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Evaluating the scattering amplitudes in the high-energyitlis a fundamental problem of
guantum field theory which remains in the focus of theorétiesearch for decades since the lead-
ing asymptotic behavior of an electron scattering ampéittdQED has been derived in Ref. [2].
This behavior is determined by the “Sudakov” radiative ections, which include the second
power of the large logarithm of the electron mass divided loharacteristic momentum transfer
of the process per each power of the fine structure constamiakév logarithms exponentiate
and result in a strong universal suppression of the saagternplitudes in the limit when all the
kinematic invariants of the process are large. Within difé approaches the analysis has been
extended to nonabelian gauge theories and to subleadiagtlgs [3, 4, 5, 6, 7], which is crucial
for a wide class of problems from deep inelastic scatterinDrell-Yan processes and the Higgs
boson production. Numerous applications of the leadinggoaresult to massive amplitudes in
QED and electroweak theory can be found in Refs. [8, 9, 1112013, 14, 15, 16]. This analy-
sis however does not extend to the part of the amplitudeshnikipower suppressed in the high
energy limit. The power-suppressed contributions nowaetta lot of attention in various con-
texts (seeeqg. [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}orporating the
logarithmically enhanced power-suppressed terms catifis@mtly increase the accuracy and ex-
tend the region where the leading-power approximation diegble. It becomes crucial when a
power-suppressed term gives the leading contribution toyaipal observable as in the case of the
bottom-quark mediated Higgs boson production in gluondiusiThe latter is formally suppressed
by the ratiomg/m,z4 of the quark massy, to the Higgs boson massy but significantly changes the
shape of the Higgs boson transverse momentum distribufioe effective expansion parameter in
this case is I /Mg ) as ~ 40a; rather than the strong coupling constagtand the resummation
of the double-logarithmic corrections is mandatory for leakde theoretical prediction [18, 23]. In
general very little is known so far about the all-order stmoe of such corrections. In contrast
to Sudakov logarithms they do not exponentiate and do nabriae into the wave functions of
scattering particle. A few known examples of the all-ordesummation are restricted to abelian
gauge theory [22, 23, 33, 34]. Extension of the analysis t@@Mot straightforward and requires
a systematic treatment of the factorization. In this prdoggs | present the factorization formula
and the result of the all-order resummation of the doubdlibhmic corrections to the amplitudes
suppressed by the leading power of quark mass obtained ifIRef

To introduce the main idea of our approach we consider aniamdpks for the scattering of
a quark of massy, initial momentump; and final momentunp,, by a local operato(G";‘“,)2 of
the gauge field strength tensor. The origin of such a vertewtigelevant for our discussion and
one may suggest that it describes the gluon field interactiche Higgs boson mediated by an
infinitely heavy quark loop. We consider the limit of the dre#l quarkpZ = p5 = m and the large
Euclidean momentum transf@? = —(p, — p1)? when the ratiqp = mg/Q? is positive and small.
In the light-cone coordinateg; ~ p; andp, ~ p,. The leading-order scattering is given by the
one-loop diagram in Fig. 1(a). Conservation of helicity mthhenergy requires a helicity flip on
the virtual quark line. As a consequence at high energy thaliame is suppressed by the first
power ofmy. The virtual quark propagator then can be approximatedlasvi®S(l) ~ IZT:T%. For

my < | < Q the gauge boson propagators are eikarel proportional toz_;l)iw and the diagram
has the double-logarithmic scaling. Thus we have a typitaaon when a soft quark exchange
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Figure 1: The leading order one-loop Feynman diagrams for (a) quaakesing by the(G‘f‘N)2 vertex
(black circle) and (c) the Higgs boson production in gluasida. The diagrams (b) and (d) with the effective
vertices (gray circles) defined in the text represent the ®odakov double-logarithmic corrections to the
process (a) and (c), respectively.

generates the double-logarithmic contribution to the rsaggpressed amplitude. As we see, the
emission of the soft quark results in the change of the coloug representation of a particle
propagating along the eikonal line, or tli&onal color charge nonconservation. This is a crucial
feature of the process which plays an important role in &rrmalysis. Let us now consider the
radiative corrections to the amplitude and, for a momerygoon an abelian case of the photon
interaction. Then in a covariant gauge the double-logauithcorrections are produced by a soft
photon exchange between the external quark lines or amexiand the virtual quark lines. The
key idea of the approach is to move the soft photon vertex fileenvirtual soft quark line to
an eikonal photon line through a sequence of identitieshically represented in Fig. 2. Let us
describe this sequence in more detail. In a covariant ganlyeAo light-cone component of the
photon field can be emitted by the eikonal quark line with tleemantump,, while the emission of
the At and transverse components is suppressed. Thus we can Warth&lentity to convert the
diagram Fig. 2(a) into Fig. 2(b) where the crossed circlehequark propagator correspond to the
replacemeng(l) — S(I) — S(I +1g), with I3 being the soft photon momentum. By the momentum
shiftl — 1 — IJ in the second term of the above expression the crossed canlée moved to the
eikonal line which becomeﬁ% — Wlﬂa) Fig. 2(c). The opposite eikonal line is not sensitive to

this shift sincep, ~ 0. Finally by using the inverted identity we transform thagtiam Fig. 2(c)
into Fig. 2(d) with an effective dipole couplinga@oi’ to the photon line, wheree is the quark
charge. Sincep; ~ 0 we can replacepllar by pilg in the gauge boson propagator as long as
lg < Q and after adding the symmetric diagram we get a structureactaistic to the standard
eikonal factorization picture. This factorization, howewequires the summation over all possible
insertions of the soft photon vertex along each eikonal \ihde in the case under consideration
the diagram in Fig. 1(b) with the soft exchange between tlogquhlines is missing. This diagram
can be added to complete the factorization and then suéttadthus after factoring out the soft
photon exchange between the external quark lines the rergasoft photon contribution is given
by the diagram Fig. 1(b) with the coefficienle%. Note that the first Ward identity of the sequence
in Fig. 1 is sufficient to prove the factorization of the sdfippons with the momentuig < mq as it
has been done in the original paper [35]. This algorithm havdoes not work for the momentum
interval my < lg < Q which does contribute to the double-logarithmic corraedio Our method
extends the factorization to this region at the expensetafdncing the above subtraction term,
which compensates the charge variation of the eikonal firee the soft quark emission.
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Figure2: Diagramatic representation of the sequence of identittéstwmove the soft gauge boson vertex
from the soft quark to the eikonal gauge boson line, as expthin the text.

(@)

The above result can be generalized to QCD in a straightforwey. The difference with
respect to the abelian case is tla@should be replaced by the quadratic Casimir operator of the
fundamental representati@i and the contribution similar to Fig. 1(b) does exist in QCL2 do
gluon self-coupling and is proportional to the quadratisi@ar operator the adjoint representation
Ca. Thus the part of the soft gluon exchange which does notifizetinto external lines is given
by the diagram Fig. 1(b) with the color weigBh — Ce, which directly links it to the variation
of the color charge along the eikonal lines. We have verifiedabove factorization by explicit
evaluation of the two-loop corrections in the high-energwgitl within the expansion by regions
framework [36, 37, 38]. Since the emission of the soft glulmos an eikonal line of a given color
charge factorizes and exponentiates [39] we can apply neahick to an arbitrary number of soft
gluons. Hence the factorization formula for the doubleakithmic corrections to the amplitude
becomes

9 =Zi9(-209'% @

where#9 is the leading-order one-loop amplitumﬁ, is the standard Sudakov factor for a quark
scattering, and the functiag(—z) incorporates the non-Sudakov contribution of Fig. 1(bjwen
arbitrary number of the effective soft gluon exchanges. $hdakov factor reads

2 asInp
Z—exp|-Ce 5271 +x) |. @

wherex = %STIHZP is the double-logarithmic variable and dimensional regedgion with d =
4 — 2¢ is used for the infrared divergences. The functiim) of the variablez= (Ca — Cg)X is
normalized tay(0) = 1 and can be obtained by the method [22, 23, 28] in the formeofutlo-fold
integral

1 1-¢&
92 =2 /0 dé /0 dne?né 3)

over the normalized logarithmic variables= Inv/Inp, & = Inu/Inp related to the Sudakov
parametrization of the soft quark momentlirs up; +vpz +1,. The argument of the exponent
in Eq. (3) corresponds to the single soft gluon contributi®he integral Eq. (3) can be solved in
terms of the generalized hypergeometric function

00

9(2) = 2F2(1,1:3/2,2;2/2) = 2% n

any 21 @ @
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Figure 3: The diagrams with an effective soft gluon exchange whicbriporate the non-Sudakov double-
logarithmic corrections to (a) vector and (b,c) scalar féawstor of a quark. The symmetric diagrams are not
shown.

with the following asymptotic behavior at— o
In(22) + 2me?\ /2
9(=2) ~ () + ¥ 9(2) ~ (—) , (5)

whereye = 0.577215.. is the Euler constant. We have confirmed the perturbativaresipn of
Eqg. (1) too(ad) by explicit evaluation of the three-loop double-logarifonterm adopting the
method of Ref. [28].

The above equations determine the amplitéda the high-energy limit in double-logarithmic
approximation. Though this amplitude is of no particulaepbmenological interest, the result can
be used to find the solution for the amplitude of Higgs bosadpction in gluon fusion mediated
by a bottom-quark loop mentioned in the introduction. Irdjée the leading order this amplitude
is given by the diagram in Fig. 1(c). Since the eikonal lines @haracterized by the momentum
and color charge but not spin, the only difference with resgethe previous case is the direction
of the color flow. Hence the diagram in Fig. 1(d) which incaades the non-Sudakov part of the
correction corresponds to the same functign) with the opposite sign of the argument and the
factorization formula takes the form

3
f//g?gﬁH = -Z49(2) (E In2pp> %QSLH ; (6)

wherep = nﬁ/n‘ﬁ is now a Minkowskian parameter, the heavy top-quark loopiated amplitude
is used as the leading order approximaﬂﬁfégLH to have the mass suppression factor explicitly,
and

(7)

is the Sudakov factor for a gluon scattering. We have vertigd(6) and, in particular, the relation
between the diagrams imposed by the Ward identities by @xplo-loop calculation. The total
two-loop contribution also agrees with the analytical hefew the amplitude with an arbitrary value
of the quark mass [40] expanded in the serieg.in

Let us now consider a more complex problem of finding the asgtigdoehavior of the leading
mass-suppressed contribution to the amplitude of quatkesitay in an external field. We start with
the vector field case. At high energy and in the double-Itigianic approximation the deviation of
the corresponding amplitude from the Born approximatiodescribed by the Dirac form-factor
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F1. Its asymptotic expansion can be written as follows

=25 p"F", ®)
n

WhereFl(”) are given by the power series iy with the coefficients depending gnonly logarith-
mically. Since the Sudakov corrections in Eq. (8) are faloout, in the double-logarithmic ap-
proximation the leading term of the expansion is ]Blgot) = 1. The double-logarithmic corrections
to the leading power-suppressed td?{ﬁ> are induced by the nonplanar soft quark pair exchange
and start with the two-loop contribution [22, 24, 28]. Fellag the algorithm described above we
reduce the non-Sudakov part of the corrections to the diagndig. 3(a), and the symmetric one.
The corresponding factorization formula for the leadingrpesuppressed term reads

O CF(CA6— ZCF)Xzf(_Z)7 9)
where the functiorf (—z) incorporates the non-Sudakov contribution of Fig. 3(ajait arbitrary
number of the effective soft gluon exchanges and is norealip the two-loop resulf(0) = 1.
This function has an integral representation similar to(B).

1- n2 1- n
= 12/ dr;l/ dr;2/ dgz dgle22n1(£1—éz)
N1
w g2262(N2—N1) (10)

where the integration is performed over the logarithmic ékod variables for each soft quark
momenta and the exponential factors correspond to Fig.a8@}the symmetric diagram. We are
not able to solve the four-fold integral Eq. (10) in a closadlgtic form. However, the coefficients

of the seriesf(z) =1+ 5,1 ¢nZ" can be computed for any givencorresponding to thén+ 2)-

loop double-logarithmic contribution and have the follagilargen behaviorc, ~ ,2'[,‘ 5. The
asymptotic behavior of the function at+ o reads
2 1/2
f(-z)~C_ (In;) , (2 ~C+Inz<§> , (11)

where the constai@_ = 3.6...,C, = 14.8... are found numerically.
Let us now consider quark scattering in the external scadédt flarametrized by the scalar
form factorFs. In the equivalent notations for the leading power—supmésterrrFél) we obtain

1) CeTe o

FY =— 5 X Ts(-2). (12)
whereTg = 1/2 and the function
1-& 1-n2
—24 / dn / d&, / dno [ de, eteg2me: (13)
1

is determined by the planar diagrams in Fig. 3(b,c) with tbheasponding exponential factors
given separately. Amazingly, though the topology of thegdhms in Fig. 3(a) and Fig. 3(b,c)
is completely different, Egs. (10) and (13) describe shee function fg(z) = f(z) as it can be
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easily verified. For the moment we do not have a plausibleagation of this universality. At the
same time it is straightforward to extend the analysis taattial Fo and the pseudoscal&p form
factors, for which we obtain the result in the form of Eq. (Bfid&q. (12) withfa(z) = — f(z) and
fp(z) = f(2), respectively.

Our results agree with the asymptotic expansion of the eéwactoop expressions for the form
factors [41, 42, 43]. The result for the vector form factoregg with the explicit calculation of the
three-loop double-logarithmic term [28] including theatébns between the diagrams imposed by
the Ward identities. FdCa = 0 andCr = 1 Eq. (9) agrees with the all-order QED result [22].

Thus we have performed the first systematic analysis of tjie-@hergy asymptotic behaviour
of the QCD amplitudes beyond the leading-power approxionadnd derived all-order double-
logarithmic result for the leading mass-suppressed tenmypgical two-scale problems. After
separating the standard Sudakov factors the remainingSndiakov double-logarithmic correc-
tions are described by two universal functiagis=z) and f (+2z), Egs. (4) and (10), of the variable
z= Z—TST(CA—CF)InZ(nﬁ/QZ) for the processes with single and double soft quark exchamge
spectively. Note that in general the amplitudes with lamgember of scattering particles, such as
Bhabha scattering in QED [24], get contributions from bdtigke and double soft fermion ex-
change and the corresponding asymptotic expressions/ebolth functiongy(z) and f(z). These
functions play the role of “Sudakov exponent” for the nord&ov double-logarithmic corrections.
They are exponentiallgnhanced for large positive values of the argument and power suppdess
for the large negative values. Our analysis reveals a miltrielation between the asymptotic
behavior of different amplitudes and the amplitudes inedéht gauge theories. In particular, it
demonstrates that if a QCD amplitude gets the exponentf@reement at high energy, the same
amplitude in QED is suppressed by a power of the large Idgariandvice versa.
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