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Generalised cuts and Wick Rotations Ettore Remiddi

1. Introduction

In 1960 Dick Cutkosky [1] showed how to express the imaginary part of a Feynman graph
by cutting a suitably choosen subset of its propagators, i.e. by replacing each of the propagators
to be cut by a δ function of its propagator; if (k2 +m2), is the denominator of the propagator, the
replacement reads

1
k2 +m2− iε

→ (2π)i θ(±k0)δ (k2 +m2) , (1.1)

where the sign of k0 (which enters quadratically in k2) within the θ function depends on the orien-
tation of the propagator line.
The derivation of Cutkosky was based on analytic function theory; shortly later Tini Veltman [2]
gave an alternative, perhaps simpler derivation, obtained by using directly the time-space proper-
ties of the Feynman propagators (see for instance [3] for a recent and elementary description of
Veltman’s approach). When the Cutkosky-Veltman cuts are carried out, the graph is further cut in
two separate sub-graphs, in agreement with perturbative unitarity; for that reason, the replacements
(1.1) are usually referred to as unitarity cuts.
As, quite in general, a Feynman propagator has the form

1
D− iε

= P
(

1
D

)
+ iπ δ (D) , (1.2)

where D is quadratic in the components of momenta and mass, in close analogy with Eq.(1.1), a
propagator line in which has been performed the replacement

1
D− iε

→ δ (D) (1.3)

is also called a cut propagator, even if, at variance with the unitarity cut, the θ function in the
energy is not present.
In the Integration by Parts (IbP) approach [4], the iε in the denominator of the propagator does not
play any role; given any IbP identity, one obtains another IbP identity with the same structure if a
propagator 1/(D− iε) is everywhere replaced by 1/(D+ iε), or, by subtracting them, if 1/(D− iε)
is replaced by δ (D), i.e. if a propagator is replaced by the corresponding cut propagator. Quite
in general, an IbP identity can contain also a combination of amplitudes in which some of the
propagators are missing, due to the ocurrence of a simplification of the kind

1
D− iε

D = 1 ;

if that line is cut, one finds instead
δ (D) D = 0 ,

i.e. the terms without that propagator are at all missing in the IbP identity for the amplitude with
the cut propagator, so that the resulting IbP identity is simpler. The simplest identity is obtained,
obviously, when all the propagators of a graph are cut (socalled maximally cut graph).
In the Differential Equations approach [5, 6, 7] to the evaluation of Feynman amplitudes, the
maximally cut Master Integrals satisfy an homogeneous differential equation. The direct evaluation
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of the corresponding maximally cut amplitude is much simpler than the evaluation of the original
amplitude, and, when possible, can give a solution of the homogeneous differential equation. That
is actually the case for the self-mass graphs with the simplest structure (the Bubble at 1-loop, the
Sunrise [8] at two loop, the Banana [9] at 3-loop), whose solutions were indeed obtained by direct
integration of the corresponding maximally cut graphs.
Maximally cut (and more in general, graphs with an arbitrary number of cut propagators) are also
used as a powerful tool for the decomposition in scalar ampolitudes of multileg amplitudes in gauge
theories (se for instance [10]).
In the case of the unitarity maximally cut graphs, the integration can be carried out in terms of the
usual expression of the Feynman amplitude in the momentum representation; for maximal non-
unitarity cut graphs, however, the direct, naïve integration of the usual loop momenta components
can give a trivially vanishing result, as it is not possible to satisfy all the δ function requirements.
A meaningful result can however be recovered by considering the maximally cut contribution of
a suitable, analytically related expression, which satisfies the same IbP identities as the original
Feynman amplitude; see for instance [11], where use is made of advanced mathematical methods.

In this contribution we propose an alternative elementary approach to the problem: we keep
as integration variables the components of the loop momentum of the usual representation of the
Feynman amplitudes, but perform a Wick rotation [12] on the loop components corresponding to
the residual dimensions (i.e. the dimensions not spanned by the external physical vectors). It is
obvious that the Wick rotated amplitude satisfies the same IbP identities as the original amplitude.
In Section 2 we consider the triple cut of a Vertex amplitude and introduce the Wick rotation and
in Section 3 the quadruple cut of a Box amplitude, in Section 4 we show in details as the Wick
rotation works in the case of a single propagator, and finally in Section 5 how the Wick rotation
reshuffles the various real and imaginary parts of the 1-loop Bubble amplitude in d = 2 dimensions.

2. The triple cut of a Vertex amplitude

Let us consider as a first example the triple cut of the 1-loop Vertex amplitude, in d-continuous
dimensions, for the process

p→ p1 + p2 ,

with p timelike, p1 and p2 massless, p2
1 = p2

2 = 0, and the following kinematical configuration (in
the cms of p)

s = 4E2 =−p2 ,

p = (p0 = 2E, px = 0,~pr = 0) ,

p1 = (E,E,0) ,

p2 = (E,−E,0) ,

where the subscript r in pr and in the following refers to the residual (d−2) directions, not spanned
by the physical vector components.
We take the three propagators of the internal lines to have all the same mass m, and the d-dimensional
loop momentum k to have components k0,kx,~kr. The triple cut of the Vertex amplitude can then be
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written as
CV (s) =

∫
∞

−∞

dk0

∫
∞

−∞

dkx Ω(d−2)
∫

∞

0
kd−3

r dkr δ (Dk)δ (D1)δ (D2) , (2.1)

where we have introduced spherical coordinates for the residual components, kr being their module,
Ω(n) = 2

√
π/Γ(n/2) is the usual solid angle in n dimensions, and

D1 = (p1 + k)2 +m2 =−2Ek0 +2Ekx + k2 +m2 ,

D2 = (p2− k)2 +m2 =+2Ek0 +2Ekx + k2 +m2 ,

Dk = k2 +m2 =−k2
0 + k2

x + k2
r +m2

are the denominators of the three propagators. All the arguments of the various δ functions are
forced to vanish in the integration, so that we can sum to any of the arguments any linear com-
bination of the other arguments multiplied by a constant, or, also, by any (positive) power of the
integration variables, i.e. the value of integral does not change under repeated replacements like,
for instance

δ (Dk) δ (D1)→ δ (Dk) δ (D1−Dk)

or, also,
δ (Dk) δ (D1)→ δ (Dk− k0D1/2E) .

By a suitable combination of such replacements, we can rewrite Eq.(2.1) as

CV (s) =
∫

∞

−∞

dk0

∫
∞

−∞

dkx Ω(d−2)
∫

∞

0
kd−3

r dkr δ (m2 + k2
r ) δ (4Ek0) δ (2Ekx) . (2.2)

The integration of the δ ’s is now trivial: but the final result is an uninteresting zero, as the argument
of the first δ , m2 + k2

r , cannot vanish (kr is real and positive in the whole integration range of kd).
Let us recall however that the residual components space is not spanned by the physical vectors,
so that we can perform for those components a Wick rotation (or, perhaps more exactly, a Wick
anti-rotation, from the Euclidean to the Minkoskian metric) carrying out for any of the residual
components, say kn, with n = 1, ..,(d−2), the substitutions∫

∞

−∞

dkn→ (−i)
∫

∞

−∞

dKn ,

k2
n→−K2

n ,

which in spherical coordinates gives∫
∞

0
kd−3

r dkr→ (−i)(d−2)
∫

∞

0
Kd−3

r dKr ,

k2
r →−K2

r .

Carrying out the Wick rotations, CV (s) is transformed in a new quantity, say CW
V (s), which reads

CW
V (s) =

∫
∞

−∞

dk0

∫
∞

−∞

dkx (−i)(d−2)
Ω(d−2)

∫
∞

0
Kd−3

r dKr δ (m2−K2
r ) δ (4Ek0) δ (2Ekx) . (2.3)

which is immediately integrated to give the nonvanishing, particularly simple result (the numerical
constant is irrelevant for most purposes)

CW
V (s) = (−i)(d−2)

Ω(d−2)md−4 1
4s

. (2.4)
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3. The quadruple cut of a Box amplitude

As a second example, we take the quadruple cut of the 1-loop box amplitude, in d continuous
dimensions

p1 + p2→ p3 + p4 ,

with massless external lines, p2
i = 0, i = 1, ..,4 , while all the internal lines of the box have a

same mass m (as in the scalar part of the QED light-light scattering). We consider the following
kinematical configuration, in the cms system of p1 and p2,

p1 = (p10 = E, p1x = E, p1y = 0,~p1r = 0) ,

p2 = (E,E,0,0) ,

p3 = (E,E cosθ ,E sinθ ,0) ,

p4 = (E,E cosθ ,−E sinθ ,0) ,

s =−(p1 + p2)
2 = 4E2 ,

t =−(p1− p3)
2 =−2E2(1− cosθ) ,

cosθ = 1+2
t
s
,

sinθ = 2

√
−t(s+ t)

s
.

The components of the external physical vectors span the time direction and the space directions
x,y, while the subscript r (as in ~p1r) refers to the residual (d−3) directions.
Following the previous section, one finds that the quadruple cut vanishes when using the standard
loop momentum; we perform therefore the Wick rotation of the (d−3) residual components of the
loop momentum k, so that the quadruple cut of the box amplitude reads

CW
B (s) =

∫
∞

−∞

dk0

∫
∞

−∞

dkx

∫
∞

−∞

dky (−i)(d−3)
Ω(d−3)

∫
∞

0
Kd−4

r dKr δ (Dk)δ (D1)δ (D2)δ (D3) ,

(3.1)
where

D1 = (p1 + k)2 +m2 =−2Ek0 +2Ekx + k2 +m2 ,

D2 = (p2− k)2 +m2 =+2Ek0 +2Ekx + k2 +m2 ,

D3 = (p1− p3 + k)2 +m2 = 2E2(1− cosθ)+2E(1− cosθ)kx−2E sinθky + k2 +m2 ,

Dk = k2 +m2 =−k2
0 + k2

x −K2
r +m2 ,

are the denominators of the four propagators (in the Wick-rotated variables).
By summing to the argument of any δ functions suitable combinations of the other arguments, after
a little algebra the previous integral becomes

CW
B (s) =

∫
∞

−∞

dk0

∫
∞

−∞

dkx

∫
∞

−∞

dky (−i)(d−3)
Ω(d−3)

∫
∞

0
Kd−4

r dKr

δ

(
4m2(s+ t)− st

4(s+ t)
−K2

r

)
δ (−2Ek0)δ (4Ekx)δ

(
−t +

√
−t(s+ t)

E
ky

)
, (3.2)
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The integrations are now trivial, and give

CW
B (s) =

(−i)(d−3)Ω(d−3)√
−st[4m2(s+ t)− st]

(
4m2(s+ t)− st

4(s+ t)

) d−4
2

. (3.3)

For comparison, let us recall the imaginary part in s of the light-light box graph in the usual vari-
ables (without the extra Wick rotation) and d = 4 dimensions

ImA(s, t) =
∫

dk0dkxdkydkz θ(p10 + k0)δ (D1) θ(p20− k0)δ (D2)
1

D3D4

=
π

2
√
(−st)[4m2(s+ t)− st]

ln
2m2s− (s−4m2)t +

√
−(s−4m2)t[4m2(s+ t)− st]

2m2s− (s−4m2)t−
√
−(s−4m2)t[4m2(s+ t)− st]

(3.4)

Note the appearance, in Eq.s(3.3) and (3.4), of the Mandelstam square root√
(−st)[4m2(s+ t)− st] .

4. The Wick rotation

To see in more details how the Wick rotation works, consider the rather simple integral of a
single Feynman propagator∫

∞

−∞

dkz

−k2
0 + k2

z +m2− iε
=

π√
m2− k2

0− iε

=
π√

m2− k2
0

, real if m2− k2
0 > 0 ,

= i
π√

k2
0−m2

, imaginary if k2
0−m2 > 0 ,

where the two results are obviously related to each other by analytic continuation.
But we are interested in this contribution with the integration of cut graphs, i.e. of δ functions, so
we write the propagator as the sum of its principal value and δ function parts

1
−k2

0 + k2
z +m2− iε

= P
(

1
−k2

0 + k2
z +m2

)
real

+ iπδ (−k2
0 + k2

z +m2) imaginary (4.1)

and consider separately the contributions of the two terms∫
∞

−∞

dkzP
(

1
−k2

0 + k2
z +m2

)
=

π√
m2− k2

0

, real if m2− k2
0 > 0 , (4.2)

= 0 , if k2
0−m2 > 0 , (4.3)

iπ
∫

∞

−∞

dkzδ (−k2
0 + k2

z +m2) = 0 , if m2− k2
0 > 0 , (4.4)

= i
π√

k2
0−m2

, imaginary if k2
0−m2 > 0 . (4.5)
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In the above calculations, all the integrations are merely real (the imaginary unit i appears only
as an overall constant), and the two results for each term (obviously) are not related by analytic
continuation – as opposed to their sum.

We now repeat the calculations in terms of the Wick-rotated variable Kz, defined through the
substitutions ∫

∞

−∞

dkz→
∫

∞

−∞

(−i dKz) , k2
z →−K2

z .

We find, as in Eq.(4.1),

1
−k2

0−K2
z +m2− iε

= P
(

1
−k2

0−K2
z +m2

)
real

+ iπδ (−k2
0−K2

z +m2) imaginary (4.6)

and, as expected,∫
∞

−∞

dkz

−k2
0 + k2

z +m2− iε
=
∫

∞

−∞

−i dKz

−k2
0−K2

z +m2− iε
=

π√
m2− k2

0− iε
.

But the contributions of the two terms of the decomposition (4.6) are∫
∞

−∞

(−i dKz)P
(

1
−k2

0−K2
z +m2

)
= 0 , if m2− k2

0 > 0 , (4.7)

= i
π√

m2− k2
0

, imaginary if k2
0−m2 > 0 , (4.8)

iπ
∫

∞

−∞

(−i dKz)δ (−k2
0−K2

z +m2) =
π√

k2
0−m2

, real if m2− k2
0 > 0 , (4.9)

= 0 , if k2
0−m2 > 0 . (4.10)

It can be observed that Eq.(4.2) is different from Eq.(4.7) but equal to Eq.(4.8), while Eq.(4.3) is
different from Eq.(4.8) but equal to Eq.(4.7), etc.

5. 1-loop Bubble and Wick rotation

As a less trivial example, consider the 1-loop scalar Bubble amplitude with external momen-
tum p and two different masses M,m,M > m, in d = 2 dimensions for simplicity; for p timelike,
p0 = E > 0, pz = 0, defined as

B(E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

dkz
1

(Dm− iε)(DM− iε)
, (5.1)

where

Dm = k2 +m2 =−k2
0 + k2

z +m2 ,

DM = (p− k)2 +M2 =−(k0−E)2 + k2
z +M2 .

6
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By using the decomposition

1
Dm− iε

= P
(

1
Dm

)
+ iπδ (Dm),

1
DM− iε

= P
(

1
DM

)
+ iπδ (DM) ,

one can define the four quantities

B(PmPM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

dkzP
(

1
Dm

)
P
(

1
DM

)
imaginary

B(PmδM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

dkzP
(

1
Dm

)
iπδ (DM) real

B(δmPM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

dkz iπδ (Dm) P
(

1
DM

)
real

B(δmδM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

dkz iπδ (Dm) iπδ (DM) imaginary (5.2)

whose sum is, by construction, the Bubble amplitude

B(E2) = B(PmPM,E2)+B(PmδM,E2)+B(δmPM,E2)+B(δmδM,E2) . (5.3)

As the external vector p has no component along the z direction, one can perform the Wick-rotation
of kz into Kz, obtaining the corresponding quantities

BW (E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

(−i dKz)
1

(DW
m − iε)(DW

M − iε)
, (5.4)

with

DW
m = k2 +m2 =−k2

0−K2
z +m2 ,

DW
M = (p− k)2 +M2 =−(k0−E)2−K2

z +M2 ,

and

BW (PmPM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

(−i dKz)P
(

1
DW

m

)
P
(

1
DW

M

)
real

BW (PmδM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

(−i dKz)P
(

1
DW

m

)
iπδ (DM

W ) imaginary

BW (δmPM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

(−i dKz) iπδ (Dm
W ) P

(
1

DW
M

)
imaginary

BW (δmδM,E2) =−i
∫

∞

−∞

dk0

∫
∞

−∞

(−i dKz) iπδ (DW
m ) iπδ (DW

M) real. (5.5)

It is apparent that the four quantities defined in Eq.s(5.5) are not equal to the corresponding quan-
tities of Eq.s(5.2), but their sum, as we will also check in a moment by an explicit calculation, is
equal to B(E2)

BW (E2) = BW (PmPM,E2)+BW (PmδM,E2)+BW (δmPM,E2)+BW (δmδM,E2)

= B(E2) .

7
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For E =U , 0 <U < M−m, defining
√

R(U2) =
√
(M+m)2−U2

√
(M−m)2−U2, we find√

R(U2)×B(PmPM,U2) =−iπ2√
R(U2)×BW (PmPM,U2) = +2π ln

√
(M+m)2−U2 +

√
(M−m)2−U2√

(M+m)2−U2−
√
(M−m)2−U2√

R(U2)×B(PmδM,U2) =−2π ln

√
(U +M)2−m2 +

√
(U−M)2−m2√

(U +M)2−m2−
√
(U−M)2−m2√

R(U2)×BW (PmδM,U2) = +iπ2√
R(U2)×B(δmPM,U2) = +2π ln

√
M2− (U−m)2 +

√
M2− (U +m)2√

M2− (U−m)2−
√

M2− (U +m)2√
R(U2)×BW (δmPM,U2) =−iπ2√

R(U2)×B(δmδM,U2) = +iπ2√
R(U2)×BW (δmδM,U2) = 0 (5.6)

whose sums are

BW (U2) = B(U2) =
2π√
R(U2)

ln

√
(M+m)2−U2 +

√
(M−m)2−U2√

(M+m)2−U2−
√

(M−m)2−U2
.

Note the appearance, for ordinary as well for Wick-rotated coordinates, of terms giving imaginary
contributions, which cancel out in both sums (the Bubble amplitude is real for energy U in the
considered range 0 <U < M−m).
As another check, for E = Z, M +m < Z, defining

√
R(Z2) =

√
Z2− (M+m)2

√
Z2− (M−m)2

we find √
R(Z2)×B(PmPM,Z2) = +iπ2√

R(Z2)×BW (PmPM,Z2) =−2π ln

√
Z2− (M−m)2 +

√
Z2− (M+m)2√

Z2− (M−m)2−
√

Z2− (M+m)2√
R(Z2)×B(PmδM,Z2) =−2π ln

√
(Z +M)2−m2 +

√
(Z−M)2−m2√

(Z +M)2−m2−
√
(Z−M)2−m2√

R(Z2)×BW (PmδM,Z2) = iπ2√
R(Z2)×B(δmPM,Z2) =−2π ln

√
(Z +m)2−M2 +

√
(Z−m)2−M2√

(Z +m)2−M2 +
√
(Z−m)2−M2√

R(Z2)×BW (δmPM,Z2) = +iπ2√
R(Z2)×B(δmδM,Z2) = +iπ2√

R(Z2)×BW (δmδM,Z2) = 0 (5.7)

whose sums are

BW (Z2) = B(Z2) =− 2π√
R(Z2)

ln

√
Z2− (M−m)2 +

√
Z2− (M+m)2√

Z2− (M−m)2−
√

Z2− (M+m)2
+

2π2√
R(Z2)

i .
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Note the appearance, when the energy Z is in the range M+m < Z < ∞, of the expected imaginary
part of the Bubble amplitude.
For comparison, we recall that the Cutkosky-Veltman rule gives for the Bubble amplitude as defined
in Eq.(5.1), (with the ordinary components of the loop momentum k),

ImB(E2) =
1
2

∫
∞

−∞

dk0

∫
∞

−∞

dkz (2π)θ(k0)δ (Dm) (2π)θ(p0− k0)δ (DM) =
2π2√
R(E2)

,

where the θ functions accompanying the δ ’s give a non vanishing result only for E > (M+m). In
contrast, the terms corresponding to the contribution of the two δ functions Eq.(5.2), and whose
value is given in Eq.s(5.6) and (5.7), give, in both ranges of the energy, the same contribution iπ2

to the imaginary part, which for 0 < U < (M−m) is cancelled by another contribution, while for
M+m < Z < ∞ is just one half of the actual imaginary part of the amplitude.

Conclusions
We have proposed that the Wick rotation of the residual components of the loop momenta (i.e.
of the components not spanned by the external pysical vectors) can provide with a simple way
for evaluating otherwise vanishing maximally cut Feynman amplitudes, showing how the method
works at 1 loop. It is hoped that the approach might be of help even at 2 loops or more.
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