∑
i3=3

i3−1

∑
i2=0

i2
∑

i1=0
11.6 MB 32.4 MB 710576 s (8.2 days) 621

n−4

∑
i2=3

i2
∑

i1=0
4.5 MB 5.5 MB 435640 s (5.0 days) 536

n−4

∑
i1=3

0.7 MB 1.3 MB 9017s (2.5 hours) 68

For instance, consider the quadruple sum of the form ∑
n−3
i4=2 ∑

i4−2
i3=0 ∑

i3
i2=0 ∑

∞
i1=0. In total the summand

requires 17.7MB of memory. Taking its ε-expansion, the constant term requires 266.3 MB. Ap-
plying afterwards the package EvaluateMultiSums to the quadruple sum of the constant term

7The graph has been drawn using Axodraw [68].
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yields within 2.1 day an expression in terms of 1188 indefinite nested sums. In order to treat all 8
sums, we needed 3 month of calculation time. In total we obtain an expression for diagram (2.7)
that uses 154MB of memory and is composed by 4110 indefinite nested sums. For instance one of
the most complicated sums is

n

∑
h=1

2−2h(1−η)h
(

2h
h

)( h

∑
i=1

22i(1−η)−i

i(2i
i )

)(
h

∑
i=1

(1−η)i(2i
i )

22i

)
h

∑
i=1

22i(1−η)−i
i

∑
j=1

j

∑
k=1

(1−η)k

k

j

i
(2i

i

) .

Finally, one can simplify this expression further by using the available difference ring algorithms
of Sigma. The final result is an expression of only 8.3 MB size in terms of 74 binomial sums that
are all algebraically independent among each other.

Remark 2. We also started to explore the usage of holonomic summation tools [32, 54] in the set-
ting of QCD. We strongly expect that new ideas of [26] will push forward the available summation
techniques.

2.4 Solving coupled systems and the large moment machinery

After applying IBP methods [31, 42, 46, 47, 67] physical quantities are crunched to expressions
in terms of master integrals. In particular, these master integrals are described as solutions of
coupled systems of linear difference or differential equations. E.g., in the univariate differential
equation case they are of the form

Dx

 f1(x,ε)
...

fλ (x,ε)

= A

 f1(x,ε)
...

fλ (x,ε)

+

g1(x,ε)
...

gλ (x,ε)

 , (2.8)

where A is a λ × λ matrix with entries from K(x,ε) and the entries of the right-hand side vec-
tor g(x,ε) = (g1(x,ε), . . .gλ (x,ε)) are given as a linear combination of simpler master integrals
h1(x,ε), . . . ,hu(x,ε) over K(x,ε). They can be either determined by other coupled systems (by
using the proposed method recursively) or have to be tackled, e.g., by our symbolic summation
and integration tools introduced above. In the following we suppose that the unknown functions
fi(x,ε) have a power series representation

fi(x,ε) =
∞

∑
k=0

Fi(k,ε)xk, (2.9)

and we seek for symbolic representations of the coefficients of the ε-expansions

Fi(k,ε) =
∞

∑
j=l

Fi, j(k)ε j (2.10)

with 1 ≤ i ≤ λ . Likewise we assume that the simpler master integrals hi(x,ε) with 1 ≤ i ≤ u
arising in g(x,ε) have power series representations whose coefficients can be represented in terms
of indefinite nested sums. More precisely, their ε-expansions are assembled by coefficients that
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can be expressed in terms of indefinite nested sums. Then one can utilize the following algorithm
that is implemented within the package SolveCoupledSystem [4, 6] and is based on Sigma.

Solving coupled systems.
Given a system as above (2.8) with initial values of the desired solution and l,r ∈ Z with l ≤ r.
Decide constructively if the coefficients Fi, j(k) for i = 1, . . . ,λ , j = l, . . . ,r of the power series
Fi(k,ε) in (2.9) which form the coefficients of the ε-expansions (2.10) can be expressed in terms
of indefinite nested sums.

1. Uncouple the system by using, e.g., Zürcher’s algorithm [29, 71] implemented in the package
OreSys [35]. Usually8 one gets one scalar linear differential equation in one of the unknown
functions, say f1(x,ε) where the right-hand side can be given in terms of a power series
whose coefficients are given explicitly in terms of indefinite nested sums. In addition, the
remaining functions f2(x,ε), . . . , fλ (x,ε) can be expressed by f1(x,ε) and the simpler master
integrals hi(x,ε) with 1≤ i≤ u in the following form:

fi(x,ε) = ∑
r

αi,r(x,ε)Dr
x f1(x,ε)+

u

∑
j=1

∑
r

βi, j,r(x,ε)Dr
xh j(x,ε) (2.11)

for some rational functions αi,r(x,ε),βi, j,r(x,ε) ∈K(x,ε).

2. By holonomic closure properties [41] compute a linear recurrence of F1(k,ε) from the given
scalar differential equation of f1(x,ε). The recurrence is of the form (2.5) where the coeffi-
cients in (2.6) can be given explicitly in terms of indefinite nested sums.

3. Use the tools from Section 2.2 with the corresponding initial values in order to decide algo-
rithmically if the first coefficients F1, j(k) for j = l, . . . ,r can be given in terms of indefinite
nested sums. If this is not possible, return that such a representation is not possible.

4. Otherwise, plug these coefficients into (2.10) (for i = 1) and afterwards plug it into (2.11).
Similarly, proceed to plug the known coefficients of the simpler master integrals hi(x,ε)
with 1 ≤ i ≤ u into (2.11). Finally, extract the first coefficients of the ε-expansions of
F2(k,ε), . . . ,Fλ (k,ε).

Remark 3. Often one has to calculate the ε-expansions for F1(k,ε) and for the simpler master
integrals h j(x,ε) up to a certain order that is higher than r due to factors 1

ε
. The corresponding

bounds can be determined after the uncoupling has been carried our. We neglect further details on
these technical aspects and refer to [6].

Using this toolbox (and slight variants of it [4, 6, 34]) we performed already rather advanced QCD-
calculations [2–4, 8, 18–20, 22].

Remark 4. In certain instances one can also use ideas from [38, 44] to find solutions in terms of
indefinite nested integrals.

8In general one might obtain several scalar linear differential equations. Then the described steps in 2–4 below are
carried out for each equation.
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An interesting feature is that this method can be adapted to calculate a large number mo-
ments [27], say µ = 8000, that is also implemented within the package SolveCoupledSystem.

Large moment method.
Given a system as above (2.8) with initial values of the desired solution, l,r ∈ Z with l ≤ r and
µ ∈ N. Calculate efficiently Fi, j(0),Fi, j(1), . . . ,F1, j(µ) for i = 1, . . . ,λ , j = l, . . . ,r of the power
series Fi(k,ε) in (2.9) which form the coefficients of the ε-expansions (2.10).

1. Suppose that one has calculated already the first µ moments of the simpler master integrals
that arise in the right-hand side of gi(x,ε) up to a certain order. This can be accomplished,
e.g., by applying this method again to this simpler integrals or by utilizing the represen-
tations in terms of indefinite nested sums coming from our symbolic summation and inte-
grations tools described above. As a consequence one can calculate the sequence of values
bi(0),bi(1), . . . ,bi(µ) of (2.6) in (2.5) up to a certain order, say l ≤ i≤ r.

2. Using the recurrence (2.5) with the moments given on the right-hand side one can calculate in
linear time the moments F1, j(0),F1, j(1), . . . ,F1, j(µ) for j = l, . . . ,r of the ε-expansion (2.10)
(i = 1) of F1(k,ε) in (2.9) provided that F1, j(0),F1, j(1), . . . ,F1, j(d) is given (using our sum-
mation tools or using from above or procedures like Mincer [43] or MATAD [66]).

3. Finally, one plugs these values into (2.11) and extracts the values Fr, j(0),Fr, j(1), . . . ,Fr, j(µ)

for r = 2, . . . ,λ and j = l, . . . ,r.

Remark 5. The comments in Remark 3 are also here relevant to calculate the correct moments
up to the desired ε-order r. In addition, it might happen that the number of moments of f1(x,ε)
in calculation step (2) and the moments of the simpler master integrals h j(x,ε) must be chosen
slightly higher than µ in order to get all moments correctly. This is owing to the fact that extra
factors x might occur (also during the uncoupling process) which introduce negative shifts on the
coefficient level.

Recall that the IBP methods usually crunch physical expressions to simper expressions in terms of
the master integrals under consideration. Assembling all these moments produces large moments of
the physical quantities. With these moments one is now in the position to guess, e.g., homogeneous
recurrence relations using packages like [40]. Afterwards, one can use our recurrence solvers from
Section 2.2 to derive representations in terms of indefinite nested sums. First non-trivial case
studies have been carried out, like the first re-computation of the 3-loop splitting functions [3] and
simpler parts of the massive 3-loop form factor [9].

3. Conclusion

We presented the central methods for symbolic summation/integration, solving linear recur-
rences and solving coupled systems of linear differential equations that have been encoded within
the Mathematica packages Sigma, EvaluateMultiSum, MultiIntegrate, SumProduc-
tion and SolveCoupledSystem. Besides these computer algebra tools also special function
algorithms [10–13, 21, 52, 69] implemented within the package HarmonicSums [1] are used in
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order to speed up the above methods; in particular the limit n→ ∞ can be performed for expres-
sions in terms of indefinite nested sums in n by utilizing asymptotic expansion algorithms.
It will be interesting to see how all these computer algebra and special function algorithms can
be generalized to tackle also more complicated special functions like iterative-non-iterative inte-
grals and sums [5] as they appeared in recent calculations. In this regard, we expect that the large
moment machinery (see Section 2.4) will play a decisive role within our future calculations.
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