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1. Introduction

Analytical results for Feynman integrals can, typically, be expressed in terms of harmonic
polylogarithms [1] or multiple polylogarithms [2] which are very well mathematically studied spe-
cial functions. For harmonic polylogarithms, one can apply the package HPL [3] which encodes
various analytical properties and provides the possibility of numerical evaluation with a desirable
precision. For multiple polylogarithms, one can either use the computer code [4] based on the
GiNaC library [5] to obtain high-precision numerical values or construct a code based on their
algebraic properties, for example, to reveal their behavior near singular points. Anyway, with a
result in terms of these functions at hand, one can evaluate a Feynman integral at regular points and
obtain expansions at singular points.

The possibility to arrive at a result written in terms of these functions exists if, within the
method of differential equations [6, 7, 8, 9, 10, 11], one succeeds to turn to a so-called canonical
basis [12] of the master integrals1. It is well known that the ε-form of DE for a given set of the
master integrals can not always be achieved with rational, or even algebraic transformations2. The
simplest counter example is given by the two-loop propagator sunset diagram with three identical
masses. In many irreducible cases, the lowest nontrivial term of ε-expansion is expressed in terms
of elliptic integrals, and in what follows we will also refer to these cases as ‘elliptic’ in no relation
with the functional form of the coefficients of ε expansion.

In situations without canonical bases, one can hope that the number of elliptic master integrals
is small and try to obtain, in these cases, two and three-fold parametric representations suitable
for numerical evaluation, and in all other cases to proceed with canonical subbases – see examples
of such an approach in Refs. [20, 21, 22, 23]. On the other hand, it is quite natural to try to
introduce new functions which would enable us to present results, in elliptic cases, in an analytical
form. Multiple suggestions to introduce elliptic generalizations of multiple polylogarithms can be
found in Refs. [24, 25, 26, 27, 28, 29, 30, 31, 32]. However, these new functions do not have
the same status as harmonic and multiple polylogarithms, as far as a detailed description of their
properties and the possibility to evaluate them numerically are concerned. Moreover, the examples
of successful treatment of ε-expansion in elliptic cases are, at most at the two-loop level. Anyway,
we are very far, even in lower loops orders, from obtaining a complete description of a class of
functions which can appear in results for Feynman integrals.

We advocated [33] an alternative way to solve differential equations which can be used also
in ‘elliptic’ situations and illustrated it through a four-loop example. We considered multiloop
Feynman integrals depending on one variable, i.e. with two scales where the variable is introduced
as the ratio of these scales. We described an algorithm to find a solution of a given differential
system in the form of an ε-expansion series with numerical coefficients. It is based on using gen-
eralized power series expansions near singular points of the differential system, solving difference
equations for the corresponding coefficients and using matching to connect series expansions at
two neighbouring points. We provided a computer code where this algorithm is implemented for a
simple example of a family of four-loop Feynman integrals where the ε-form is impossible. Using

1There are various codes to arrive at a canonical form (or, ε-form [13]) – see [13, 14, 15, 16, 17, 18].
2Recently, a strict criterion of the existence of an ε-form was presented in Ref. [19].
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this code it is possible to evaluate master integrals at a given point as well as expansions at singular
points with a required precision in an ε-expansion with a required number of terms.

In fact, the idea to use series expansions at singular points and difference equations for the
corresponding coefficients is very well known in mathematics. In high-energy physics, this strategy
when evaluating Feynman integrals can be found, for example, in Refs. [38, 20, 39, 40, 41]. Let us
emphasize that our algorithm, with the current assumptions, provides solutions with no more than a
linear growth of computational complexity with respect to a required number of terms. This is very
important for a subsequent matching procedure which enables one to connect series expansions at
two neighbouring points and thereby to obtain the possibility to evaluate Feynman integrals at any
given point – see details in Ref. [33].

Our goal is to apply our algorithm [33] which is numerical in its character and the correspond-
ing code in our example, i.e. four-loop generalized sunset diagrams with three massive and two
massless propagators, in order to obtain new analytical results. We analytically evaluate the master
integrals at threshold, p2 = 9m2, in an expansion in ε up to ε1. Remember that the ε-form of the
corresponding equations is impossible so that we cannot use the well-known procedure of using
a solution at a general point in terms of well-established special functions and then turn to results
at this singular point. However, although solutions to the differential equations look too compli-
cated, the values of the master integrals at some special points can be conventional polylogarithmic
constants. We will see that this is indeed true for the ε-expansion of the integrals of our family
at the threshold. We use our code in order to construct a linear operator (a matrix) which renders
the boundary conditions in one, suitable chosen, singular point to the coefficients of asymptotic
expansion at the other point, p2 = 9m2 in our case. From these coefficients we extract the values
of the integrals at p2 = 9m2.

We explain in Section 2 how we obtain high-precision values, up to 6000 digits, for the thresh-
old integrals and then succeed in finding a relevant basis of constants in order to use the PSLQ
algorithm [34]. It turns out that the relevant bases of constants can be constructed starting from
the bases of multiple polylogarithm values at sixth roots of unity, i.e. of the form G(a1, . . . ,aw;1)
where the indices ai are equal to zero or a sixth root of unity, with a1 ̸= 1, which were constructed
in Ref. [35] up to weight six. We discuss various perspectives in Conclusion.

2. Four-loop generalized sunset diagram at threshold

As in Ref. [33] let us consider the example of the following family of Feynman integrals:

Fa1,...,a14 =
∫

. . .
∫ dDk1 . . .dDk4 (k1 · p)a6(k2 · p)a7(k3 · p)a8(k4 · p)a9

(−k2
1)

a1(−k2
2)

a2(m2 − k2
3)

a3(m2 − k2
4)

a4

×(k1 · k2)
a10(k1 · k3)

a11(k1 · k4)
a12(k2 · k3)

a13(k2 · k4)
a14

(m2 − (∑ki + p)2)a5
, (2.1)

where p is the external momentum and m is the mass of three lines. They correspond to the
generalized sunset graph. We introduce x = p2/m2.
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There are four master integrals in this family. As the primary master integrals we choose the
following basis3

{F1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} . (2.2)

The singular points of the differential equations are x0 = 0,x1 = 1,x2 = 9 and x3 ≡ x−1 = ∞. Using
our algorithm we presented in Ref. [33] the code DESS to evaluate master integrals at a given point
as well as expansions at singular points with a required precision keeping a required number of
terms in an ε-expansion.

Let us now formulate our current goal: to evaluate master integrals of family (2.1) considered
at threshold, p2 = 9m2, i.e. exactly at the singular point x2 = 9. In fact, for such integrals defined
with the same general formula (2.1) we have now three master integrals which can be chosen as

{J1 = F1,1,1,1,1,0,...,0, J2 = F1,1,2,1,1,0,...,0, J3 = F1,2,1,1,1,0,...,0} . (2.3)

This can be done with the code DESS, where boundary conditions at x0 = 0 were implemented.
This point is, however, not a neighbour of x2 = 9 so that matching is used twice when transporting
information between x0 and x2. This results in the necessity to evaluate much more terms of the
series expansions at the three points {x0,x1,x2} in order to achieve a required precision which, as
we will see later, should be very high because of a big number of constants relevant to results at x2.

In fact, the choice of the point x0 to impose boundary conditions encoded in DESS can be
explained by the fact that, generally speaking, setting p2 = 0 for propagator integrals is equivalent
to p = 0 and resulting vacuum Feynman integrals turn out to have just less indices. However,
vacuum integrals can involve ‘more complicated’ constants. To solve our current goal, we can
make a better choice to impose boundary conditions at the point x1 for two reasons: this is now a
neighbour of x2 = 9 and the corresponding constants are multiple zeta values, logarithm of two and
polylogarithms of one half. Indeed, master integrals at x= x1 appeared in the calculations presented
in Refs. [49, 50] where they were evaluated using a onefold Mellin-Barnes representation.

It turns out that the best way to impose boundary conditions is to choose x3 = ∞ because the
corresponding expansion is nothing but the large-momentum expansion [51, 52, 53, 54] where, for
our integrals (2.1), any term is a product of one-loop tadpoles and massless propagator integrals
and can be evaluated via gamma functions at general ε . This provides any required accuracy and
any required number of terms in ε-expansions in the boundary conditions. In the updated version of
our code DESS, we introduce the possibility to impose boundary conditions at an arbitrary singular
point. We added one more argument ns to the function

DESS[rdatas,x,f(x),oe,np,nt,ns]

which means the number of a singular point and this number is 1 for x0, 2 for x1, and 4 for x3. There
is no sense to choose x2 since this point is most complicated from the calculational point of view.
We attach also two more auxiliary files: BoundaryConditions1 and BoundaryConditionsInf
where analytic results for the boundary integrals are encoded. As before, the code and the auxiliary
data can be downloaded from https://bitbucket.org/feynmanintegrals/dess.

3In our paper, we use FIRE [42, 43, 44] in combination with LiteRed [45, 46] to solve integration by parts
relations and reveal master integrals.
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With the current version of DESS, we have obtained numerical results for the threshold master inte-
grals in an ε-expansion up to ε2 with the accuracy of 6000 digits for the corresponding coefficients.
As we will see shortly, such a big accuracy is needed for an application of the PSLQ algorithm.

The crucial point is a choice of a relevant basis of constants. A first hint comes from the
known results for the two-loop sunset diagram at threshold [55, 56] where one can observe multiple
polylogarithm values at sixth roots of unity and π√

3
. Let us also take into account that, at least

according to Refs. [57, 58, 59], it might be reasonable to include into the basis the constant
√

3
separately. Therefore, we tried to use the bases connected with multiple polylogarithm values at
sixth roots of unity and constructed in Ref. [35] up to weight six4 and

√
3.

We consider bases of constants by including multiple polylogarithm values at sixth roots of
unity up to weight six, i.e. of the form G(a1, . . . ,aw;1) where the indices ai are equal to zero or a
sixth root of unity, i.e. taken from the seven-letters alphabet {0,r1,r3,−1,r4,r2,1} with

r1,2 =
1
2

(
1±

√
3i
)
= λ±1 , r3,4 =

1
2

(
−1±

√
3i
)
= λ±2 , λ = eπi/3 = r1 . (2.4)

and a1 ̸= 1. One can consider separately the real and imaginary parts of the MPL

G(a1, . . . ,aw;1) = GR(a1, . . . ,aw)+ iGI(a1, . . . ,aw) (2.5)

Let us denote by BR(w) (BI(w)) the bases generated by GR(a1, . . . ,aw) (GI(a1, . . . ,aw)). They
include not only elements of the form GR/I(a1, . . . ,aw) but also products of constants of lower
weights. The definitions of the bases can also be found in auxiliary files supplied with Ref. [35].
They can be downloaded from http://theory.sinp.msu.ru/~smirnov/mpl6.tar.

gz.

As we shall see in our case in practice, when using the PSLQ algorithm, it is sufficient to use
the bases B(w) = {BR(w),

√
3BI(w)} of weights w = 1,2, . . .. The element

√
3 does not contribute

to the weight, so that elements from
√

3BI(w) are ‘real’. To get rid of
√

3 in our results, we can turn
to rescaled imaginary elements via G̃I(a1, . . . ,aw) =

√
3 GI(a1, . . . ,aw) . If a constant is expected

to be uniformly transcendental one can use these bases. Otherwise, one uses B̄(w) =
∪w

i=1 B(i) .

In simple situations, the number of available digits per constant in a basis can be as small as
7. In more complicated situations, with cumbersome coefficients in results, it can be more than
15. In our case, the accuracy of 2000 digits was quite enough to obtain results with PSLQ in an
ε-expansion up to the finite part in ε (weight 4), in a straightforward way. Still at weight 5, the
coefficients in results are more cumbersome and it is better to simplify our approach.

Let us look for uniformly transcendental threshold integrals. An analysis of results for the
corresponding on-shell integrals, i.e. at p2 = m2 shows that the integrals {J4 = F1,2,2,2,2,0,...,0, J5 =

F2,2,2,2,1,0,...,0} are uniformly transcendental. Let us assume that these integrals at p2 = 9m2 also
have this property. To check this hypothesis, we run PSLQ on coefficients of ε-expansions of these
integrals, with the use of uniformly transcendental bases B(w) and arrive at analytic results up to
the finite part in ε for J4 and J5.

4Bases up to weight three were constructed in Ref. [60] and up to weight four in Ref. [61].
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To evaluate the ε-term of the first threshold master integral J1 (considered at the point x = 9)
let us construct the following linear combination:

J6 =

(
1+

1
2

ε +
95
12

ε2 +
2615
144

ε3 +
1154333

1728
ε4
)

J1 +48εJ4 −3024ε3J5 . (2.6)

The coefficients here are adjusted in such a way that the available result for J6 is uniformly tran-
scendental up to the finite part in ε . Moreover, analytical result for its ε-term can be revealed with
the help of the basis B̃(5) = B(5)∪

{
1, G̃I(r2),−20

9 G̃I(r2)G̃I(0,r2)− 26
9 GR(0,0,1)

}
which differs

from the uniformly transcendental basis of weight 5 by adding three elements that are proportional
to the leading terms of J1,J5,J4 in their ε-expansions. One therefore can expect that the construc-
tion of the ε-expansion of the coefficients in front of J1, J4, and J5 in Eq. 2.6 can be continued
in such a way as to provide uniform transcendentality of J6 up to any given order in ε . Then one
can even try to guess the exact rational coefficients in the uniformly transcendental combination
of J1,4,5 by using a Padé approximation. This is exactly the procedure that was used, e.g., in Ref.
[62] to discover uniformly transcendental integrals. However, for our present result the order of
ε-expansion of the coefficients is not sufficient to perform this trick. As to the question whether the
same combinations will remain uniformly transcendental at arbitrary s, we can cautiously suggest
that this will, indeed, be the case provided that a proper notion of transcendentality is elaborated
for the integrals beyond polylogarithms.

This procedure based on uniformly transcendental bases can also be applied to J2 and J3.
Running PSLQ on a high-precision numerical value of the ε-term of J6, with this basis we obtain
an analytical result from which we derive the ε-term of J1 and thereby arrive at the following result
for the first master integral at threshold

J1 = − 1
4ε4 +

1
8ε3 +

1
ε2

(
23
12

− G̃I(r2)
2

4

)
+

1
ε

(
− 1

3
GR(0,0,1)+

G̃I(r2)
2

8
+

1493
576

)

−40G̃I(r2)GR(r4)G̃I(0,r2)+60G̃I(r2)G̃I(0,1,r4)+
320
3

G̃I(r2)G̃I(0,r2)

+72GR(0,0,r4,1)+
833

6
GR(0,0,1)+

647G̃I(r2)
4

60
+

23G̃I(r2)
2

12

+168G̃I(r2)+
1024805

6912

+ ε

(
−352G̃I(r2)GR(r4)

2G̃I(0,r2)−864GR(−1)G̃I(r2)G̃I(0,1,r4)

+276G̃I(r2)GR(r4)G̃I(0,r2)+528G̃I(r2)GR(r4)G̃I(0,1,r4)

+864G̃I(r2)GR(r4)G̃I(0,r2,−1)− 15563
27

GR(0,0,1)G̃I(r2)
2

+576G̃I(r2)G̃I(0,r2)GR(r2,−1)+864G̃I(r2)G̃I(0,1,r2,r3)−2014G̃I(r2)G̃I(0,1,r4)

−960G̃I(r2)G̃I(0,1,1,r4)+568G̃I(0,r2)G̃I(0,1,r4)−
72172

81
G̃I(r2)

3G̃I(0,r2)

+
320
27

G̃I(r2)G̃I(0,r2)−1152G̃I(r2)G̃I(0,r2,−1)+
14816

9
G̃I(r2)G̃I(0,0,0,r2)

+288G̃I(r2)G̃I(0,1,r2,−1)+
1600

3
G̃I(0,r2)

2 +1680G̃I(0,r2)

5



P
o
S
(
L
L
2
0
1
8
)
0
7
2

Evaluating ‘elliptic’ master integrals Vladimir A. Smirnov

+1136GR(0,0,1,r2,r4)+288GR(r4)GR(0,0,r4,1)−420GR(0,0,r4,1)

−288GR(0,0,1,1,r4)+
485
27

GR(0,0,1)−
397811

405
GR(0,0,0,0,1)

+
5132
15

G̃I(r2)
4GR(r4)−1680G̃I(r2)GR(r4)+168GR(−1)G̃I(r2)

4

−3024GR(−1)G̃I(r2)−
29905G̃I(r2)

4

72
+

1493G̃I(r2)
2

576

+
27244G̃I(r2)

9
+

232538063
82944

)
+O(ε2) .

3. Conclusion

Using our algorithm to solve differential equations by expansions near singular points we ob-
tained high-precision values for our master integrals at threshold and then arrived, with the use of
the PSLQ algorithm, at analytical values. In other words, with our procedure we have transported
simple information about the master integrals in the large-momentum limit to the complicated point
p2 = 9m2 and obtained there analytical results. Moreover, starting from our boundary conditions at
infinity, we analyzed not only the ‘naive’ part of threshold expansion but also leading terms of the
form (9− x)n−6ε (n is integer) and observed that the same bases also work and lead to analytical
results via the PSLQ algorithm. Besides, proceeding in a similar way we arrived at the (Taylor)
expansions at the singular point x = 0, with coefficients in terms of elements of our bases, in agree-
ment with results for vacuum integrals [63, 64]. Therefore, we have demonstrated that although
a canonical form of differential equations is impossible and we don’t know analytical results for
the integrals, we can obtain analytical results for these integrals at some special kinematic points
where the integrals are expressed in terms of usual polylogarithmic constants.

After the current calculation was done, we realized that we might use smaller (by 20-25 per-
cents) bases defined in Ref. [39] via values of harmonic polylogarithms at sixth roots of unity.
At least, the results presented in this paper can be expressed also in terms of these constants. Of
course, it should be simpler to try to extend these results to higher weights using these bases. After
an optimization of our code DESS was done we have succeeded in obtaining the accuracy of 20000
digits. Presumably, it should be enough to reconstruct analytically next terms of the ε-expansion,
i.e. of weight 6. A first attempt to do this using the basis of Ref. [39] (also avaliable with 20000
digits) was unsuccessful. Most likely, at least one more irreducible constant is missing in this basis.

Acknowledgments. V.S. is grateful to Michail Kalmykov and Oleg Veretin for instructive dis-
cussions. The work of A.S. and V.S. was supported by RFBR, grant 17-02-00175A. V.S. is grateful
to the organizers of the conferernce for partial support. The work of R.L. was supported by the
grant of the ‘Basis’ foundation for theoretical physics.
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