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Evaluating the scattering amplitudes in the high-energy limit is a fundamental problem of
quantum field theory which remains in the focus of theoretical research for decades since the lead-
ing asymptotic behavior of an electron scattering amplitude in QED has been derived in Ref. [2].
This behavior is determined by the “Sudakov” radiative corrections, which include the second
power of the large logarithm of the electron mass divided by acharacteristic momentum transfer
of the process per each power of the fine structure constant. Sudakov logarithms exponentiate
and result in a strong universal suppression of the scattering amplitudes in the limit when all the
kinematic invariants of the process are large. Within different approaches the analysis has been
extended to nonabelian gauge theories and to subleading logarithms [3, 4, 5, 6, 7], which is crucial
for a wide class of problems from deep inelastic scattering to Drell-Yan processes and the Higgs
boson production. Numerous applications of the leading-power result to massive amplitudes in
QED and electroweak theory can be found in Refs. [8, 9, 11, 10,12, 13, 14, 15, 16]. This analy-
sis however does not extend to the part of the amplitudes which is power suppressed in the high
energy limit. The power-suppressed contributions now attract a lot of attention in various con-
texts (seee.g. [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Incorporating the
logarithmically enhanced power-suppressed terms can significantly increase the accuracy and ex-
tend the region where the leading-power approximation is applicable. It becomes crucial when a
power-suppressed term gives the leading contribution to a physical observable as in the case of the
bottom-quark mediated Higgs boson production in gluon fusion. The latter is formally suppressed
by the ratiom2

b/m2
H of the quark massmb to the Higgs boson massmH but significantly changes the

shape of the Higgs boson transverse momentum distribution.The effective expansion parameter in
this case is ln2(m2

b/m2
H)αs ≈ 40αs rather than the strong coupling constantαs, and the resummation

of the double-logarithmic corrections is mandatory for a reliable theoretical prediction [18, 23]. In
general very little is known so far about the all-order structure of such corrections. In contrast
to Sudakov logarithms they do not exponentiate and do not factorize into the wave functions of
scattering particle. A few known examples of the all-order resummation are restricted to abelian
gauge theory [22, 23, 33, 34]. Extension of the analysis to QCD is not straightforward and requires
a systematic treatment of the factorization. In this proceedings I present the factorization formula
and the result of the all-order resummation of the double-logarithmic corrections to the amplitudes
suppressed by the leading power of quark mass obtained in Ref. [1].

To introduce the main idea of our approach we consider an amplitudeG for the scattering of
a quark of massmq, initial momentump1 and final momentump2, by a local operator(Ga

µν)
2 of

the gauge field strength tensor. The origin of such a vertex isnot relevant for our discussion and
one may suggest that it describes the gluon field interactionto the Higgs boson mediated by an
infinitely heavy quark loop. We consider the limit of the on-shell quarkp2

1 = p2
2 = m2

q and the large
Euclidean momentum transferQ2 =−(p2− p1)

2 when the ratioρ ≡ m2
q/Q2 is positive and small.

In the light-cone coordinatesp1 ≈ p−1 and p2 ≈ p+2 . The leading-order scattering is given by the
one-loop diagram in Fig. 1(a). Conservation of helicity at high energy requires a helicity flip on
the virtual quark line. As a consequence at high energy the amplitude is suppressed by the first
power ofmq. The virtual quark propagator then can be approximated as follows S(l) ≈ mq

l2−m2
q
. For

mq ≪ l ≪ Q the gauge boson propagators are eikonali.e. proportional to 1
2pil

, and the diagram
has the double-logarithmic scaling. Thus we have a typical situation when a soft quark exchange
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(a) (b) (c) (d)

Figure 1: The leading order one-loop Feynman diagrams for (a) quark scattering by the(Ga
µν )

2 vertex
(black circle) and (c) the Higgs boson production in gluon fusion. The diagrams (b) and (d) with the effective
vertices (gray circles) defined in the text represent the non-Sudakov double-logarithmic corrections to the
process (a) and (c), respectively.

generates the double-logarithmic contribution to the mass-suppressed amplitude. As we see, the
emission of the soft quark results in the change of the color group representation of a particle
propagating along the eikonal line, or theeikonal color charge nonconservation. This is a crucial
feature of the process which plays an important role in further analysis. Let us now consider the
radiative corrections to the amplitude and, for a moment, focus on an abelian case of the photon
interaction. Then in a covariant gauge the double-logarithmic corrections are produced by a soft
photon exchange between the external quark lines or an external and the virtual quark lines. The
key idea of the approach is to move the soft photon vertex fromthe virtual soft quark line to
an eikonal photon line through a sequence of identities graphically represented in Fig. 2. Let us
describe this sequence in more detail. In a covariant gauge only A− light-cone component of the
photon field can be emitted by the eikonal quark line with the momentump2, while the emission of
theA+ and transverse components is suppressed. Thus we can use theWard identity to convert the
diagram Fig. 2(a) into Fig. 2(b) where the crossed circle on the quark propagator correspond to the
replacementS(l)→ S(l)−S(l + l+g ), with lg being the soft photon momentum. By the momentum
shift l → l − l+g in the second term of the above expression the crossed circlecan be moved to the
eikonal line which becomes1

2p1l −
1

2p1(l+l+g )
, Fig. 2(c). The opposite eikonal line is not sensitive to

this shift sincep−2 ≈ 0. Finally by using the inverted identity we transform the diagram Fig. 2(c)
into Fig. 2(d) with an effective dipole coupling 2eq pµ

1 to thephoton line, whereeq is thequark
charge. Sincep+1 ≈ 0 we can replacep1l+g by p1lg in the gauge boson propagator as long as
lg ≪ Q and after adding the symmetric diagram we get a structure characteristic to the standard
eikonal factorization picture. This factorization, however, requires the summation over all possible
insertions of the soft photon vertex along each eikonal linewhile in the case under consideration
the diagram in Fig. 1(b) with the soft exchange between the photon lines is missing. This diagram
can be added to complete the factorization and then subtracted. Thus after factoring out the soft
photon exchange between the external quark lines the remaining soft photon contribution is given
by the diagram Fig. 1(b) with the coefficient−e2

q. Note that the first Ward identity of the sequence
in Fig. 1 is sufficient to prove the factorization of the soft photons with the momentumlg ≪ mq as it
has been done in the original paper [35]. This algorithm however does not work for the momentum
interval mq ≪ lg ≪ Q which does contribute to the double-logarithmic corrections. Our method
extends the factorization to this region at the expense of introducing the above subtraction term,
which compensates the charge variation of the eikonal line after the soft quark emission.
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→ → →

(a) (b) (c) (d)

Figure 2: Diagramatic representation of the sequence of identities which move the soft gauge boson vertex
from the soft quark to the eikonal gauge boson line, as explained in the text.

The above result can be generalized to QCD in a straightforward way. The difference with
respect to the abelian case is thate2

q should be replaced by the quadratic Casimir operator of the
fundamental representationCF and the contribution similar to Fig. 1(b) does exist in QCD due to
gluon self-coupling and is proportional to the quadratic Casimir operator the adjoint representation
CA. Thus the part of the soft gluon exchange which does not factorize into external lines is given
by the diagram Fig. 1(b) with the color weightCA −CF , which directly links it to the variation
of the color charge along the eikonal lines. We have verified the above factorization by explicit
evaluation of the two-loop corrections in the high-energy limit within the expansion by regions
framework [36, 37, 38]. Since the emission of the soft gluonsfrom an eikonal line of a given color
charge factorizes and exponentiates [39] we can apply the above trick to an arbitrary number of soft
gluons. Hence the factorization formula for the double-logarithmic corrections to the amplitude
becomes

G = Z2
qg(−z)G (0) , (1)

whereG (0) is the leading-order one-loop amplitude,Z2
q is the standard Sudakov factor for a quark

scattering, and the functiong(−z) incorporates the non-Sudakov contribution of Fig. 1(b) with an
arbitrary number of the effective soft gluon exchanges. TheSudakov factor reads

Z2
q = exp

[

−CF

(

αs

2π
lnρ
ε

+ x

)]

, (2)

where x = αs
4π ln2ρ is the double-logarithmic variable and dimensional regularization with d =

4− 2ε is used for the infrared divergences. The functiong(z) of the variablez = (CA −CF)x is
normalized tog(0) = 1 and can be obtained by the method [22, 23, 28] in the form of the two-fold
integral

g(z) = 2
∫ 1

0
dξ

∫ 1−ξ

0
dηe2zηξ (3)

over the normalized logarithmic variablesη = lnv/ lnρ , ξ = lnu/ lnρ related to the Sudakov
parametrization of the soft quark momentuml = up1 + vp2 + l⊥. The argument of the exponent
in Eq. (3) corresponds to the single soft gluon contribution. The integral Eq. (3) can be solved in
terms of the generalized hypergeometric function

g(z) = 2F2(1,1;3/2,2;z/2) = 2
∞

∑
0

n!
(2n+2)!

(2z)n (4)
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(a) (b) (c)

Figure 3: The diagrams with an effective soft gluon exchange which incorporate the non-Sudakov double-
logarithmic corrections to (a) vector and (b,c) scalar formfactor of a quark. The symmetric diagrams are not
shown.

with the following asymptotic behavior atz → ∞

g(−z)∼
ln(2z)+ γE

z
, g(z) ∼

(

2πez

z3

)1/2

, (5)

whereγE = 0.577215. . . is the Euler constant. We have confirmed the perturbative expansion of
Eq. (1) toO(α3

s ) by explicit evaluation of the three-loop double-logarithmic term adopting the
method of Ref. [28].

The above equations determine the amplitudeG in the high-energy limit in double-logarithmic
approximation. Though this amplitude is of no particular phenomenological interest, the result can
be used to find the solution for the amplitude of Higgs boson production in gluon fusion mediated
by a bottom-quark loop mentioned in the introduction. Indeed, in the leading order this amplitude
is given by the diagram in Fig. 1(c). Since the eikonal lines are characterized by the momentum
and color charge but not spin, the only difference with respect to the previous case is the direction
of the color flow. Hence the diagram in Fig. 1(d) which incorporates the non-Sudakov part of the
correction corresponds to the same functiong(z) with the opposite sign of the argument and the
factorization formula takes the form

M
b
gg→H =−Z2

gg(z)

(

3
2

ln2ρ ρ
)

M
(0)
gg→H , (6)

whereρ = m2
b/m2

h is now a Minkowskian parameter, the heavy top-quark loop mediated amplitude

is used as the leading order approximationM
(0)
gg→H to have the mass suppression factor explicitly,

and

Z2
g = exp

[

−
CA

ε2

αs

2π

]

(7)

is the Sudakov factor for a gluon scattering. We have verifiedEq. (6) and, in particular, the relation
between the diagrams imposed by the Ward identities by explicit two-loop calculation. The total
two-loop contribution also agrees with the analytical result for the amplitude with an arbitrary value
of the quark mass [40] expanded in the series inρ .

Let us now consider a more complex problem of finding the asymptotic behavior of the leading
mass-suppressed contribution to the amplitude of quark scattering in an external field. We start with
the vector field case. At high energy and in the double-logarithmic approximation the deviation of
the corresponding amplitude from the Born approximation isdescribed by the Dirac form-factor
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F1. Its asymptotic expansion can be written as follows

F1 = Z2
q ∑

n
ρnF (n)

1 , (8)

whereF (n)
1 are given by the power series inαs with the coefficients depending onρ only logarith-

mically. Since the Sudakov corrections in Eq. (8) are factored out, in the double-logarithmic ap-
proximation the leading term of the expansion is justF (0)

1 = 1. The double-logarithmic corrections

to the leading power-suppressed termF (1)
1 are induced by the nonplanar soft quark pair exchange

and start with the two-loop contribution [22, 24, 28]. Following the algorithm described above we
reduce the non-Sudakov part of the corrections to the diagram in Fig. 3(a), and the symmetric one.
The corresponding factorization formula for the leading power-suppressed term reads

F (1)
1 =

CF(CA −2CF)

6
x2 f (−z) , (9)

where the functionf (−z) incorporates the non-Sudakov contribution of Fig. 3(a) with an arbitrary
number of the effective soft gluon exchanges and is normalized to the two-loop resultf (0) = 1.
This function has an integral representation similar to Eq.(3)

f (z) = 12
∫ 1

0
dη1

∫ 1

η1

dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2

dξ1 e2zη1(ξ1−ξ2)

×e2zξ2(η2−η1) , (10)

where the integration is performed over the logarithmic Sudakov variables for each soft quark
momenta and the exponential factors correspond to Fig. 3(a)and the symmetric diagram. We are
not able to solve the four-fold integral Eq. (10) in a closed analytic form. However, the coefficients
of the seriesf (z) = 1+∑∞

n=1cnzn can be computed for any givenn corresponding to the(n+2)-
loop double-logarithmic contribution and have the following large-n behaviorcn ∼

lnn
n!2nn5/2 . The

asymptotic behavior of the function atz → ∞ reads

f (−z)∼C−

(

lnz
z

)2

, f (z)∼C+ lnz

(

ez

z5

)1/2

, (11)

where the constantC− = 3.6. . ., C+ = 14.8. . . are found numerically.
Let us now consider quark scattering in the external scalar field parametrized by the scalar

form factorFS. In the equivalent notations for the leading power-suppressed termF(1)
S we obtain

F(1)
S =−

CFTF

3
x2 fS(−z) , (12)

whereTF = 1/2 and the function

fS(z) = 24
∫ 1

0
dη1

∫ 1−η1

0
dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2 e2zη2ξ2e−2zη1ξ1 (13)

is determined by the planar diagrams in Fig. 3(b,c) with the corresponding exponential factors
given separately. Amazingly, though the topology of the diagrams in Fig. 3(a) and Fig. 3(b,c)
is completely different, Eqs. (10) and (13) describe thesame function fS(z) ≡ f (z) as it can be
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easily verified. For the moment we do not have a plausible explanation of this universality. At the
same time it is straightforward to extend the analysis to theaxial FA and the pseudoscalarFP form
factors, for which we obtain the result in the form of Eq. (9) and Eq. (12) withfA(z) =− f (z) and
fP(z) = f (z), respectively.

Our results agree with the asymptotic expansion of the exacttwo-loop expressions for the form
factors [41, 42, 43]. The result for the vector form factor agrees with the explicit calculation of the
three-loop double-logarithmic term [28] including the relations between the diagrams imposed by
the Ward identities. ForCA = 0 andCF = 1 Eq. (9) agrees with the all-order QED result [22].

Thus we have performed the first systematic analysis of the high-energy asymptotic behaviour
of the QCD amplitudes beyond the leading-power approximation and derived all-order double-
logarithmic result for the leading mass-suppressed terms in typical two-scale problems. After
separating the standard Sudakov factors the remaining non-Sudakov double-logarithmic correc-
tions are described by two universal functionsg(±z) and f (±z), Eqs. (4) and (10), of the variable
z = αs

4π (CA −CF) ln2(m2
q/Q2) for the processes with single and double soft quark exchange, re-

spectively. Note that in general the amplitudes with largernumber of scattering particles, such as
Bhabha scattering in QED [24], get contributions from both single and double soft fermion ex-
change and the corresponding asymptotic expressions involve both functionsg(z) and f (z). These
functions play the role of “Sudakov exponent” for the non-Sudakov double-logarithmic corrections.
They are exponentiallyenhanced for large positive values of the argument and power suppressed
for the large negative values. Our analysis reveals a nontrivial relation between the asymptotic
behavior of different amplitudes and the amplitudes in different gauge theories. In particular, it
demonstrates that if a QCD amplitude gets the exponential enhancement at high energy, the same
amplitude in QED is suppressed by a power of the large logarithm, andvice versa.
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