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1. Introduction

Gauge/gravity duality is one of the major developments in theoretical physics over the last
two decades. Based on string theory, it provides a new relation between a quantum field theory
without gravity and a gravity theory itself. At a fundamental level within theoretical physics, this
has provided new insight into the nature of quantum gravity. Moreover, since in a certain limit
gauge/gravity duality maps strongly coupled quantum field theories to classical gravity theories, it
has provided a new way for calculating observables in these strongly coupled theories which are
generically hard to solve. Gauge/gravity thus provides new unexpected links between previously
unrelated areas of physics.

What is a duality? Imagine that a physical system is described by two different actions or
Hamiltonians that may involve different encodings of the degrees of freedom. Then, these two
different theories are said to be related by a duality. This is visualized in figure 1. There are many

Figure 1: Two physical theories describing the same physical system are related by a duality.

well-known examples for dualities in physics. One of these is the duality between the massive
Thirring model and the sine-Gordon model within two-dimensional quantum field theory [1]. This
is a boson-fermion duality within quantum field theory. A further example is Montonen-Olive
duality of electric and magnetic charges [2], which is an example of a duality between a weakly
and a strongly coupled gauge theory or S-duality. This plays also an important role in string theory,
together with T-duality [3].

Gauge/gravity duality, as first realized by the AdS/CFT correspondence of Maldacena [4], is
a very special duality in the sense that it relates a gravity theory to a gauge theory, i.e. a quantum
field theory without gravity. This new relation implies new questions about the nature of gravity
itself: How is gravity related to quantum physics? It is equivalent to a non-gravity theory at least
in this special context - does this imply that it is non-fundamental? This is an open question which
we will not explore in detail here. Nevertheless we note that gauge/gravity duality opens up new
issues about the nature of gravity. It is important to emphasize in this context that so far the best
understood examples of gauge/gravity duality involve gravity theories with negative cosmological
constant, different from the theory describing our Universe in which the cosmological constant is
extremely small but positive.

A further important aspect is that generically, gauge/gravity duality relates a quantum gauge
theory in flat space to a string theory in curved space. Only in a very particular limit, which we
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will discuss in detail, this string theory reduces to a classical gravity theory of pointlike particles.
On the field theory side, this same limit implies that the quantum gauge theory becomes strongly
coupled and the rank of its gauge group goes to infinity.

Applications of gauge/gravity duality. The fact that gauge/gravity duality relates strongly cou-
pled quantum field theories to weakly coupled classical gravity theories provides a new approach
to calculating observables in these strongly coupled quantum field theories. Generically, such theo-
ries are hard to study since there is no universal approach for calculating observables in them. This
is crucially different from weakly coupled quantum field theories, for which perturbation theory is
the method of choice and provides very accurate results. An example for an approach to strongly
coupled gauge theories is lattice gauge theory, in which space-time is discretized and advanced nu-
merical methods are used. Lattice gauge theory is very successful in calculating observables such
as bound state masses, however it is afflicted by the sign problem which renders the description of
transport properties very complicated, in particular at finite temperature and density. It is thus de-
sirable to have an alternative approach at hand which allows for comparison. Gauge/gravity duality
provides such an approach.

Strongly coupled quantum field theories appear in all areas of physics, including condensed
matter physics. Weakly coupled theories may successfully be described in a quasiparticle approach.
Quasiparticles are quantum excitationd in one-to-one correspondence with the states in the corre-
sponding free (non-interacting) theory. In strongly-coupled systems however, this map is no longer
present. In general, the excitations in these systems are collective modes of the individual degrees
of freedom. Gauge/gravity duality provides an elegant way of describing these modes by mapping
them to quasinormal modes of the gravity theory. These modes are complex eigenfrequencies of
the fluctuations about the gravity background: Their real part is related to the mass of the fluctua-
tions and their complex part to the decay width.

Before we proceed, it is important to stress that to the present day, gauge/gravity duality is a
conjecture which has not been proved. The proof is hard in particular since it would require a non-
perturbative understanding of string theory in a curved space background, which is not available so
far.

These lecture notes only give an outline of the most important concepts. Detailed information
on gauge/gravity duality, the AdS/CFT correspondence and its applications may be found for in-
stance in the books [5, 6, 7, 8, 9]. There are also very useful lecture notes of previous TASI schools,
see for instance [10, 11]. Further lecture notes on AdS/CFT include [12, 13, 14].

In the present notes, we also include comments on recent developments relating the AdS/CFT
correspondence to concepts from quantum information. In the second part of these lectures, we
focus on the Kondo model and a variant of it with a gravity dual. This provides a new example
for constructing a gravity dual, and its applications. This provides a further entry in the list of
examples of gauge/gravity duality. Related further lectures at TASI 2017 are those by Harlow [15]
and DeWolfe [16] in particular.

2. AdS/CFT correspondence

2.1 Statement of the correspondence

Let us begin by considering the best understood example of gauge/gravity duality, the AdS/CFT
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correspondence. Here, ‘AdS’ stands for ‘Anti-de Sitter space’ and and ‘CFT’ for ‘conformal field
theory. The Dutch physicist Willem de Sitter was a friend of Einstein. The prefix ‘Anti’ refers to
the fact that a crucial sign changes from plus to minus. In fact, Anti-de Sitter space is a hyperbolic
space with a negative cosmological constant.

In this example a four-dimensional CFT, N = 4 SU(N) Super Yang-Mills theory, is conjec-
tured to be dual to gravity in the space AdS5× S5. This was proposed along with other examples
for AdS/CFT by Maldacena in his seminal paper [4] in 1997. As we will see, the two theories have
the same amount of degrees of freedom per unit volume and the same global symmetries. We will
first state the duality and then explain it in detail. The AdS/CFT correspondence states that

N = 4 Super Yang-Mills (SYM) theory
with gauge group SU(N) and Yang-Mills coupling constant gYM

is dynamically equivalent to

IIB superstring theory
with string length ls =

√
α ′ and coupling constant gs

on AdS5×S5 with radius of curvature L, and N units of F(5) flux on S5.

The two free parameters on the field-theory side, i.e. gYM and N, are related to the free
parameters gs and L/

√
α ′ on the string theory side by

g2
YM = 2πgs and 2g2

YMN = L4/α
′2.

For understanding this duality and its motivation in detail, let us first recall some properties of
the ingredients involved. We begin with the field theory side and introduce conformal field theories
and N = 4 supersymmetry.

2.2 Prerequisites for AdS/CFT

2.2.1 Conformal symmetry

An essential aspect for the AdS/CFT correspondence is that the quantum field theory in-
volved is a conformal field theory (CFT). Such a theory consists of fields that transform covari-
antly under conformal coordinate transformation. These leave angles invariant (locally) and in flat
d-dimensional spacetime are defined by the following transformation law of the metric,

dx′µdx′µ = Ω
−2(x)dxµdxµ . (2.1)

Infinitesimally, with Ω(x) = 1−σ(x) and x′µ = xµ +vµ(x), this gives rise to the conformal Killing
equation

∂µvν +∂νvµ = 2σ(x)ηµν , σ(x) =
1
d

∂ · v . (2.2)

In d = 2 dimensions, this reduces to the Cauchy-Riemann equations, which are solved by any
holomorphic function. This implies that in d = 2, conformal symmetry is infinite dimensional and
thus leads to an infinite number of conserved quantities. In more than two dimensions however,
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conformal symmetry is finite dimensional and the only solutions to the conformal Killing equation
(2.2) are

vµ(x) = aµ +ω
µ

νxν +λxµ +bµx2−2(b · x)xµ ; ωµν =−ωνµ ,σ(x) = λ −2b · x . (2.3)

In d > 2, the conformal Killing vector vµ(x) is at most quadratic in x. It contains translations
(of zeroth order in x), rotations and scale transformations (both linear in x) and special conformal
transformations (quadratic in x). The scalar λ , the vectors aµ and bµ and the antisymmetric matrix
ωµν contain a total of

1+2d +d(d−1)/2 = (d +1)(d +2)/2 (2.4)

free parameters. In Euclidean signature, the symmetry group generated by these transformations is
SO(d + 1,1), while in Lorentzian signature, it is SO(d,2). Let us examine the algebra associated
to the infinitesimal transformations (2.3) with parameters (aµ ,ωµν ,λ ,bµ) for the Lorentzian case.
The generator for translations is the momentum operator Pµ . The generator for Lorentz transfor-
mations is denoted by Lµν . The generator for scale transformations is D and the generator for
special conformal transformations is Kµ . The conformal algebra consists of the Poincaré algebra
supplemented by the relations

[Lµν ,Kρ ] = i(ηµρKν −ηνρKµ) , [D,Pµ ] = iPµ , (2.5)

[D,Kµ ] =−iKµ , [D,Lµν ] = 0 , [Kµ ,Kν ] = 0 , (2.6)

[Kµ ,Pν ] =−2i(ηµνD−Lµν) . (2.7)

For the representations we postulate

[D,φ(0)] =−i∆φ(0) (2.8)

for any field φ(x). This implies

φ(x)→ φ
′(x′) = λ

−∆
φ(x) (2.9)

for x→ x′ = λx. ∆ is the scaling dimension of the field φ . For an infinitesimal transformation this
gives

δDφ ≡ [D,φ(x)] =−i∆φ(x)− ixµ
∂µφ(x) , (2.10)

with similar relation for the other conformal transformations δPφ , δLφ , δKφ .
For organising the representations, it is useful to define the quasiprimary fields which satisfy

[Kµ ,φ(0)] = 0 . (2.11)

This defines the fields of lowest scaling dimension in an irreducible representation of the conformal
algebra. All other fields in this multiplet, the conformal descendents of φ , are obtained by acting
with Pµ on the quasiprimary fields.

The infinitesimal transformations δφ give rise to the conformal Ward identities

n

∑
i=1
〈φ1(x1) . . .δφi(xi) . . .φn(xn)〉= 0 . (2.12)
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For scalar conformal fields this implies

〈φ1(x1)φ2(x2)〉=

 c
(x1−x2)2∆ if ∆1 = ∆2 = ∆ ,

0 otherwise.
(2.13)

For fields with spin, the conformal transformation acts also on the spacetime indices and reads

δvO(x) =−LvO(x) , Lv ≡ v ·∂x +
∆

d
∂ · v− i

2
∂
[µvν ]Lµν , (2.14)

for an operator O(x) of arbitrary spin. The Lorentz generator Lµν acts on the spin indices. For these
operators, the conformal correlation functions are more involved. However, conformal symmetry
still fixes them up to a small number of independent contributions.

2.2.2 N = 4 Supersymmetry

The N = 4 SU(N) Super-Yang-Mills theory has some very special properties which are at
the origin of it possessing a gravity dual. First of all, it was shown [17, 18] that this theory is
conformally invariant even when quantised; its beta function vanishes to all orders in perturbation
theory and also non-perturbative contributions are absent. A further important property is that this
theory has a global SU(4) symmetry, which is isomorphic to SO(6). We will see that both the
SO(4,2) conformal symmetry as well as SU(4) are also realized as isometries in the dual gravity
theory. We also note that N = 4 Super Yang-Mills theory is invariant under S duality [19].

For the N = 4 theory, the global SU(4) symmetry is realized as an R symmetry of the super-
symmetry algebra. This algebra has four supersymmetry generators which satisfy the anticommu-
tation relations

{Qa
α , Q̄bβ̇

}= 2σ
µ

αβ̇
Pµδ

a
b , a = 1,2,3,4 , (2.15)

with σ µ = (1,~σ) and ~σ the three Pauli matrices. (2.15) is invariant under SU(4) rotations. This
algebra may be combined with the conformal algebra into a superconformal algebra. This requires
the introduction of further fermionic generators, the special superconformal generators Sa

α that
satisfies

{Sa
α , S̄bβ̇

}= 2σ
µ

αβ̇
Kµδ

a
b , a = 1,2,3,4, (2.16)

with Kµ the generator of special conformal transformations. We note that the anticommutation
relation for the generators Sa

α (2.16) is formally similar to the one for the generators Qa
α given

by (2.15), with the momentum operator Pµ replaced by the special conformal transformations Kµ .
The operators Pµ ,Lµν ,D,Kµ together with the Qa

α ,S
a
α form the superconformal algebra associated

to the superconformal group SU(2,2|4).
The elementary fields of N = 4 Super Yang-Mills theory are organized in a single multiplet

of SU(4), as shown in table 1. The SU(N) gauge field is a singlet of SU(4). Moreover, the
supermultiplet involves four complex Weyl fermions λ a

α in the fundamental representation 4 of
SU(4) and six real scalars X i in the representation 6 of SU(4). Note that due to the supersymmetry,
both the Weyl fermions and the scalars are in the adjoint representation of the gauge group SU(N)

since they are in the same multiplet as the gauge field.

5
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Fields SU(4) rep.
Gauge field Aµ 1
Complex fermions λ a

α 4
Real scalars X i 6

Table 1: Supermultiplet of N=4 Supersymmetry.

The action of N = 4 Super Yang-Mills theory reads

S = tr
∫

d4x

(
− 1

2gYM2 FµνFµν − i
4

∑
a=1

λ̄
a
σ̄

µDµλa−
6

∑
i=1

Dµφ
iDµ

φ
i

+gYM ∑
a,b,i

Cab
iλa[φ

i,λb]+gYM ∑
a,b,i

C̄iabλ̄
a[φ i, λ̄ b]+

gYM
2

2 ∑
i, j
[φ i,φ j]2

)
, (2.17)

with ggYM the Yang-Mills coupling. The Cab
i are Clebsch-Gordan coefficients that couple two

4 representations to one 6 representation of the algebtra of SU(4)R. We note that in addition to
the kinetic terms, this action contains interactions between three and four gauge fields via the
non-abelian gauge-field commutators in Fµν , as well as Yukawa interaction terms between two
fermions and a scalar, and a quartic scalar interaction.

2.2.3 Large N limit

The large N limit plays an essential role for the AdS/CFT correspondence. It corresponds to
a saddle point approximation. As realized by ’t Hooft in 1974 [20], the perturbative expansion of
fields in the adjoint representation of the SU(N) gauge group may be reorganized using a double-
line notation.

A field φ in the adjoint representation may be written as

φ = φ
AT A ⇔ (φ)i

j = φ
A(T A)i

j , (2.18)

where the T A are the N2− 1 generators of SU(N). These are matrices with indices i, j. If φ is a
scalar field in 3+1 dimensions, then its propagator in configuration space is given by

〈φ i
j(x)φ k

l(y)〉 = δ
i
lδ

k
j

g2

4π2(x− y)2 , (2.19)

where g is a typical coupling in the theory. The Kronecker deltas enter from the SU(N) complete-
ness relation

N2−1

∑
A=1

(T A)i
j(T A)k

l = δ
i
lδ

k
j−

1
N

δ
i
jδ

k
l , (2.20)

in which the second term is suppressed for N→∞. For scalar fields, g in (2.19) may be the coupling
of a cubic interaction term; a quartic interaction term may then enter with coefficient g2. In Yang-
Mills theory, g will be the gauge coupling. It will turn out to be extremely useful to define the
’t Hooft coupling

λ = g2N . (2.21)

6



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
1

Introduction to Gauge/Gravity Duality Johanna Erdmenger

Let us now count how the contributions corresponding to Feynman diagrams scale with N and with
λ . Note that in the normalization for the propagators chosen in (2.19), the vertices scale as 1/g2.
Also, the sum over traces of indices contributes a factor of N for every closed loop. Assembling all
the ingredients, we find that the Feynman diagrams scale as

f (λ ,N)∼ NV−E+F
λ

E−V = Nχ
λ

E−V , (2.22)

where V , E and F are the numbers of vertices, edges and faces of the surfaces created by the
Feynman diagrams, respectively. χ is the Euler characteristic given by

χ =V −E +F = 2−2G , (2.23)

with G the genus of the surface. We see that the leading order in N is given by G= 0, i.e. by the pla-
nar diagrams. Two examples for double-line vacuum Feynman diagrams are given in figure 2.2.3:
The planar diagram scales as N2 while the non-planar diagrams is 1/N2 suppressed and scales
as N0. We note that the Feynman diagrams shown look like string-theory diagrams with strings
splitting and joining. This provides a hint that large N quantum field theories are related to string
theories. In the simple example with scalar fields considered here, it is not possible to determine
exactly which string theory is given by the collection of large N field-theory Feynman diagrams.
The AdS/CFT correspondence however provides a map between well-defined field theories and
string theories.

Figure 2: Replacing single-line by double-line Feynman diagrams. Top: Planar diagram of genus zero.
Bottom: Non-planar diagram of genus one.

2.2.4 AdS spaces

Anti-de Sitter (AdS) spaces play an important role in the AdS/CFT correspondence. This
has several reasons: First of all, the isometries of AdS space in d + 1 dimensions form the group
SO(d,2), which corresponds to the conformal group of a CFT in d dimensions. Moreover, AdS
space has a constant negative curvature and a boundary at which we may imagine this CFT to be
defined.

The embedding of (d + 1)-dimensional AdS space into (d + 2)-dimensional flat Minkowski
spacetime is provided by the surface satisfying

X1
2 +X2

2 + · · ·+Xd
2−X0

2−Xd+1
2 =−L2 , (2.24)
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where X0, X1, . . . Xd+1 are the coordinates of (d+2)-dimensional Minkowski space. L is referred to
as the AdS radius. We note that in Lorentzian signature, the symmetry of the isometries of AdSd+1

is thus SO(d,2), which coincides with the symmetry of a CFTd , i.e. a conformal field theory in d
dimensions with Lorentzian signature. In Euclidean signature, the sign in front of X0

2 becomes a
plus and the symmetry is SO(d +1,1).

The boundary of AdSd+1 is located at the limit of all coordinates XM becoming asymptotically
large. For large XM, the hyperboloid given by (2.24) approaches the light-cone in Rd,2, given by

−X0
2 +

d

∑
i=1

Xi
2−Xd+1

2 = 0 . (2.25)

The boundary corresponds to the set of all lines on the light cone given by (2.25) which originate
from the origin of Rd,2, i.e. 0 ∈Rd,2. This space corresponds to a conformal compactification of
Minkowski space.

A set of coordinates that solves (2.24) is

X0 = L coshρ cosτ ,

Xd+1 = L coshρ sinτ ,

X i = LΩi sinhρ , for i = 1, . . . ,d ,

(2.26)

where Ωi with i = 1, . . . ,d are angular coordinates satisfying ∑i Ω2
i = 1.The remaining coordinates

take the ranges ρ ∈R+ and τ ∈ [0,2π[. The coordinates (ρ,τ,Ωi) are referred to as global coor-
dinates of AdSd+1. It is convenient to introduce a new coordinate θ by tanθ = sinhρ. Then the
metric associated to the parametrization (2.26) becomes that of the Einstein static universeR×Sd ,

ds2 =
L2

cos2 θ

(
− dτ

2 + dθ
2 + sin2

θ dΩ
2
d−1
)
. (2.27)

Since 0≤ θ < π

2 , this metric covers half of R×Sd .
It is often useful to consider a metric in local coordinates on AdSd+1. This is obtained from

the parametrization, with~x = (x1, . . . ,xd−1),

X0 =
L2

2r

(
1+

r2

L4 (~x
2− t2 +L2)

)
,

Xi =
rxi

L
for i ∈ {1, . . . ,d−1} ,

Xd =
L2

2r

(
1+

r2

L4 (~x
2− t2−L2)

)
,

Xd+1 =
rt
L
. (2.28)

This covers only one half of the AdS spacetime since r > 0. The corresponding metric is referred
to as Poincaré metric and reads

ds2 =
L2

r2 dr2 +
r2

L2 ηµνdxµdxµ . (2.29)

The boundary is located at r→ ∞. The embedding of the Poincaré patch into global AdS is shown
in figure 2.2.4.
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Figure 3: Within AdS2, the Poincaré coordinates cover the triangular region shown. The dashed lines
correspond to fixed constant values of r. The boundary is at r = ∞. θ and τ are as defined in (2.27).

Note that the Ricci scalar and cosmological constant for Anti-de Sitter space are both negative,

R =−d(d +1)
L2 , Λ =−d(d−1)

2L2 . (2.30)

A further choice of coordinates is obtained by introducing the coordinate z ≡ L2/r, for which the
Poincaré metric (2.29) becomes

ds2 =
L2

z2

(
dz2 +ηµνdxµdxν

)
. (2.31)

In this case, the boundary is located at z→ 0. Note that in this limit, there is a coordinate singularity
but the space remains regular since the curvature remains finite.

2.3 Fisher information metric

In the preceding section we have collected all the necessary ingredients for formulating the
AdS/CFT correspondence. Before now proceding to see how the AdS/CFT conjecture arises within
string theory, we take a step back and for further motivation consider the concept of Fisher infor-
mation. This concept from statistical mechanics gives rise to a metric on the space of probability
distributions. This provides a link between geometry and quantum-mechanical probability densities
in particular. We will use this to show how a Gaussian probability distribution, which arises natu-
rally for a quantum field theory in the large N limit, leads to an Anti-de Sitter metric [21, 22, 23].
Relating AdS/CFT to concepts from information theory is a new research direction which currently
triggers a wealth of developments, as discussed also in further lectures at this TASI 2017 School,
see for instance [15].
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Consider a normalized probability density with x as stochastic variable and ~θ a set of external
parameters A probability distribution p(x,~θ) is normalized to one,∫

dxp(x,~θ) = 1 , (2.32)

and the expectation value of an operator O is given by

〈O〉=
∫

dx p(x,~θ)O(x) . (2.33)

We define the spectrum γ(x,~θ) =− ln p(x,~θ), which allosw us to write the von Neumann entropy
as

S(~θ) =−
∫

dxp(x,~θ) ln p(x,~θ)

=
∫

dxp(x,~θ)γ(x,~θ) = 〈γ〉 . (2.34)

The Fisher metric is then defined as

gµν(~θ) =
∫

dxp(x,~θ)
∂γ(x,~θ)

∂θ µ

∂γ(x,~θ)
∂θ ν

= 〈∂µγ∂νγ〉 . (2.35)

Now let us evaluate this general expression for a Gaussian distribution pG(x,~θ) as relevant for a
saddle point approximation arising for instance in the large N limit,

pG(x,~θ) = p(x, x̄,σ) =
1√

2πσ
exp
(
−(x− x̄)2

2σ2

)
, (2.36)

where x̄ is the mean of the distribution and σ its standard deviation. For the Gaussian, the Fisher
metric (2.35) becomes

gµνdθ
µdθ

ν =
1

σ2 (dx̄2 +2dσ
2) . (2.37)

Subject to a suitable rescaling of the coordinates, this is the metric of Euclidean AdS2, with the
standard deviation σ playing the role of the radial coordinate. The higher-dimensional case is
obtained from a distribution with several variables x1, . . . , xd , for which

pG(x1, . . . ,xd , x̄1, . . . , x̄d ,σ) =
1√

2πσd
exp

−
d
∑

i=1
(xi− x̄i)

2

2σ2

 . (2.38)

The Fisher metric for a Gaussian distribution is thus an AdS metric! This is an interesting fact,
however, so far we do not know what determines the dynamics of this metric - there is no action on
the gravity side. So the relation found is not an example of a gauge/gravity duality.

With this additional motivation, let us now return to our example where the dynamics is de-
termined explicitly on both sides of the duality, i.e. the AdS/CFT correspondence as proposed by
Maldacena.
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2.4 String theory origin of the AdS/CFT correspondence

Given the motivation presented in the preceding subsection, let us return to the example where
the dynamics of the gravitational theory is determined, i.e. the duality based on D3-branes as pro-
posed by Maldacena in 1997 [4]. In full generality, the conjecture states that N = 4 SU(N)

Super-Yang-Mills theory is dual to type IIB string theory on AdS5 × S5 for all values of N and λ .
While this is a very beautiful idea, performing actual explicit calculations for testing this proposal
requires to consider particular low-energy limits which we will discuss in detail. This is due to the
fact that quantum string theory on curved backgrounds has not yet been formulated. This is also a
reason why it is hard to provide an actual proof for the AdS/CFT proposal.

2.4.1 Motivating AdS/CFT from string theory

As a particular limit, we consider weakly coupled string theory with string coupling gs� 1,
keeping L/

√
α ′ fixed. The leading order is the classical string theory with gs = 0, which means

to only tree-level string diagrams are taken into account. On the CFT side, since g2
YM = 2πgs

this implies g2
Y M = λ/N → 0. This in turn implies that N → ∞ since λ = L4/(2α ′2) remains

finite. We are thus considering the ’t Hooft limit. The duality conjectured in this limit, where
λ is fixed but may be small, and the dual field theory contains classical strings, is often referred
to as the strong form of the AdS/CFT correspondence. There is also the weak form of AdS/CFT
in which additionally, λ is taken to be very large such that the CFT involved becomes strongly
coupled. In this case, the strongly coupled CFT is mapped to a classical gravity theory of pointlike
particles, since α ′ = `2

s (with ` the string length) becomes asymptotically small. The gravity theory
involved is type IIB supergravity in the example considered. Type IIB supergravity admits D3-
brane solutions. The possible limits of the AdS/CFT correspondence are collected together in table
2.

N = 4 SYM theory IIB theory on AdS5 × S5

Strongest form any N and λ Quantum string theory, gs 6= 0, α ′ 6= 0
Strong form N→ ∞, λ fixed but arbitrary Classical string theory, gs→ 0, α ′ 6= 0
Weak form N→ ∞, λ large Classical supergravity, gs→ 0, α ′→ 0

Table 2: Different forms of the AdS/CFT correspondence

Let us now consider D3-branes to motivate the weak form of the AdS/CFT correspondence.
These branes may be viewed from two different perspectives: The open and the closed string
perspective. It is crucial for the correspondence that in the low-energy limit where only massless
degrees of freedom contribute, open strings give rise to gauge theories while closed strings give
rise to gravity theories.

Open string perspective. We begin with the open string perspective on D3-branes. For
gsN� 1, D-branes may be visualised as higher-dimensional charged objectd on which open strings
may end. The ‘D’ stands for Dirichlet boundary condition. Consider a stack of N D3-branes
embedded in 9+1 flat spacetime dimensions. (Recall that in 9+1 dimensions, superstring theory is
anomaly free and thus consistent.) Neumann and Dirichlet boundary conditions are imposed on the
string modes according to table 3.

11
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0 1 2 3 4 5 6 7 8 9
N D3 • • • • - - - - - -

Table 3: Embedding of N coincident D3–branes in flat ten-dimensional spacetime.

For N coincident D3-branes, the open strings are described by a Dirac-Born-Infeld (DBI)
action with gauge group U(N), with integration over the 3+1-dimensional worldvolume of the
branes. In flat ten-dimensional space, the DBI action is given by

SDBI =−T3 tr
∫

d4xe−ϕ
√
−det(P[g]+2πα ′F)

+ fermionic partners , (2.39)

where T3 ≡ 2/((2π)3α ′2gs) is the brane tension, ϕ is the dilaton, and P[g] is the pullback of the
metric to the worldvolume of the branes. F is the field strength tensor of the gauge field associated
to the brane charge. We now consider low-energy excitations with E � α ′−1/2, such that only
massless excitations are taken into account. In this limit, the DBI action reduces to

SDBI =−
1

2πgs
tr
∫

d4x

(
1
2

FµνFµν +
6

∑
i=1

∂
µ

φ
i
∂µφ

i−πgs

6

∑
i, j=1

[φ i,φ j]2

)
+ fermions + O(α ′) , (2.40)

where the six scalars φ i = φ iAT A in the adjoint representation of U(N) arise from the pull-back of
the metric to the world-volume of the N D3-branes. They are given by X i+3 = 2πα ′φ i with the
X i +3 the coordinates in the directions perpendicular to the brane.

The total action for the D3-branes is

SD3 = SDBI +Sclosed +Sint , (2.41)

where Sclosed describes the closed string excitations in the ten-dimensional space and Sint the in-
teraction between open and closed string modes. In the low-energy limit α ′→ 0, the open strings
decouple from any closed string excitations in the 9+1-dimensional space: In (2.41), Sclosed be-
comes a free theory of massless metric fluctuations, and Sint goes to zero. In this limit we are thus
left with the low-energy modes in the DBI action as given by (2.40), plus free massless gravity
excitations about flat space. The low-energy modes described by the DBI action coincide with the
field-theory action of N = 4 Super Yang-Mills theory as given by (2.17),

lim
α ′→0

SDBI = SN =4SYM , (2.42)

subject to identifying 2πgs = g2
Y M. We thus recover the action of N = 4 Super Yang-Mills theory

in this limit. By modding out the center of the gauge group, we may reduce the U(N) gauge
symmetry to SU(N). Note that the limit taken is α ′→ 0 while keeping u = r/α ′ fixed, with r any
length scale. This is referred to as the Maldacena limit.

Closed string perspective. We now turn to the closed string perspective on D-branes. In the
limit gsN� 1, the N D3-branes may be viewed as massive extended charged objects sourcing the

12
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fields of type IIB supergravity. Closed strings will propagate in this background. The supergravity
solution of N D3-branes preserving SO(3,1)×SO(6) symmetry in 9+1 dimensions is given by

ds2 = H(r)−1/2
ηµνdxµdxν +H(r)1/2

δi jdyidy j , (2.43)

eϕ(r) = gs , C(4) =
(
1−H(r)−1)dx0∧dx1∧dx2∧dx3 + . . . ,

with µν ∈ {0,1,2,3} and i, j ∈ {1,2, . . . ,6}. Here, r2 = y2
1+y2

2+ · · ·+y2
6 and the terms denoted by

the dots . . . in the expression for the four-form C(4) ensure self-duality of F(5) = dC(4), i.e. the five-
form given by the exterior derivative of C(4). Inserting the ansatz (2.43) into the Einstein equations
of motion in 9+1 dimensions, we find that H(r) must be harmonic, i.e.

4H(r) = 0 , for r 6= 0 , (2.44)

with4 the Laplace operator in six Euclidean dimensions. The Laplace equation is solved by

H(r) = 1+
(

L
r

)4

. (2.45)

We will determine L below.
Similarly to the open string case considered before, we now investigate low-energy limits

within the closed string perspective. First we note that asymptotically for r→∞, we have H(r)→ 1,
i.e. asymptotically for large r we recover flat 9+1-dimensional space. On the other hand, there is
the near-horizon limit in which r� L. Then, H(r)∼ L4/r4 and the D3-brane metric becomes

ds2 =
r2

L2 ηµνdxµdxν +
L2

r2 δi jdyidy j ,

=
L2

z2

(
ηµνdxµdxν +dz2)+L2dΩ

2
5 , (2.46)

where in the second line we define the new radial coordinate z ≡ L2/r and introduced polar coor-
dinates on the space spanned by the six yi coordinates, dyidyi = dr2 = r2dΩ2

5 with dΩ2
5 the angular

element on S5. We see that in the near-horizon limit, the D3-brane metric becomes AdS5 × S5!
L, i.e. the radius of both the AdS5 and the S5, may be determined from string theory. For this

we note that the flux of F(5) through the S5 has to be quantized. The sphere S5 surrounds the six
Euclidean dimensions perpendicular to the D3-branes at infinity. The charge Q of the D3-branes is
determined by

Q =
1

16πG10

∫
S5

∗F(5) . (2.47)

The charge has to coincide with the number of D-branes, i.e. Q = N. This implies the important
relation

L4 = 4πgsNα
′2 , (2.48)

since 16πG10 = 2κ2
10 = (2π)7α ′4g2

s .
For stating the correspondence, we note that asymptotically, we observe two kinds of closed

strings: Those in flat space at r→ ∞, and those in the near-horizon region. Both kinds decouple

13
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in the low-energy limit. For an observer at infinity, the energy of fluctuations in the near-horizon
region is redshifted,

E∞ ∼
r
L

Er→ 0 . (2.49)

Recall that
√

α ′ is fixed, but r� L. This implies that for an observer at infinity, the energy of fluc-
tuations in the near-horizon region is very small. We thus have two types of massless excitations:
Massless modes in flat space at r→ ∞ and the modes in the near-horizon region, which appear as
massless too.

Combining open and closed string perspectives. The AdS/CFT correspondence is now
motivated by identifying the massless modes in the open and closed string perspectives. First we
note that as discussed above, both in the open and closed string pictures there are massless modes
corresponding to free gravity in flat 9+1-dimensional space. Moreover, in the open string picture
further massless modes are given by the Lagrangian of 3+1-dimensional N = 4 SU(N) Super
Yang-Mills theory. On the other hand, in the closed string picture we have gravity in the near-
horizon region, which is given by IIB supergravity on AdS5 × S5. Identifying these second types
of massless modes in the open and closed string pictures gives rise to the AdS/CFT conjecture.

As a final remark in this section, we note that in the near-horizon limit of the closed string
picture, it is not possible to locate the D3-branes. In particular, it is not correct to state that they
sit at r = 0. Rather, the D3-brane is a solitonic solution to 10d supergravity which extends over all
values of r and which gives rise to AdS5 × S5 in the near-horizon limit.

2.4.2 Holographic principle

An important feature of the AdS/CFT correspondence is that it is based on the holographic
principle [24, 25]. In the context of semiclassical considerations for quantum gravity, the holo-
graphic principle states that the information stored in a spatial volume Vd is encoded in its boundary
area Ad−1, measured in units of the Planck area ld−1

p . This is motivated by the fact that the Beken-
stein bound applies to systems in which there is at most one degree of freedom per Planck area.
The Bekenstein bound states that the maximum amount of entropy stored in a volume is given by
S = Ad−1/(4Gd+1), with its surface Ad−1 measured in Planck units and Gd+1 the Newton constant
of the (d + 1)-dimensional volume theory, including time. This leads in particular to the famous
result that the entropy of a black hole is proportional to the area of its Schwarzschild horizon. The
name ‘holographic principle’ asserts that this principle is similar to a hologram as known from
optics, in which the information contained in a volume is stored on a surface.

2.4.3 Field-operator map

The argument given in section 2.4 motivates the conjectured duality between a quantum field
theory and a gravity theory. The map between these two theories may be refined to a one-to-one
map between individual operators, i.e. between gauge invariant operators in N = 4 SU(N) Super
Yang-Mills theory and classical gravity fields in AdS5 × S5. Each pair is given by identifying
entries transforming in the same representation of the superconformal group SU(2,2|4). The most
prominent example are the 1/2 BPS or chiral primary operators in the [0,∆,0] representation of the
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algebra of SU(4). Here, the three entries are the Dynkin labels, with ∆ the conformal dimension of
the corresponding operator.1 The corresponding gauge invariant field theory operators are

O∆(x) = Str
(

X (i1(x)X i2(x) . . .X i∆)(x)
)
=C∆

i1...i∆ tr
(

X (i1(x)X i2(x) . . .X i∆)(x)
)
, (2.50)

with the elementary real scalar fields X i as in (2.17). Str denotes the symmetrized trace over
the indices (a,b) of the SU(N) representation matrices T Ab

a. The symmetrization involves the
totally symmetric SU(4) rank ∆ tensor representation C∆

i1...i∆ . An important property of the 1/2 BPS
operators is that their two- and three-point functions in N = 4 Super Yang-Mills theory are not
renormalized and thus independent of the ’t Hooft coupling λ . The perturbative small λ results for
these two- and three-point functions may then directly be compared to their counterparts calculated
from the gravity side, which apply to large λ . However, since these correlation functions are
independent of λ , an exact matching of the field theory and gravity results is expected and was
indeed obtained in explicit computations [26, 27]. This provides a non-trivial test of the AdS/CFT
proposal.

To obtain the corresponding fields on the supergravity side of the correspondence, a Kaluza-
Klein reduction is performed on S5, i.e. the fields in ten dimensions are expanded in spherical
harmonics on S5,

φ(x,z,Ω5) =
∞

∑
l=0

φ
l(x,z)Y l(Ω5) ,

�S5Y l(Ω5) =−
1
L2 l(l +4)Y l(Ω5) . (2.51)

This calculation was already performed in 1985 in [28]. From the Kaluza-Klein modes of the
supergravity metric and five-form, we may construct five-dimensional scalars sl(x,z) that are in the
same representation [0,∆,0] as the field-theory operators O∆ if l = ∆. These scalars satisfy

�AdS5sl(z,x) =− 1
L2 l(l−4)sl(x,z) . (2.52)

Asymptotically, near the AdS boundary at z→ 0, the solutions to this equation satisfy

sI(z,x)∼ sI
(0)z

4−∆ + 〈O〉z∆ + subleading terms. (2.53)

According to [29], the leading term sI
(0) may be identified with a source for the 1/2 BPS operator

O I , while the subleading term involves the vacuum expectation value of this operator.
For writing the AdS/CFT conjecture in terms of an equation, we add sources for any gauge

invariant composite operators to the CFT action,

S′ = S−
∫

d4xφ(0)(x)O(x) . (2.54)

Wick rotating to Euclidean time, the generating functional for these operators then reads

Z[φ(0)] = e−W [φ(0)] =

〈
exp
(∫

ddxφ(0)(x)O(x)
)〉

CFT
. (2.55)

1A review of the group theory concepts mentioned here may for instance be found in appendix B of [5].
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The AdS/CFT conjecture may then be stated as

W [φ(0)] = SSUGRA[φ ]
∣∣∣
lim
z→0

(φ(x,z)z∆−4)=φ(0)(x)
. (2.56)

The boundary values of the supergravity fields are identified with the sources of the dual field
theory. Within AdS/CFT, the operator sources of the CFT become dynamical classical fields prop-
agating into the AdS space in one dimension higher. Note also that AdS/CFT has elements of a
saddle point approximation since the CFT functional is given by a classical action on the gravity
side. This is expected in the large N limit which also amounts to a saddle point approximation.

Figure 4: Witten diagram for a three-point function.

From the proposal (2.56) we may calculate connected Green’s functions in the CFT by taking
functional derivatives with respect to the sources on both sides of this equation. On the field theory
side we have

〈O1(x1) . . .On(xn)〉=−
δ nW

δφ 1
(0)(x1) . . .δφ n

(0)(xn)

∣∣∣
φ i
(0)=0

. (2.57)

Using (2.56) we may thus calculate CFT correlation functions from the propagation of the source
fields through AdS space. Since the gravity action is classical, only tree diagrams contribute. The
classical propagators on the gravity side are given by the Green’s functions of the operator �AdS5 ,
while the vertices are obtained from higher order terms in the Kaluza-Klein reduction of the ten-
dimensional gravity fields on S5. The corresponding Feynman diagrams are referred to as Witten
diagrams [30] . These are usually drawn as a circle depicting the boundary of AdS space, with
the interior of the circle corresponding to the AdS bulk space. An example for a Witten diagram
leading to a three-point function is shown in figure 4. Here, each of the three lines in the bulk of
AdS corresponds to bulk-to-boundary propagator, i.e. to the appropriate Green’s function of �AdS5

with one endpoint at the boundary. For scalar operators, the bulk-to-boundary propagator is given
by

K∆(z0,~z;~x) =
Γ(∆)

πd/2Γ(∆− d
2 )

(
z0

z2
0 +(~z−~x)2

)∆

(2.58)

in Euclidean AdS space with five-dimensional coordinates z≡ (z0,~z) with z0 the radial coordinate
and~z the four coordinates parallel to the boundary. For the second coordinate, x0 = 0 since x is
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located at the boundary. The index ∆ corresponds to the dimension of the dual scalar operator.
Moreover, the vertex in the Witten diagram corresponds to a cubic coupling obtained from the
Kaluza-Klein reduction of the type IIB supergravity action on S5. For four-point functions or even
higher correlation functions, there are contributions involving bulk-to-bulk propagators that link
two vertices in the bulk of AdS space. The calculation of two- and three point functions of 1/2 BPS
operators in N = 4 Super Yang-Mills theory and in IIB supergravity on AdS5 × S5 provides an
impressive test of the AdS/CFT conjecture: The results for the three-point function in field theory
and gravity coincide, subject to an appropriate normalization using the epressions for the two-point
function [26, 27].

2.5 Finite temperature

Let us now consider how the AdS/CFT correspondence may be generalized to quantum field
theory at finite temperature. In fact, there is a natural way to proceed, which is based on the
following. In thermal equilibrium, quantum field theories may be described in the imaginary time
formalism. This means that the ensemble average of an operator at temperature T is given by

〈O〉β = tr
(

exp(−βH)

Z
O

)
, Z = trexp(−βH) , (2.59)

where β = 1/(kBT ) and we set kB = 1. H is the Hamiltonian of the theory considered. Formally,
β corresponds to an imaginary time, t = iτ . An important point is that the analyticity properties of
thermal Green’s functions require τ ∈ [0,β ]. This implies that the imaginary time τ is compactified
on a circle.

Let us consider the gravity dual thermodynamics of N = 4 Super Yang-Mills theory on IR3.
We note that the compactification of the time direction breaks supersymmetry, since antiperiodic
boundary conditions have to be imposed on the fermions present in the field theory Lagrangian.

The essential point for constructing the gravity dual is that on the gravity side, the field theory
described above is identified with the thermodynamics of black D3-branes in Anti-de Sitter space.
The solitonic solution for these branes is given by the metric

ds2 = H(r)−1/2 (− f (r)dt2 +d~x2) + H(r)1/2
(

dr2

f (r)
+ r2dΩ5

2
)
, (2.60)

f (r) = 1−
(rH

r

)4
, H(r) = 1+

L4

r4 , (2.61)

The blackening factor f (r) vanishes at the Schwarzschild horizon rh of the black brane. The dif-
ference between a black brane and a black hole is that the black brane is infinitely extended in the
spatial~x directions, which span IR3. Setting z = L2/r, Wick rotating to imaginary time and taking
the near-horizon limit as before, this gives

ds2 =
L2

z2

(1− z4

z4
H

)
dτ

2 +d~x2 +
1

1− z4

z4
H

dz2

+L2dΩ
2
5 , (2.62)

with zH the Schwarzschild radius. As for a black hole, we note that gττ → 0, gzz→ ∞ for z→ zH .
Let us now introduce a further variable

z = zH

(
1− ρ2

L2

)
. (2.63)
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Here, ρ is a measure for the distance from the horizon at zH , outside the black hole. We expand
about the horizon. To lowest order in ρ , the (τ,z) contribution to the Euclidean metric becomes

ds2 ' 4ρ2

z2
H

dτ
2 +dρ

2 . (2.64)

With φ ≡ 2τ/zH , this becomes ds2 = dρ2 +ρ2dφ 2. For regularity at ρ = 0, we have to impose
that φ is periodic with period 2π , such that we have a plane rather than a conical singularity. This
implies that τ becomes periodic with period ∆τ = πzH . From the field-theory side we know that
∆τ = β = 1/T , which implies

zH =
1

πT
. (2.65)

Thus the field-theory temperature is identified with the Hawking temperature of the black brane!
We may now compute the field-theory thermal entropy from the Bekenstein-Hawking entropy

of the black brane [31]. In general, the Bekenstein-Hawking entropy is given by the famous result

SBH =
Ad−1

4Gd+1
, (2.66)

where Ad−1 is the area of the black brane horizon and Gd+1 is the Newton constant. For a black
D3-brane, the horizon area is given by

A3 =
∫

d3x
√

g3d

∣∣∣
z=zH
·Vol(S5) , g3d = g11g22g33 =

L6

z6

= π
6L8T 3Vol(R3) , (2.67)

where we used the useful formulae Vol(S5) = π3L5,

G5 =
G10

Vol(S5)
=

πL3

2N2 , (2.68)

2κ10 = 16πG10 = (2π)7α ′4g2
s and L4 = 4πgsNα ′2. Combining all results, we find

SBH =
π2

2
N2T 3Vol(R3) . (2.69)

This result, valid at strong coupling, differs just by its prefactor from the free field theory result

Sfree =
2π2

3
N2T 3Vol(R3) . (2.70)

We note that the result at strong coupling is small by a factor of 3/4.

3. Holographic Kondo model

As an example of how to generalize the original example of the AdS/CFT correspondence
to more general cases, we will now study how to obtain a gravity dual of the well-known Kondo
model of condensed matter physics.

The original Kondo model [32] describes the interaction of a free electron gas with a localized
magnetic spin impurity. A crucial feature is that at low energies, the impurity is screened by
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the electrons. The Kondo model is in agreement with experiments involving metals with magnetic
impurities, as it correctly predicts a logarithmic rise of the resistivity as the temperature approaches
zero.

The significance of the Kondo model goes far beyond its origin as a model for metals with
magnetic impurities. In particular, it played a crucial role in the devopment of the renormalization
group (RG). The impurity coupling in the Kondo model has a negative beta function and pertur-
bation theory breaks down at low energies, a property it shares with quantum chromodynamics
(QCD). In some respects the Kondo model may thus be viewed as a toy model for QCD. Moreover,
the Kondo model corresponds to a boundary RG flow connecting two RG fixed points. These cor-
respond to a UV and a IR CFT, respectively. CFT techniques have proved very useful in studying
the Kondo model, as reviewed in [33]. Moreover, the Kondo model has a large N limit in which it
may be exactly solved using the Bethe ansatz [34, 35].

The holographic Kondo model we will introduce below differs from the original condensed
matter model in that the ambient electrons are strongly coupled among themselves even before the
interaction with the magnetic impurity isturned on. Moreover, the impurity is an SU(N) spin with
N→ ∞. The ambient degrees of freedom are dual to a gravity theory in an AdS3 geometry at finite
temperature. The impurity degrees of freedom are dual to an AdS2 subspace. As we will see in
detail below, the dual gravity model corresponds to a holographic RG flow dual to a UV fixed point
perturbed by a marginally relevant operator, which flows to an IR fixed point. In addition, in the
IR a condensate forms, such that the model has some similarity to a holographic superconductor
[36]. For this model, we may calculate spectral functions and compare their shape to what is
expected for the original Kondo model. This may be relevant for the physics of quantum dots.
Including the backreaction of the impurity geometry on the ambient geometry allows to calculate
the entanglement entropy. Quantum quenches of the Kondo coupling may also be considered.

3.1 Kondo model within field theory and condensed matter physics

Let us begin by considering the original model of Kondo [32], which describes the interaction
of a free electron gas with a SU(2) spin impurity. The electrons are also in the spin 1/2 repre-
sentation of a second SU(2). Using field-theory language, the corresponding Hamiltonian may be
written as

H =
vF

2π
iψ†

∂xψ +
vF

2
λKδ (x)~J ·~S . (3.1)

Here, vF is the Fermi velocity, and ~S is the magnetic impurity satisfying[
Sa,Sb

]
= iεabcSc , (3.2)

which takes values in the internal SU(2) spin space. The spin impurity interacts with the electron
current

Ja = ψ
†
σ

a
ψ , (3.3)

with σa the Pauli matrices. The Hamiltonian consists of a kinetic term for the electrons and an
interaction localized at the site of the impurity. Hence the interaction term involves a delta distri-
bution.
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The Kondo model is simplified in the s-wave approximation, where the problem becomes
spherically symmetric. We thus introduce polar coordinates (r,θ ,φ). The dependence on the two
angles becomes trivial and we are left with a 1+1-dimensional theory in the space spanned by (r, t).
The radial coordinate r runs from zero to infinity. The impurity sits at the origin and provides a
boundary condition. The electrons separate into left- and right movers. It is now convenient to
analytically continue r to negative values. Then, the previous right-movers become left-movers
travelling at negative values of r, i.e. ψR(r)→ ψL(−r), as shown in figure 5.

Figure 5: Analytic continuation to negative values of r. The right-movers become left-movers travelling at
negative values of r.

The Hamiltonian (3.1) was proposed and solved perturbatively by Jun Kondo [32]. To first
order in perturbation theory, the quantum correction to the resistivity is

ρ(T ) = ρ0

[
λK +νλ

2
K ln

D
T
+ . . .

]2

, (3.4)

where ν is the density of states and D a UV cut-off, for instance the bandwidth. The corresponding
Feynman graph is shown in figure 6. This correction explains the experimental result for a loga-

Figure 6: One-loop Feynman graph contributing to the renormalization of the Kondo coupling, with an
electron (solid line) scattering off the impurity (dashed line).

rithmic rise at low temperatures. From a theoretical perspective, we note that perturbation theory
breaks down at a temperature scale

TK = D exp
(
− 1

νλK

)
, (3.5)

which defines the Kondo temperature TK . At this scale, the first order perturbative correction is of
the same order as the zeroth order term, which implies that perturbation theory breaks down.
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For the coupling itself, the first order perturbative correction gives the beta function

β (λK)one−loop = T
dλK

dT
=−νλ

2
K . (3.6)

So the beta function is negative. This is analogous to the gauge beta function in QCD, which is also
negative - a property associated with asymptotic freedom in the UV. By analogy, we see that the
Kondo temperature TK plays a similar role as the scale ΛQCD in QCD, at which perturbation theory
breaks down.

A resummation of (3.6) leads to the effective coupling

λeff(T ) =
λK

1−νλK ln(D/T )
. (3.7)

λeff(T ) diverges at T ∼ TK = Dexp(−1/(νλK)). In the IR for T → 0, the theory has a strongly
coupled fixed point where the effective coupling vanishes. In fact, the impurity is screened: The
impurity spin forms a singlet with the electron spin,

|ψ〉= 1√
2
(| ⇑↓〉− | ⇓↑〉) . (3.8)

This is reminiscent of the formation of meson bound states in QCD.
The theories at the UV and IR fixed points of the flow are described by boundary conformal

field theories (bCFT). Using the analytic continuation described above, In the UV, the theory is free,
and we may impose the boundary condition ψL(0) = ψR(0) for the left- and right moving electrons
introduced above. In the IR however, due to the screening it costs energy to add a further electron
to the singlet at r = 0. The probability for an electron to be at r = 0 in the ground state is zero. This
observation is encoded in the antisymmetric boundary condition ψR(0) = −ψL(0). Within bCFT,
the Kondo model was analyzed extensively by Affleck and Ludwig [37], making non-trivial use of
the appropriate representations of the conformal and the spin Kac-Moody algebra.

Both the UV and the non-trivial IR fixed point of the Kondo RG flow may be described using
CFT techniques. Essentially, the interaction may be translated into a boundary condition at r =
0. Let us sketch this approach, considering a general SU(N) spin group instead of the SU(2)
considered above, as well as k species (also called channels or flavours) of electrons. In the UV, the
boundary condition relating the left- and right movers is just ψL(0) = ψR(0). In the IR, a bound
state involving the impurity spin forms, which is a singlet when N = k = 2. This implies that it
costs energy to add another electron at r = 0, and the probability of finding another electron there is
zero. This is described by an antisymmetric wave function as provided by the boundary condition
ψL(0) =−ψR(0).

It may be shown [33] that by introducing the currents

Jcharge =: ψ
†αi

ψαi : , Ja
spin =: ψ

†αiT a
α

β
ψβ i : , JA

channel =: ψ
†αi

τ
A
i

j
ψα j : , (3.9)

where the colon denotes normal ordering, T a
α

β are SU(N) generators and τA
i

j are SU(k) generators,
the Kondo Hamiltonian may be written as

H =
1

2π(N + k)
Ja

spinJa
spin +

1
2π(k+N)

JA
channelJ

A
channel +

1
4πNk

(Jcharge)
2 +λKδ (r)SaJa

spin . (3.10)

21



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
1

Introduction to Gauge/Gravity Duality Johanna Erdmenger

In the IR, by writing

J a
spin = Ja

spin +λKδ (r)Sa , (3.11)

the interaction term may be absorbed into a new current J a
spin. Written in terms of this new current,

the Hamiltonian again reduces to the Hamiltonian of the free theory without interaction. The
interaction is thus absorbed and replaced by the non-trivial boundary condition discussed above.

At the conformal fixed points, the spin, channel and charge currents may be expanded in a
Laurent series,

Ja(z) = ∑
n∈Z

z−n−1Ja
n . (3.12)

The mode expansions then satisfy Kac-Moody algebras,

[Ja
n ,J

b
m] = i f abcJc

n+m +
n
2

kδ
ab

δm+n,0 , (3.13)

as shown here for the spin current with SU(N)k symmetry, where k denotes the level of the Kac-
Moody algebra. Similarly, for the channels we have a SU(k)N symmetry. The total symmetry of
the model is SU(N)k× SU(k)N ×U(1). The representations of the two Kac-Moody algebras are
fused in a tensor product. The two different boundary conditions in the UV and in the IR lead to
different representations and thus operator spectra for the total theory.

In the simplest example when the spin is s = 1/2 and there is only one species of electrons,
k = 1, then in the IR a singlet forms. More generally, a singlet is present when 2s = k, which is
referred to as critical screening. When k < 2s, however, the impurity has insufficient channels to
screen the impurity completely, and there is a residual spin of size |s− k/2|. This is referred to as
underscreening. On the other hand, when k > 2s there are too many electron species for a critical
screening of the spin, which leads to non-Fermi liquid behaviour, a situation called overscreening.

3.2 Large N Kondo model

As was found by condensed matter physicists in the eighties [38, 39], the Kondo model simpli-
fies considerably when the rank N of the spin group is taken to infinity. In this limit, the interaction
term ~J ·~S reduces to a product OO† involving as scalar operator O , and the screening corresponds
to the condensation of O . For comparison to gauge/gravity duality, it will be useful to consider this
large N solution in which the Kondo screening appears as a condensation process in 0+1 dimen-
sions. In the large N limit, a phase transition is possible in such low dimensions since long-range
fluctuations are suppressed. Moreover, there is an alternative large N solution of the Kondo model
using the Bethe ansatz [34, 35].

The large N limit of the Kondo model involves N→∞, λ → 0 with λN fixed. The vector large
N limit of the Kondo model provides information about the spectrum, thermodynamics and trans-
port properties everywhere along the RG flow, even away from the fixed points. 1/N corrections
may be calculated.

We consider totally antisymmetric representations of SU(N) given by a Young tableau consist-
ing of one column with q boxes, q < N. We write the spin in terms of Abrikosov pseudo-fermions
χ , which means that we consider

Sa = χ
†iT a

i
j
χ j , a = 1,2, . . . ,N2−1 , (3.14)
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with χ in the fundamental representation of SU(N). A state in the impurity Hilbert space is obtained
by acting on the vacuum state with q of the χ†. This gives rise to a totally antisymmetric tensor
product with rank q. Since (3.14) is invariant under phase rotations of the χ’s, there is an additional
new U(1) symmetry. This implies that we need to impose a constraint since considering the χ’s
instead of Sa should not introduce any new degrees of freedom. We impose

χ
†
χ = q , (3.15)

i.e. the charge density of the Abrikosov fermions is given by the size of the totally antisymmet-
ric representation. Together with the fermions ψ of the Kondo model, we have a SU(N) singlet
operator

O(t)≡ ψ
†
χ , ∆O =

1
2
. (3.16)

Now in the large N limit, the Kondo interaction ~J ·~S simplifies considerably as follows. We make
use of the Fierz identity (2.20). For the Kondo interaction this implies

λδ (x)JaSa = λδ (x)(ψ†T a
ψ)(χ†T a

χ) =
1
2

λδ (x)
(
OO†− q

N
(ψ†

ψ)
)
, (3.17)

where for sufficiently small q we may neglect the last term in the limit N→ ∞.
In the large N limit, the Kondo coupling is thus the coupling of a‘double-trace’ deformation

OO†, with two separately gauge invariant operators O and O†. This is similar to double-trace op-
erators where two separately gauge-invariant operators are multiplied to each other. For operators
involving fields in the adjoint representation, traces have to be taken to generate gauge-invariant
operators. Here however, O is gauge invariant without trace, since both ψ and χ are in the fun-
damental of SU(N). The operator OO† is of engineering dimension one. As defect operator, it
is marginally relevant, i.e. it is marginal at the classical level, but quantum corrections make it
relevant.

In the large N limit, the solution of the field-theory saddle point equations reveals a second
order mean-field phase transition in which O condenses: There is a critical temperature Tc above
which 〈O〉 = 0 and below which 〈O〉 6= 0. The critical temperature Tc is slightly smaller than the
Kondo temperature TK and may be calculated analytically. The condensate spontaneously breaks
the U(1) symmetry of the χ fermions. 1/N corrections smoothen this transition to a cross-over.

At large N, the Kondo model thus has similarity with superconductivity that is triggered by
a marginally relevant operator. This observation provides a guiding principle for constructing a
gauge/gravity dual of the large N Kondo model.

3.3 Gravity dual of the Kondo model

The motivation of establishing a gravity dual of the Kondo model is twofold: On the one hand,
this provides a new application of gauge/gravity duality of relevance to condensed matter physics.
On the other hand, this provides a gravity dual of a well-understood field theory model with an RG
flow, which may provide new insights into the working mechanisms of the duality. It is important
to note that our holographic Kondo model will have some features that are distinctly different from
the well-known field theory Kondo model described above. Most importantly, the 1+1-dimensional
electron gas will be strongly coupled even before considering interactions with the impurity. This
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has some resemblance with a Luttinger liquid coupled to a spin impurity. Moreover, the SU(N)

spin symmetry will be gauged. The holographic Kondo model has provided insight into the en-
tanglement entropy of this system. Moreover, quenches of the Kondo coupling in the holographic
model provide a new geometric realization of the formation of the Kondo screening cloud. It is
conceivable that further work will also lead to new insight into the Kondo lattice that involves a
lattice of magnetic impurities. The Kondo lattice is a major unsolved problem within condensed
matter physics. Preliminary results in this direction that were obtained using holography may be
found in [40]. Further holographic studies of holographic Kondo models include [41].

Here we aim at constructing a holographic Kondo model realizing similar features to the ones
of the large N field theory Kondo model described in the previous section, including a RG flow
triggered by a doulbe-trace operator [42]. For this purpose, consider an appropriate configura-
tion of D-branes which allows us to realize the field theory operators needed. The field theory
involves fermionic fields ψ in 1+1 dimensions in the fundamental representation of SU(N), as well
as Abrikosov fermion fields χ localized at the 0+1-dimensional defect. These transform in the fun-
damental representation of SU(N) as well. From these we will construct the required operators. For
the brane configuration we will use probe branes, which means that a small number of coincident
branes are embedded into a D3-brane background, neglecting the backreaction on the geometry.
For a holographic Kondo model, a suitable choice of probe branes consists of D7- and D5-branes
embedded as shown in table 3.3. Fields in the fundamental representation are obtained from strings
stretching between the D3- , D5- and D7-branes. The D7-brane probe extends in 1+1 dimensions
of the worldvolume of the D3-branes. As we discuss below, strings stretching between the D3- and
D7-branes give rise to chiral fermions, which we identify with the electrons of the Kondo model.
On the other hand, since the D5-brane only shares the time direction with the D3-branes, the D3-D5
strings give rise to the 0+1 dimensional Abrikosov fermions.

0 1 2 3 4 5 6 7 8 9
N D3 X X X X
1 D7 X X X X X X X X
1 D5 X X X X X X

Table 4: Brane configuration for a holographic Kondo model.

We note that in a in absence of the D5-branes, the D3/D7-brane system has eight ND direc-
tions, such that half of the original supersymmetry is preserved. However, the D5/D7-system has
only two ND directions, such that supersymmetry is broken. This leads to the presence of a tachyon
potential and a condensation as required for the large N Kondo model. The tachyon, a complex
scalar field Φ, is identified as the gravity dual of the operator O = ψ†χ .

As discussed in [43, 44], the D7-brane gives rise to an action

S7 =
1
π

∫
d2xψ

†
L(i∂−−A−)ψL (3.18)

of chiral fermions which are coupled to the N = 4 supersymmetric gauge theory in 3+1 dimen-
sions. A− is a restriction of a component of the N = 4 Super Yang-Mills gauge field to the
subspace of the fermions. These fermions are in the fundamental representation of the gauge group
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SU(N). For simplicity, from now on we drop the label L for left-handed. The gauge field A− is
a component of the N = 4 theory gauge field on the 1+1-dimensional subspace spanned by the
D7-brane. We identify the ψL with the electrons of the Kondo model.

Similarly, for the Abrikosov fermions χ we obtain from the D3/D5-brane system the action

S5 =
∫

dtχ†(i∂t −At −Φ9)χ . (3.19)

Here, Φ9 is the adjoint scalar of N = 4 Super Yang-Mills theory whose eigenvalues represent
the positions of the D3-branes in the x9 direction. In (3.19), both At and Φ9 are restricted to the
subspace of the χ fields. Note that unlike the original Kondo model, the SU(N) spin symmetry is
gauged in this approach. Also, the background N = 4 theory is strongly coupled in the gravity
dual approach and provides strong interactions between the electrons.

Let us now turn to the gravity dual of this configuration. The N D3-branes provide an AdS5 ×
S5 supergravity background as before. The probe D7-brane wraps an AdS3 × S5 subspace of this
geometry, while the probe D5-branes wraps AdS2 × S4. The Dirac-Born-Infeld action for the D5-
brane contains a gauge field aµ on the AdS2 subspace spanned by (t,r), with t the time coordinate
and r the radial coordinate in the AdS geometry. The at component of this gauge field is dual to the
charge density of the Abrikosov fermions, q = χ†χ . The D7-brane action contains a Chern-Simons
term for a gauge field Aµ on AdS3. As noted before, the D5-D7 strings lead to a complex scalar
tachyon field.

We may thus establish the holographic dictionary for the operators of the field-theory large
N Kondo model. This is listed in table 3.3. The electron current in 1+1 dimensions is dual to the
Chern-Simons field in 2+1 dimensions. The Abrikosov fermion charge density q in 0+1 dimensions
is dual to the gauge field component at in 1+1 dimensions. Finally, the operator O = ψ†χ in 0+1
dimensions is dual to the complex scalar field Φ in 1+1 dimensions.

Operator Gravity field
Electron current Jµ = ψ̄γµψ ⇔ Chern-Simons gauge field A in AdS3

Charge density q = χ†χ ⇔ 2d gauge field a in AdS2

Operator O = ψ†χ ⇔ 2d complex scalar Φ in AdS2

The brane picture has allowed us to neatly establish the required holographic dictionary. Un-
fortunately, it is extremely challenging to derive the full action describing the brane construction
given. In particular, the exact form of the tachyon potential is not known.

For making progress towards describing a variant of the Kondo model holographically, we
thus turn to a simplified model consisting of a Chern-Simons field in AdS3 coupled to a Yang-Mills
gauge field and a complex scalar in AdS2. This simplification still allows us to use the holographic
dictionary established above. The information we lose though is about the full field content of
the strongly coupled field theory. On the other hand, this simplifield model allows for explicit
calculations of observables such as two-point functions and the impurity entropy, as we discuss
below. It is instructive to compare the results of these calculations with features of the field-theory
large N Kondo model, as we shall see.
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The simplified model we consider is

S =
1

8πGN

∫
dzdxdt

√
−g(R−2Λ)− N

4π

∫
AdS3

A∧dA

−N
∫

dxdt
√
−g
(

1
4

tr f mn fmn +(Dm
Φ)†(DmΦ)−V (Φ)

)
. (3.20)

Here, z is the radial AdS coordinate, x is the spatial coordinate along the boundary and t is time. The
defect sits at x= 0. The first term is the standard Einstein-Hilbert action with negative cosmological
constant Λ. The second term is a Chern-Simons term involving the gauge field Aµ dual to the
electron current Jµ . We take Aµ to be an Abelian gauge field, which implies that we consider
only one flavour of electrons, or - in condensed matter vterms - only one channel. fmn is the field
strength tensor of the gauge field am with m ∈ {t,z}, which we take to be Abelian too. Its time
component at is dual to the charge density ψ?ψ , which at the boundary takes the value Q = q/N
with q the dimension of the antisymmetric prepresentation of the spin impurity. Dm is a covariant
derivative given by Dm = ∂m + iAmΦ− iamΦ. For the complex scalar, we assume its potential to
take the simple form

V (Φ†
Φ) = M2

Φ
†
Φ . (3.21)

We write the complex field as Φ = φ exp iδ with φ = |Φ|. We choose M2 in such a way that Φ†Φ

is a relevant operator in the UV limit. It becomes marginally relevant when perturbing about the
fixed point. Moreover, for the time being we consider the matter fields as probes, such that they do
not influence the background geometry. For this background geometry we take the solution to the
gravity equations of motion which corresponds to the AdS BTZ black hole, i.e.

ds2
BTZ =

1
z

(
1

h(z)
dz2−h(z)dt2

)
,

h(z) = 1− z2

z2
h
, (3.22)

where we set the AdS radius to one, L = 1, and zh is related to the temperature by

T =
1

2πzh
. (3.23)

The non-trivial equations of motion for the matter fields are given by

∂zAx = 4πδ (x)
√

ggttatφ
2 ,

∂z(
√
−ggzzgtt

∂zat) = 2
√
−ggttatφ

2 ,

∂z(
√
−ggzz

∂zφ) =
√
−ggtta2

t φ +
√
−gM2

φ . (3.24)

The three-dimensional gauge field Aµ is non-dynamical, but will be responsible for a phase shift
similar to the one observed in the field-theory Kondo model.

Above the critical temperature Tc where O dual to the scalar field condenses, we have φ = 0.
Then, asymptotically near the boundary, we have at(z) ∼ Q

z + µ , where µ is a chemical potential
for the spurious U(1) symmetry rotating the χ’s. The charge density is given by χ†χ = NQ, with
Q = q/N.
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For generating the Kondo RG flow, we need to turn on the marginally relevant ‘double-
trace’ operator OO†. We choose the mass M in the potential such that the field φ(z) is at the
Breitenlohner-Freedman stability bound [45]. The asymptotic behaviour of φ(z) near the boundary
is then

φ(z) = αz1/2 ln(Λz)−β z1/2 +O(z3/2 ln(Λz) . (3.25)

Following [46, 47], the gravity dual of a double-trace perturbation is obtained by imposing a linear
relation between α and β ,

α = κβ . (3.26)

We choose α to correspond to a source for the operator O , while β is related to is vacuum expec-
tation value. The physical coupling φ(z) should be a RG invariant, i.e. invariant under changes of
the cut-off Λ. This implies

κ =
κ0

1+κ0 ln(Λ0/Λ)
. (3.27)

At finite temperature, we obtain the analogous result

κT =
κ0

1+κ0 ln(Λzh)
(3.28)

This expression for the coupling κT diverges at the temperature

TK =
1

2π
Λe1/κ0 , (3.29)

where TK is the Kondo temperature. A similar behaviour is observed in the condensed matter Kondo
models. Moreover, this behaviour bears some similarity to QCD, where the coupling becomes
strong at a scale ΛQCD, below which bound states provide the natural description of the degrees
of freedom. Of course, in the holographic Kondo model there are two couplings, one between the
electrons themselves and secondly the Kondo coupling κT . While the first is strong along the entire
flow, κT diverges at the Kondo temperature and then becomes small again at lower temperatures,
where the condensate forms.

For determining the physical properties of the model considered, we have to resort to numerics
to solve the equations of motion (3.24). We find a mean-field phase transition as expected for a
large-N theory, as shown in figure 7. In the screened phase, a condensate of the operator O = ψ†χ

forms. We note that for very small temperatures, the numerical solution of the equations of motion
becomes extremely time-consuming and thus our results are less accurate in this regime. We expect
that in the limit T → 0, to obtain a stable constant solution for 〈O〉 requires to add a quartic term
to the potential (3.21).

Our holographic model allows for a geometrical description of the screening mechanism in the
dual strongly-coupled field theory. For this we consider the electric flux F of the AdS2 gauge field
at(z). At the boundary of the holographic space, this flux encodes information about the impurity
spin representation,

lim
z→0

F = lim
z→0

√
−g f zt = a′t(z)|z→0 = Q , (3.30)
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Figure 7: Expectation value of the operator O =ψ†χ as function of the temperature. Below Tc, a condensate
forms. (a.) Close to the transition temperature, displaying that the phase transition is mean-field; (b.) Log-
log plot showing a larger temperature range. The VEV appears to approach a constant at low temperatures,
however further stabilisation by a quartic potential contribution is expected to be required in the limit T → 0.
Figures from [42].

with Q = q/N and q as in (3.15). When φ = 0, this flux is a constant and takes the same value
at the black hole horizon. However for T < Tc, the non-trivial profile φ(z) draws electric charge
away from at(z), reducing the electric flux at the horizon. This implies that the effective number of
impurity degrees of freedom is reduced, which corresponds to screening. This is shown in figure 8
which shows the flux Fz→zh at the horizon as a function of temperature. The numerical solution of
the equations of motion yields a decreasing flux when the temperature is decreased.

Figure 8: Electric flux through the boundary of AdS2 at the black hole horizon. This is a measure for the
number of degrees of freedom. Its decrease at low temperatures indicates that the impurity is screened. For
T/Tc . 0.2, the decrease is only logarithmic. The radial variable is normalized such that z = 1 at the horizon.
Figure from [42].

The temperature dependence of the resistivity may be obtained by an analysis of the leading
irrelevant operator at the IR fixed point, i.e. by perturbing about the IR fixed point by this operator.
This gives ρ(T )∝ T γ with γ ∈R a real number. A similar behaviour occurs also in Luttinger liquids
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[48]. The model thus does not reproduce the logarithmic rise of the resistivity with decreasing
temperature observed in the original Kondo model. This behaviour is expected since the model is
at large N and the ambient electrons are strongly coupled.

Let us emphasize again the differences between the holographic Kondo model considered
here and the large N Kondo model of condensed matter physics: Here, the electrons are strongly
coupled among themselves even before coupling them to the spin defect. The system thus has two
couplings: the electron-electron coupling which is always large, and the Kondo coupling to the
defect that triggers the RG flow. Moreover, we point out that in our model, the SU(N) symmetry is
gauged, while it is a global symmetry in the condensed matter models.

To conclude, let us consider different applications of the holographic Kondo model we in-
troduced. These involve three aspects: the impurity entropy, quantum quenches and correlation
functions.

3.4 Applications of the holographic Kondo model

3.4.1 Entanglement entropy

The concept of holographic entanglement entropy introduced by Ryu and Takayanagi in 2006
has proved to be an important ingredient to the holographic dictionary [49], opening up new re-
lations between gauge/gravity duality and quantum information. In general, the entanglement en-
tropy is defined for two Hilbert spaces HA and HB. In the AdS/CFT correspondence, it is useful to
consider A and B to be two disjunct space regions in the CFT. Defining the reduced density matrix
to be

ρA = trBρ , (3.31)

where ρ is the density matrix of the entire space, the entanglement entropy is given by its von
Neumann entropy

S =−trAρA lnρA . (3.32)

The entanglement entropy bears resemblance with the black hole entropy since it quantifies the lost
information hidden in B. Ryu and Takayanagi proposed the holographic dual of the entanglement
entropy to be

S =
AreaγA

4Gd+1
, (3.33)

where Gd+1 is the Newton constant of the dual gravity space and γA is the area of the minimal
bulk surface whose boundary coincides with the boundary of region A. For a field theory in 1+1
dimensions, the region A may be taken to be a line of length `, and the bulk minimal surface
γA becomes a bulk geodesic joining the two endpoints of this line, as shown for the holographic
Kondo model in figure 9. We note that for a 1+1-dimensional CFT at finite temperature, with the
BTZ black hole as gravity dual, it is found both in the CFT [50] and on the gravity side [49] that
the entanglement entropy for a line of length ` is given by

SBH(`) =
c
3

ln
(

1
πεT

sinh(2π`T )
)
, (3.34)
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with ε a cut-off parameter.
For the Kondo model, a useful quantity to consider is the impurity entropy which is given by

the difference of the entanglement entropies in presence and in absence of the magnetic impurity,

Simp = Simpurity present−Simpurity absent . (3.35)

In the previous sections, we considered the probe limit of the holographic Kondo model, in which

Figure 9: The impurity entropy in the holographic Kondo model is obtained from the entanglement entropy.
The entanglement area is a line of length ` in the dual field theory. The holographic minimal surface is a
geodesic. For the impurity entropy, the entanglement entropy in absence of the defect is subtracted from the
one in presence of the defect.

the fields on the AdS2 defect do not backreact on the AdS3 geometry. However, including the back-
reaction is necessary in order to calculate the effect of the defect on the Ryu-Takayanagi surface. A
simple model that achieves this [51, 52] consists of cutting the 2+1-dimensional geometry in two
halves at the defect at x = 0 and joining these back together subject to the Israel junction condition
[53]

Kµν − γµνK =−κG

2
Tµν , (3.36)

This procedure is shown in figure 10. We refer to the joining hypersurface as ‘brane’. In (3.36), γ

and K are the induced metric and extrinsic curvature at the joining hypersurface extending in (t,z)
directions. Tµν is the energy-momentum tensor for the matter fields a and Φ at the defect, and κG

is the gravitational constant with κ2
G = 8πGN .

The matter fields Φ and a lead to a non-zero tension on the brane, which varies with the radial
coordinate. The higher the tension on this brane, the longer the geodesic joining the two endpoints
of the entangling interval will be, as shown in figure 11. A numerical solution of the Israel junction
condition reveals that the brane tension decreases with decreasing temperature, which leads to a
shorter geodesic. This in turn leads to a decrease of the impurity entropy (3.35). This decreases is
expected and in agreement with the screening of the impurity degrees of freedom.

In the holographic Kondo model, the brane is actually curved since the brane tension depends
on the radial coordinate. For large entangling regions `, we may approximate the impurity entropy
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Figure 10: Cutting and joining of two halves of the AdS BTZ geometry subject to the Israel junction at the
defect. Figure by Mario Flory.

Figure 11: Geometry in a vicinity of the backreacting defect brane at positive brane tension. The horizontal
black line corresponds to the boundary of the deformed AdS space, as in figure 10. The volume is increased
in a given region around the defect as compared to the case when the brane tension vanishes. This will
lead to a longer geodesic for a given entanglement interval and thus to a non-zero positive impurity entropy.
Figure by Mario Flory.

to linear order by noting that the length decrease of the Ryu-Takayanagi geodesic γA translates into
a decrease of the entangling region ` itself. To linear order, this implies that the entangling region
is given by `+D in the UV and by ` in the IR, for D� `. Using (3.34) we may thus write for the
difference of the impurity between its UV and IR values

∆Simp = SBH(`+D)−SBH(`)

' D ·∂`SBH(`) =
2πDT

3
coth(2π`T ) . (3.37)

It is a non-trivial result that subject to identifying the scale D with the Kondo correlation length of
condensed matter physics, D ∝ ξK , then the result agrees with previous field-theory results for the
Kondo impurity entropy [54, 55].

3.4.2 Quantum quenches

A quantum quench corresponds to introducing a time dependence of the Kondo coupling.
On the gravity side, this implies that the equations of motion become partial differential equations
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(PDEs), since both the dependence on the AdS radial coordinate and on time are relevant. Quenches
of the holographic ‘double trace’ Kondo coupling κT were considered in [56]. Figure 12 shows a
quench from the unscreened to the screened phase. The system reacts to this quenchof the coupling
by forming a condensate. There is a certain time lapse before this happens. It is also noteworthy
that the reaction is overdamped, i.e. there are no oscillations around the new equilibrium value.
This behaviour follows from the structure of the quasinormal modes, i.e. the eigenmodes of the
gravity system. The leading eigenmode is purely imaginary in this system. This is in agreement
with the behaviour of the correlation functions discussed in the next section.

Figure 12: Left: Quench of the ‘double-trace’ Kondo coupling from the unscreened to the screened phase.
Right: Reaction of the system to this quench: A condensate forms. There are no oscillations about the new
equilibrium configuration. Figure from [56].

3.4.3 Correlation functions

AdS/CFT allows to calculate retarded Green’s functions by adapting the methods presented in
section 2.4.3 to Lorentzian signature [57]. The required causal structure is obtained by imposing
infalling boundary conditions on the gravity field fluctuations at the black hole horizon. Moreover,
a careful regularization using the methods of holographic regularization [58] is essential. This
approach was used in [59, 60] to calculate spectral functions for the Kondo operator O = ψ†χ of
(3.16). Spectral functions are generally obtained from the retarded Green’s function by virtue of

ρ(ω) =−2ImGR(ω) . (3.38)

The spectral function measures the number of degrees of freedom present at a given energy. The
results for the holographic Kondo model obtained in [59, 60] are shown in figure 13.

Above the critical temperature, these spectral functions show a spectral asymmetry related to
a Fano resonance [61]. In the holographic case, this asymmetry is characteristic of the interaction
between the ambient strongly coupled CFT and the localized impurity degrees of freedom. A
similar spectral asymmetry also appears in the condensed-matter large N Kondo model (which
involves free electrons) at vanishing temperature [62]. In the screened phase, the holographic
spectral function displayed in figure 13 is antisymmetric, consistent with the relation

ωP ∝−i|〈O〉|2 (3.39)
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Figure 13: Spectral function ρ(ω) for the Kondo operator O at the defect, as function of the frequency ω .
a) Left: In the unscreened phase above Tc. The spectral function corresponds to a Fano resonance with a
spectral asymmetry. b) Right: In the screened phase below Tc. The spectral function is antisymmetric. The
Green’s functions’ poles leading to the extrema in ρ(ω) are determined by the size of the condensate for O .
Figures from [59].

between the condensate and the leading pole ωP in the retarded Green’s function. This relation is
also satisfied by the condensed matter large-N Kondo model involving free electrons [63].

A similar spectral asymmetry also arises in the context of the Sachdev-Ye-Kitaev (SYK) model
that received a lot of attention recently [64, 65]. In fact, the original variant of this model due to
Sachdev and Ye [64] involves Weyl fermions, as opposed to the Majorana fermions of the SYK
model. This Sachdev-Ye may be obtained from the Ising model by the same mechanism as dis-
cussed in (3.14) above, i.e. by writing the Ising spin in terms of a bilinear of auxiliary fermions. In
this case, the Ising model is given by

HS =−
1√
N ∑

A<B
JA,BSaASaB , Sa = ψ

†T a
ψ , (3.40)

where the A,B label the different sites of the Ising lattice, and the index a refers to spin space as
in (3.14). We see that inserting the fermion bilinear expression for Sa into the Ising model will
give rise to a four-fermion model. Indeed, as explained in [64, 66], reducing (3.40) to a single-site
model by averaging over disorder, and taking the large N limit, gives rise to the Sachdev-Ye model

HSY =
1

(2N)3/2

N

∑
i, j,k,l=1

Ji j,kl χ
†i

χ
j
χ

†k
χ

l−µ ∑
i

χ
†i

χ
i , (3.41)

where the second term involving the chemical potential µ is added to fix the representation q of
the spin impurity. As discussed in [67], the Sachdev-Ye model also displays a spectral asymmetry.
This asymmetry is of an analogous form to the one found above for the holographic Kondo model.
In [67], it is shown that the spectral asymmetry in the Sachdev-Ye model may be mapped to the
entropy of a black hole in AdS2 space. A similar mechanism is expected to be at work in the
holographic Kondo model introduced above.

4. Conclusion and outlook

Though the concept of duality has existed for some time within theoretical physics, the AdS/
CFT correspondence and its generalizations to gauge/gravity duality are truly remarkable since
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they relate a theory with gravity to a quantum theory without gravity. This certainly added many
new viewpoints on fundamental questions such as the nature of quantum gravity. On this basis,
further significant progress is expected within the next couple of years, one particular avenue be-
ing the quantum physics of black holes and its relation to quantum information. This provides
a striking example of new developments in physics triggered by joining different research areas
that previously appeared as unrelated. Equally striking is the new relation between fundamental
and practical questions provided by gauge/gravity duality, as it provides a new approach for study-
ing questions in strongly coupled quantum systems. This has been applied to fields as diverse as
elementary particle, nuclear and condensed matter physics.

The holographic Kondo model demonstrates nicely how the original concept of the AdS/CFT
conjecture may be applied to more involved configurations, in this case involving a marginally
relevant perturbation by a ‘double-trace’ operator and a condensation process. It also demonstrates
that holographic models may be linked to previous results, in this case the large N Kondo model of
condensed matter physics. On the other hand, they also add new features, in this case the coupling
of the magnetic impurity to a strongly coupled electron system, leading in particular to new features
in quantum quenches and in the spectral function.

The AdS/CFT correspondence and gauge/gravity duality are undoubtedly one of the most
exciting developments in physics within the last twenty years. As discussed, new avenues are
opening up and are expected to lead to further important discoveries in the future.
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