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1. Introduction

Nowadays, perturbative calculations play the key role in describing data from high-energy
particle colliders, such as the LHC, as well as in improving the precision of numerical parameters in
the Standard Model and other models. It is clear now that higher-order calculations will play an
even more crucial role in processing data from future high-luminosity colliders, like the FCC or the
ILC, where theoretical errors will dominate over experimental statistical errors. These arguments
motivate us to make one step forward beyond available fully-inclusive phase-space integrals for a
four-particle decay [2] and calculate a set of yet unknown integrals that corresponds to a five-particle
decay of a color-neutral off-shell particle in Quantum Chromodynamics.

A particular application of these integrals we have in mind is the extraction of NNLO time-like
splitting functions [3] from a semi-inclusive one-particle decay process, as for example discussed
in [4, 5]: the integrals we will be looking at correspond to a fully inclusive cross section, and can be
used to determine integration constants when calculating exclusive quantities using the method of
differential equations.

In this article, we focus on the calculation of master integrals that can be used to express any
other integral of the corresponding topology provided a set of integration-by-parts rules (IBP) [6] is
known. Our approach is based on techniques for solving dimensional recurrence relations (DRR) [7]
described in [8, 9]. In particular, we use the DREAM package [8] to obtain numerical results for the
desired integrals with 2000-digit precision, and restore their analytical form in terms of multiple
zeta values (MZV) [10, 11, 12] up to weight 12 using the PSLQ method [13] as implemented in
Mathematica. We also present a Monte-Carlo code, based on the RAMBO algorithm [14], for
numerical integration of the phase-space integrals in arbitrary (integer) number of dimensions that
has been used to check consistency of the obtained results.

This article is organized as following. In Section 2 we introduce our notation and describe
our calculational method in more detail. In Section 3 we provide complete results for four-particle
integrals and discuss numerical cross-checks using Monte-Carlo integration. In Section 4 we make
our final remarks.

Accompanying to this paper are the auxiliary files on the arXiv! containing the complete master
integrals with MZV weight up to 12, as well as the Monte-Carlo integration routines with the
corresponding results.

2. The Method

We start by identifying a set of five-particle phase-space master integrals using two different
approaches for consistency. As the first approach we exploit the equivalence of IBP rules for cut
and ordinary propagators, and obtain the complete basis of phase-space master integrals by taking
all five-particle cuts of the 28 master integrals for four-loop massless propagators found in [15],
discarding those that do not correspond to the squared matrix elements of the 1 — 5 process (i.e.
only leaving graphs which are bipartite), and reducing the remaining integrals with Laporta-style
IBP reduction [16, 17] as implemented in FIRE5S [18]. As an alternative approach, we construct
the complete expression for the total cross section of the 1 — 5 process in QCD using QGRAF [19]
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Table 1: Cut diagrams for five-particle phase-space master integrals in QCD. Dashed lines represent cut
propagators and carry final-state momenta py, ..., ps. Labels represent propagators, so that "123" corresponds
to p1 + p2 + p3 and "012" to g — p1 — p> (where ¢ is the initial-state momentum, i.e., ¢ = p; +- -+ ps).
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and FORM [20], and then reduce it with the help of FIRE5. Both methods give 31 master integrals
listed in Table 1, with each having up to 6 unique propagators. Our notation for these integrals is

1
Fi= Sr/dPS5 G W 2.1
Dy’ ... Dy
where Dy) are propagators that take the form of invariant scalar products
Stq = (Pe+ Pt +pg)° (22
dPSs is a five-particle phase-space element in D dimensions
N
aPsy = ([T 8% (p2) | 8 (g p1— ...~ pn ). 23)
i=1
and Sr is a common normalization factor chosen for convenience? to be
s —(Z)HDWF D N\ (32_; (2.4)
r=\ a0 \2 2 ) ‘
With this normalization and knowing the volume of the complete N-particle phase space?
D N
DN_1)-n w2 N=D re-1
/dPSN _ (qZ) 2( ) o - (2 ) - , (25)
- @0)" ' r((3-1)-1))r((Z-1)N)
we can already fix the value of F] as:
(3-1)°T(32-3)
F =Sr / dPSs = — 2 Z (2.6)
(42 -4)T(57 -5)

Next, with the help of LiteRed [21] and FIRES [18] we derive a set of lowering dimensional
recurrence relations which express master integrals in D + 2 dimensions in terms of master integrals
in D dimensions:

F(D+2) = M;j(D) F;(D). (2.7)

In the general case M (D) is expected to have a block-triangular structure, but in our case it can
be shuffled into triangular form. The general structure of our M (D) can be visualized as:

2This way we prevent additional constants (e.g, y¢ or In7) to appear in the final results, hence reducing its size as
well as a size of the basis for PSLQ algorithm.
3The dependence on ¢? is trivial here, and can be restored by power counting. We will omit it from now on, setting
2
g“tol.
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In other words, each F; only depends on itself and master integrals from lower sectors:

Homogeneous part ~ Inhomogeneous part

F(D+2) = M;(D)F,(D) + Y My(D)F¢(D) (2.9)

k<i

As an example, for F>3 we have:

) Fs(D)+ Y. Mys(D)Fi(D) (2.10)

2
Fapr2)— 2 G (G-5)(G -3
28 2 (-
- 2 ) k<28

The general solution for system (2.9) can be written as:
Fi(D) = w;(D) Hi(D) + Ri(D), 2.11)
where
e H;(D) is a homogeneous solution, which can be found just from the diagonal entries, M;;(D);

e R;(D) is a partial solution, which only depends on the integrals from subsectors, and can be
constructed analytically as an indefinite nested sum, or evaluated numerically with DREAM,
as long as F; (D), the lowest integral, is known;

e w;(D) is an arbitrary periodic function, such that w;(D + 2) = @;(D), which cannot be
determined from the DRR relations alone, and needs to be fixed separately.

In the general case this solution can be evaluated as a series in € around any dimensionality using
the DRA method [22], which requires the analysis of singularities and the asymptotic behaviour of



Five-Particle Phase-Space Integrals in QCD Oleksandr Gituliar

F;(D) in the limit of D going to imaginary infinity. Our case contains two important simplifications,
and will not require such analysis.

The first simplification is that since M(D) is triangular, the homogeneous part of eq. (2.9)
decouples into a set of first order difference equations:

H;(D+2) = M;;(D)H;(D) (2.12)

For rational M;;(D) written in the following form (compare to eq. (2.10)):

D _ D _ D _
o)== Gma).(G-a) 2.13)
(2=01) (3 =b2) - (3 —b5)
the homogeneous solution can immediately be found as:
D_ D _ D _
Hi(D):C%F(IZ) al)F(lz) az)...l"(lz) aA) (2.14)
L(3=b)0(3=b2)...T(3—bs)
Explicitly, for Hyg(D) we have:
D 2
3\ % (2 _2)} (D _2)(2_1
(z-2)(z-1(3-2)

The second simplification, is that as we will argue further, all @;(D) for i > 1 are zero. To see
this, first let us look at the asymptotic behavior of F;(D) at large D. Rewriting eq. (2.1) as an integral
over invariants s;; gives

N—1
Qp dsim D-N-1 1
F,=Sr / (Av) 2 O(AN)S(1—s1.n) ——,  (2.16)
(kl:ll 2 ) lI<_rIn 2 p\ ... D
where Ay is the Gram determinant defined as
S11 812 0t SIN
(=Nt s12 $22 -+ Sy

M= | | 2.17)

SIN S2N *** SNN

and Q is the surface area of a unit hypersphere in k-dimensional space
e (kY7
Qk:2n2F<2> . (2.18)

If An(sij) has a unique global maximum inside the integration region, we can apply Laplace’s
method to eq. (2.16) and find its asymptotic as

(N(/\/2 1) 1)

F{(D — ) = Sr <H Qp_ k) Ay <25>2 (¢;+0(D7")), (2.19)
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where %; is a constant that depends on the location of the maximum and the denominators DE'), but

not on D.

The global maximum of Ay is reached when all s;; (i # j) are identical and equal to m

Geometrically this configuration corresponds to the vectors p; pointing to the vertices of a regular
N-hedron embedded into Euclidean space of (N — 1) dimensions. The maximum value is then

1

AT = NN 1T (2.20)
and explicitly we get
D D
s @) ey IENE Y
E(D_)oo)_mzzDgr(l)z—“)r(l?)r(l);l)(%jLﬁ(D ))Nl)i(4455> .21

It follows that all F;(D) have identical asymptotic behavior up to a constant %;. As a confirmation, it
can be shown that eq. (2.21) is asymptotically the same expression as we had for Fj in eq. (2.6).

Now we can compare this asymptotic for F;(D) to the asymptotic for H;(D) from eq. (2.14).
Indeed, for Hpg(D) from eq. (2.15) we have:

2

AR
Hyg(D) ~ o <—43> . (2.22)

This grows asymptotically exponentially faster than eq. (2.21). In fact, all H;(D) for i > 1
grow exponentially faster than F;(D), and since F and H are connected via eq. (2.11), this can only
happen if the corresponding periodic functions @;(D) are zero.

Thus, to find F;(D) we only need to find R;(D), the inhomogeneous solutions to eq. (2.9). We
compute them as a series in € = (4 — D) /2 using DREAM with 2000-digit accuracy, and then restore
the analytical form of the series coefficients in terms of MZVs using the PSLQ method [13]. This
way we obtain the analytical result for all master integrals up to MZVs of weight 12 using the
corresponding bases from [10] and the SummerTime package [12] for their numerical evaluation.
Corresponding expressions are presented in the auxiliary files on the arXiv.

3. Crosschecks

3.1 Four-Particle Integrals

As the first consistency check of our method we reproduce results for four-particle phase-space
integrals reported in [2]. We perform all the steps described in Section 2. Generating the IBP
rules with the help of LiteRed and then proceeding with DREAM we obtain the final result with
2000-digit accuracy. The series reconstructed with PSLQ, and truncated to MZV weight 6 are (using
the original notation, and omitting S and ¢ factors):

Re= —~ | :—1+§2+s<—12+5§2+9§3>+s2<—91+27c2 3.1)

61
+458 + 5<§22> +¢ ( —558+1615 + 19783+ 6183



Five-Particle Phase-Space Integrals in QCD Oleksandr Gituliar

— 80536 + 207§5> +et ( —3025+9398 489783

+115j§22—40063@+1035§5+¥§23 — 153;§>
+0(&%),

Ryq= }( :;ffﬁ?—1f§444g+s<m%gg—4mmg) (3.2)
+e2<— 2;—2C23+ 16O2§32> +0(&%),

Rsgp = = 43? — 127522 - 4‘? — F;_ﬁcg +e (3764’24’3 —790§5> (3.3)

19088
+82<— 05 C23+69SC32> +0(&%).

These values are in a complete agreement with the known results, and we have included the
series up to MZV weight 12 among the auxiliary files on the arXiv.

3.2 Numerical Verification

As another cross-check we have calculated the leading terms of the -expansion of F; numeri-
cally using the direct way: through Monte-Carlo integration of eq. (2.1) over the phase-space. While
such a technique cannot be easily applied to divergent integrals, we can sidestep this issue by noting
that our master integrals only suffer from IR divergences that disappear already at D = 6. This way
we can check several leading terms of the expansion at D = 4 — 2¢ by calculating the corresponding
integrals in D > 6 since both are connected by dimensional recurrence relations.

To calculate a finite integral of the form eq. (2.1) we choose a uniform mapping from a
hypercube into momentum coordinates using an algorithm similar to RAMBO [14] but extended
into arbitrary (integer) D. Then we calculate the integrand from scalar products of the momenta,
and finally we integrate over the hypercube using the Vegas [23] implementation from CUBA [24].

Note that although the integrals we are calculating are finite, the integrands are not. Exposing
an integration algorithm like Vegas to such infinities may lead to unpredictable behaviour, so as a
precaution we choose to regulate these infinities by adding a small parameter ¢ to the denominator
of the integrand, and then to calculate the integral with progressively smaller values of & (from 2730
to 27190, checking if convergence was reached afterwards.

The results of this method are summarized in Table 2, and show good agreement between
numerical and analytic results. Our integration program is written in C using the GNU Scientific
Library [25] and CUBA. Its source code can be found at https://hg.tx97.net/rambo, and also in the
auxiliary files on the arXiv. With a requested accuracy of 0.1% the complete integration takes less
than two days on a 12-core machine, with each integration taking between a minute and two hours.

An alternative to the RAMBO-like algorithm, we have also implemented the generation of
phase space points by a sequence of two-particle decays. This method is computationally faster,
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Numerical results

Analytic results

D=4 D=6 D=3 D=4 D=6 D=38
2 —1708(2)00  4699(1)0 — 171085.62 47000.531
3 3.7823(4)  3.1704(2)  3.0221(1) 3.7823736 3.1704486 3.0221118
4 —1504.7(8)  725.3(1) — 15044507 725.26806
5 —  1007.4(5)  580.80(9) — 10075235 580.76347
6 — 6191500  14496(6)0 — 61963325 144975.32
7 46.46(4)  18.533(2)  15.205(1) 46.435253 18.532303 15.205538
8 ~ 203120 53572 ~20297.189 5355.3611
9 - 4313(3)  2406.7(4) ~ 4312.8823  2406.7943
10 10.436(2)  7.1508(5)  6.5093(3) 10.435253 7.1507477 6.5092878
11 228.8(1)  62.67(1) 47.663(4) 229.11836 62.667046 47.663194
12 —15734(4)  102.26(1) ~ 157.33521  102.26408
13 — 13729(8)  4000(1) ~ 13732.166  4000.2779
14 ~ 268.46(8) 172.80(2) ~ 268.45969 172.79805
15 6322600 16048(5) — 63316356 16049.857
16 — 4414(3)0  12952(4) ~ 44117.898 12951.443
17 —12434(7)  709.6(1) ~1243.1369  709.52840
18 ~3002(2)00  5899(3)0 ~ 300402.99 58965.517
19 ~4982(4)00  10637(4)0 ~ 498329.79 106357.81
20 ~2360(2)000  5777(2)00 ~ 23625949 577686.64
21 —6312(5)0  20642(5) ~ 63147.876  20642.071
22 ~ 8402(7)00  24407(8)0 — 840453.94 244075.75
23 ~1443(1)000  4556(1)00 ~ 14431983  455543.43
24 —1391(1)00  3997(1)0 ~ 139263.92  39966.878
25 ~3347(3)00  8526(3)0 ~ 335128.10 85254.217
26 25.563(6)  15.376(1) 13.6042(7) 25.564747 15.376404 13.604247
27 ~ 697.3(3)  397.84(6) ~ 697.18948 397.83514
28 143.9(1)  52.855(7) 42.917(3) 143.97886 52.853837 42.917424
29 — 44093)0  13702(3) ~ 44117.898  13700.597
30 —6327(6)0  16181(5) — 63316356 16178.566
3] ~ 8955(8)0  19055(8) ~ 89611.062 19051.115

Table 2: Numerical results for the ratio F;/Fj with the corresponding uncertainties (standard deviations)
indicated in the parenthesis. Missing entries correspond to divergent integrals.

but does not give a flat distribution of points over the phase space. Still, the convergence of Vegas
integration with this method appeared to be as good as with the RAMBO version. We do not supply
a corresponding table of results, because it is very similar to Table 2.

We would like to note that such numerical integration is commonly done differently, e.g. via
the method sector decomposition [26]. To apply that method to phase space integrals one needs to
parameterize the phase space by a suitable rational mapping from a hypercube, and for five particles
we found this to be challenging, whereas a four-particle phase-space mapping is known from [2].
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4. Conclusions and outlook

In this article we present analytical expressions for five-particle phase-space integrals expressed
in terms of multiple zeta values up to weight 12. The results are calculated using dimensional
recurrence relation method with a 2000-digit accuracy using the DREAM package, and analytically
restored via the PSLQ algorithm. We also present a computer code for the numerical integration
of phase-space integrals in a higher-number of dimensions that has been used to cross-check the
obtained results. The approach presented here shows excellent performance for calculating single-
scale integrals without ultra-violet divergences and can be easily applied to other problems of this
kind.

Further work in this direction includes the calculation of multi-scale phase-space integrals
needed for the extraction of time-like splitting functions, with the presented integrals used as
boundary conditions of differential equations. Also of interest is the calculation of the remaining
unknown integrals with 2-, 3- and 4-particle cuts appearing in the optical theorem for the four-loop
propagator.

Acknowledgments

We are thankful to Sven Moch for numerous discussions and helpful suggestions concerning
this work, and for proofreading this article. We were pleased to use Axodraw2 [27] to draw
diagrams for this article.

This work was supported in part by the German Research Foundation DFG through the
Collaborative Research Centre No. SFB 676 Particles, Strings and the Early Universe: the Structure
of Matter and Space-Time.

References
[1] O. Gituliar, V. Magerya and A. Pikelner, Five-Particle Phase-Space Integrals in QCD, JHEP 06 (2018)
099[1803.09084].

[2] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in
massless QCD, Nucl.Phys. B682 (2004) 265[hep-ph/0311276].

[3] A. A. Almasy, S. Moch and A. Vogt, On the Next-to-Next-to-Leading Order Evolution of
Flavour-Singlet Fragmentation Functions, Nucl. Phys. B854 (2012) 133[1107.2263].

[4] O. Gituliar, Master integrals for splitting functions from differential equations in QCD, JHEP 02 (2016)
017[1512.02045].

[5] O. Gituliar and S. Moch, Towards three-loop QCD corrections to the time-like splitting functions, Acta
Phys. Polon. B46 (2015) 1279[1505.02901].

[6] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate beta Functions in
4 Loops, Nucl. Phys. B192 (1981) 159.

[7] O. V. Tarasov, Connection between Feynman integrals having different values of the space-time
dimension, Phys. Rev. D54 (1996) 6479[hep-th/9606018].

[8] R.N. Lee and K. T. Mingulov, DREAM, a program for arbitrary-precision computation of dimensional
recurrence relations solutions, and its applications, 1712 .05173.


https://doi.org/10.1007/JHEP06(2018)099
https://doi.org/10.1007/JHEP06(2018)099
https://arxiv.org/abs/1803.09084
https://doi.org/10.1016/j.nuclphysb.2004.01.023
https://arxiv.org/abs/hep-ph/0311276
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://arxiv.org/abs/1107.2263
https://doi.org/10.1007/JHEP02(2016)017
https://doi.org/10.1007/JHEP02(2016)017
https://arxiv.org/abs/1512.02045
https://doi.org/10.5506/APhysPolB.46.1279
https://doi.org/10.5506/APhysPolB.46.1279
https://arxiv.org/abs/1505.02901
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1103/PhysRevD.54.6479
https://arxiv.org/abs/hep-th/9606018
https://arxiv.org/abs/1712.05173

Five-Particle Phase-Space Integrals in QCD Oleksandr Gituliar

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
(21]

[22]

(23]

[24]

[25]
[26]

[27]

R. N. Lee and K. T. Mingulov, Meromorphic solutions of recurrence relations and DRA method for
multicomponent master integrals, 1712 .05166.

H. Furusho, The multiple zeta value algebra and the stable derivation algebra, Publications of the
Research Institute for Mathematical Sciences 39 (2003) 695[math/0011261].

J. Blumlein, D. J. Broadhurst and J. A. M. Vermaseren, The Multiple Zeta Value Data Mine, Comput.
Phys. Commun. 181 (2010) 582[0907.2557].

R. N. Lee and K. T. Mingulov, Introducing SummerTime: a package for high-precision computation of
sums appearing in DRA method, Comput. Phys. Commun. 203 (2016) 255[1507.04256].

H. Ferguson, D. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm,
Mathematics of Computation of the American Mathematical Society 68 (1999) 351.

R. Kleiss, W. J. Stirling and S. D. Ellis, A New Monte Carlo Treatment of Multiparticle Phase Space at
High-energies, Comput. Phys. Commun. 40 (1986) 359.

P. A. Baikov and K. G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All
Master Integrals, Nucl. Phys. B837 (2010) 186[1004.1153].

S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J.
Mod. Phys. A15 (2000) 5087[hep-ph/0102033].

S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED, Phys. Lett.
B772 (2017) 232[1704.06996].

A. V. Smirnov, FIRES5: a C++ implementation of Feynman Integral REduction, Comput. Phys.
Commun. 189 (2015) 182[1408.2372].

P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, 1707 .06453.

R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523
(2014) 012059[1310.1145].

R. N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using
dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B830 (2010)
474[0911.0252].

G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978)
192.

T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168
(2005) 78[hep-ph /040404 3].

B. Gough, GNU Scientific Library Reference Manual. Network Theory Ltd., 3rd ed., 2009.

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals,
Nucl. Phys. B585 (2000) 741[hep-ph/0004013].

J. C. Collins and J. A. M. Vermaseren, Axodraw Version 2, 1606.01177.

10


https://arxiv.org/abs/1712.05166
https://doi.org/10.2977/prims/1145476044
https://doi.org/10.2977/prims/1145476044
https://arxiv.org/abs/math/0011261
https://doi.org/10.1016/j.cpc.2009.11.007
https://doi.org/10.1016/j.cpc.2009.11.007
https://arxiv.org/abs/0907.2557
https://doi.org/10.1016/j.cpc.2016.02.018
https://arxiv.org/abs/1507.04256
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/j.nuclphysb.2010.05.004
https://arxiv.org/abs/1004.1153
https://doi.org/10.1016/S0217-751X(00)00215-7, 10.1142/S0217751X00002157
https://doi.org/10.1016/S0217-751X(00)00215-7, 10.1142/S0217751X00002157
https://arxiv.org/abs/hep-ph/0102033
https://doi.org/10.1016/j.physletb.2017.06.056
https://doi.org/10.1016/j.physletb.2017.06.056
https://arxiv.org/abs/1704.06996
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://doi.org/10.1006/jcph.1993.1074
https://arxiv.org/abs/1707.06453
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://arxiv.org/abs/0911.0252
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/hep-ph/0404043
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://arxiv.org/abs/1606.01177

