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1. Introduction

Form factors play an important role in any quantum field theory. They are building blocks for

various physical quatities and furthermore provide a playground for studying infrared properties.

In this contribution form factors involving massive quark are discussed. The most advanced re-

sults have been obtained in Refs. [1] and [2], where three-loop corrections have been considered.

More precisely, all light-fermion contributions have been computed and the non-fermionic part has

been considered in the large-Nc limit. In the latter case only planar Feynman diagrams contribute

whereas in the former case also non-planar integral families have to be taken into account. For

references to previous work, in particular to two-loop calculations, we refer to [1].

In this contribution we provide more details to the calculation performed in Ref. [1]. Further-

more, numerical results are presented for the imaginary part of the form factors.

2. Quark form factors

We consider QCD correction to the interaction of massive quarks with a vector, axial-vector,

scalar or pseudo-scalar current defined as

jv
µ = ψ̄γµψ ,

ja
µ = ψ̄γµγ5ψ ,

js = m ψ̄ψ ,

jp = im ψ̄γ5ψ . (2.1)

The tensor decomposition of the corresponding vertex functions leads to six scalar functions which

we define as

Γv
µ(q1,q2) = Fv

1 (q
2)γµ −

i

2m
Fv

2 (q
2)σµνqν ,

Γa
µ(q1,q2) = Fa

1 (q
2)γµγ5−

1

2m
Fa

2 (q
2)qµγ5 ,

Γs(q1,q2) = mFs(q2) ,

Γp(q1,q2) = imF p(q2)γ5 . (2.2)

Fv
1 , . . . ,F

p depend on the ratio of the virtuality q2, where q is the outgoing momentum of the

external current, and the square of the heavy quark mass m. For the practical calculation it is

convenient to introduce the variable x defined through

q2

m2
= −

(1− x)2

x
, (2.3)

which maps the complex q2/m2 plane into the unit circle. In particular, we have that the special

points q2 = 0, q2 = 4m2 and q2
→ ∞ are mapped to x = 1,−1 and 0, respectively.

The workflow of our calculation is as follows: We generate the amplitudes using qgraf [3].

Althogether 337 diagrams are generated, which, however, also includes non-planar integrals. We

use color to compute the colour factors which allows us to select the fermionic and large-Nc

1



P
o
S
(
L
L
2
0
1
8
)
0
8
5

Massive quark form factors Matthias Steinhauser

Figure 1: Sample diagrams contributing to the form factors. Solid and curly lines represent quarks and

gluons, respectively. The grey blob refers to one of the external currents given in Eq. (2.1).

contributions. Representative three-loop diagrams can be found in Fig. 1. We use q2e [4, 5] to

transform the qgraf output to FORM [6] notation and exp [4, 5] together with the underlying

symmetries of the vertex diagrams to map all contributing integrals to eight planar and three non-

planar integral families (see Fig. 1 of Ref. [7] and Fig. 5 of Ref [1] for graphical representations).

In a next step we compute the amplitudes of each Feynman diagram using FORM [6]. We

apply projectors to obtain the scalar function Fv
1 , . . . ,F

p, take traces and map each integral to a

scalar function as defined by the corresponding integral family. For most diagrams this step takes

only a few minutes for a general QCD gauge parameter. Afterwards we extract the integral list

which serves as input for FIRE [8]. FIRE is used in combination with LiteRed [9, 10] for the

reduction to master integrals. For the large-Nc contribution we have O(105) and for the nl term

about 30000 integrals. For the most complicated integral family the reduction to master integrals

takes of the order of a week on a 12-core node with main memory of order 100 gigabyte.

Analytic results for the master integrals are available from Refs. [7] (89 planar integrals)

and [11] (additional 15 integrals, two of them are non-planar), respectively. They are used to

express each of the six form factors Fv
1 , . . . ,F

p in terms of Goncharov polylogarithms (GPLs) [12].

Computer-readable expressions can be found in the ancillary file to Ref. [1]. They are quite lengthy,

however, a numerical evaluation is possible with the help of ginac [13, 14].

There are several checks on the correctness of our result: First of all, we have verified that in

the renormalized form factors the QCD gauge parameter drops out. We also obtain the expected

limiting behaviours for x → 0,1,−1 (see Ref. [1] for an extensive discussion). Furthermore, we

can check the pole part against a dedicated calulation of the cusp anomalous dimension Γcusp which

has been performed in Ref. [15]. Note that we obtain the same result for Γcusp for all four currents

of Eq. (2.1) which is expected due to the universality of the infra-red behaviour. Finally, we obtain

complete agreement for the renormalized three-loop form factors Fv
1 , . . . ,F

p with an independent

calculation performed in Ref. [2]. Let us stress that in [2] different software has been used to

perform the reduction to master integrals, the integral families are defined differently and a different

method has been used to compute the master integrals.
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Figure 2: Imaginary part of the ε0 term of the vector and axial-vector form factors as a function of x. Exact

results and approximations are shown as solid and dashed lines, respectively. At three-loop order we add

the complete light-fermion part for nl = 5 and the N3
c contribution. Medium- (red) and long- (green) dashed

lines correspond to the high-energy and threshold approximation, respectively. Note that the imaginary part

is zero for x ∈ [0,1].

3. Numerical results

We refrain to show analytic expressions but refer to [7, 1, 1] for analytic results in the kinematic

limits x → 0,1 and −1. In the following we complement the numerical results shown in [1] by

discussing the imaginary parts of Fv
1 , . . . ,F

p.

In [1] plots for the real part of the ε0 term of

F̃(q2) = (1+ x)4

[

F(q2)−F(q2)
∣

∣

∣

q2→∞

]

. (3.1)
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Figure 3: Same as Fig. 2 but for the the scalar and pseudo-scalar currents.

are shown for x ∈ [−1,1]. The subtraction term and the factor (1+ x)4 guarantee that in all three

limis (x → 0,1,−1) finite results are obtained. Furthermore, the six scalar functions Fv
1 , . . . ,F

p are

multiplied by (π −φ)4 and plotted against φ ∈ [0,π], where x = eiφ .

Note that for x > 0 and for values of x on the circumference of the unit circle the form factors

are real-valued. Thus, in Figs. 2 and 3 we show the imaginary parts of F̃v
1 , . . . , F̃

p for negative values

of x. By construction (cf. Eq. (3.1)) the form factors are zero for x = −1 and x = 0. The exact

result is shown as solid black curve. Short- and long-dashed curves correspond to high-energy and

threhold approximations where terms up to order x6 and β 3 [with x = 2β/(1+β )−1] are included.

Note that in all cases (except for a small region around x ≈−0.3 for the two-loop result of Fv
1 ) the

whole range x ∈ [−1,1] can be covered by the approximations, i.e., for each x-value there is at least

one of the dashed curves on top of the (black) solid line.

4. Outlook

There are several possible next steps towards the full massive three-loop form factors. A well-

defined and gauge invariant subset is the singlet contributions where the coupling of the external

current to the external fermions is mediated via gluons. Another subset is composed of all (non-

singlet) contributions with a closed massive fermion loop. However, all these cases are significantly

more involved which is mainly due to the occurrence of so-called elliptic sectors where differential

equations cannot be transformed into a canonical form. This makes it probably necessary to resign

on numerical methods, e.g., along the lines presented in Ref. [16].
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