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The String Landscape, the Swampland, and the Missing Corner Cumrun Vafa

These lecture notes from TASI 2017 give a brief overview of some of the open problems in
string theory. We will be generally motivated by the philosophy that string theory is ultimately
supposed to describe the fundamental laws of our universe. String theory is so versatile that it can
be used to study a wide array of physical problems such as various topics in condensed matter and
quark-gluon plasma or aspects of quantum fields theories in diverse dimensions. Much of the recent
work using string theory has been focused on using its properties to solve specific problems rather
than developing our understanding of string theory as a fundamental description of our universe.
Here we aim to discuss topics which we hope will be useful in bringing string theory closer to
observable aspects of fundamental physics.

With this philosophy in mind, we will begin these lectures by reviewing some of what we know
about string theory and its possible application to the universe by describing some generalities about
the space of low energy theories theories coming from string theory compactifications: this is called
the “string landscape.” Supersymmetry plays a key organizing principle in this context. This will
naturally lead us to investigate the question of how we know a priori if a low energy theory is in the
landscape or it is not. The set of low energy physics models which look consistent but ultimately
are not when coupled to gravity, is called the “swampland.” Finding simple criteria to distinguish
the swampland from the landscape is of great importance. In particular such criteria can lead to
concrete predictions for our universe as we will discuss later. We review a number of conjectures
which are aimed at distinguishing the swampland from the landscape.

The string landscape and the swampland will be the topic of the first two lectures. In the third
lecture, which is on a somewhat disjoint topic, we review critically where we are in our current
understanding of quantum gravity. In this lecture we use the toy example of topological string
theory, for which much more is known, to shed a new light on what shortcomings we have in
our current formulation of quantum gravity from string theory. In topological string theory the
gravitational theory can be formulated in terms of a non-commutative U(1) gauge theory whose
configurations can be interpreted as defining a quantum gravitational foam. This is holographically
dual to a Chern-Simons theory. The equivalence of these two theories is the content of holography
for topological strings. In the case of full string theory, a direct definition of quantum gravity is
missing and holography is viewed as a substitute definition. The analogy with topological strings
suggests that there is a missing corner in string dualities and that we should try to find a direct
definition of quantum gravity.

1. Lecture 1: The String Landscape

1.1 Review of String Theories

In the late 1980’s it was realized that there were five perturbatively consistent, distinct ten-
dimensional string theories. Early efforts to find the four-dimensional standard model with gravity
as a low energy limit of string theory focused on compactifying those theories on various manifolds.
Initially, the Heterotic string theories were considered the most promising theories to produce the
standard model because of their inherent non-abelian gauge symmetries1. In mid 1990’s, it was

1Recall that D-branes were discovered only in the late 80’s - early ’90s, and before this moment it was largely
unknown how to realize gauge groups in Type II theories [1].
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realized that these five theories were all related by different dualities and non-perturbative comple-
tions, thus launching the “duality era” [2].

The five original types of superstring theories are Type I, Type IIA, Type IIB, Heterotic
E8×E8 (HE), and Heterotic SO(32) (HO)2. There is also a conjectured 11D theory called M-
theory which is not a string theory and has a low energy effective action given by 11D N = 1 su-
pergravity. This theory is highest dimensional supergravity theory. The Type IIA has a N = (1,1)
supersymmetry and thus is non-chiral. Type IIB has N = (2,0) and is thus chiral. Heterotic and
Type I strings are both chiral carrying N = (1,0) supersymmetry3.

The duality web suggests that all these theories are related by dualities. Let us denote k-
dimensional Minkowski space by Mk. The dualities are generated by the following equivalences
(also see Figure 1):

• Type I is related to HO by S-duality (inversion of coupling constant),

• HO is related to HE on M9×S1 with Wilson lines turned on S1 [6] ,

• Type IIA on M10 is equivalent to M-theory on M10×S1 where the radius R of S1 is related to
Type IIA coupling constant by R3 = λ 2,

• Type IIA on M9×S1
R is related to Type IIB on M9×S1

R′ by T-duality where R′ = `2
s/R where

`s is the string length,

• M-theory on M10× S1/Z2 is related to HE on M10. Physically, M-theory on this interval
(whose length is related to Heterotic string coupling constant) has M9-branes on each end of
the interval each of which carry an E8 gauge group which together give rise to the 10D HE
theory [7, 8].

While M-theory appears to be the most central in web of dualities between all of the different
theories, in some sense, it doesn’t see Type IIB string theory, even though they are clearly dual.
Specifically if we compactify M-theory on T 2 and shrink it to zero size, we would expect to get a
9D effective theory. However, string duality tells us that we actually get Type IIB which has 10D
Lorentz symmetry. This indicates that M-theory is perhaps not a very good way to describe Type
IIB.

Let us now consider Type IIB string theory. It has a complex coupling constant, τ which is
SL(2,Z) equivariant since Type IIB is self-dual under S-duality. Because of this property, we can
think of τ as the complex structure of a compactification torus of some 12D theory. This 12D
theory is what is referred to as F-theory [9]. See [10, 11] for a review of some aspects of F-theory.

2The gauge group is actually Spin(32)/Z2, but it is convention to say SO(32) since they have isomorphic Lie
algebras [3, 4, 5].

3N = (p,q) indicates that there are p−SUSY operators in the left-handed spin representation of the d-dimensional
Lorentz group and q−SUSY operators in the right-handed spin representation. More precisely, in even dimensions, the
spin representations of the Lorentz group are distinguised by chirality which gives the left- and right-handed spin repre-
sentations. However, in 4D and 8D, these representations are related by complex conjugation and hence are identical so
that we only have this chiral notation for 2D, 6D, and 10D.
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Figure 1: This graph shows the duality web relating all of the different descriptions of string theory. Here
the vertical placement corresponds to dimension.

1.2 String Compactification

We can now try to produce lower dimensional theories and in particular a four dimensional
theory that describes our universe by compactifying one of these theories to lower dimensions.
By this we mean that we will take a spacetime of the form Md ×K where K is some compact
manifold with appropriate dimension with some characteristic size RK . Then we will take the limit
of `s << RK (or lPlanck << RK for M-theory) and consider the low energy dynamics with energy
E << 1/RK , leading to an effective theory on Md . Note that we do not take the limit of RK → 0
as this will lead to the introduction of light matter coming from the winding states which typically
leads to a higher dimensional dual description.

Since there are so many (possibly infinitely many) manifolds we can compactify on to get
lower dimensional physics, it is clear that we need some kind of organizing principle for these
theories. As physicists we generally try to use symmetries to characterize different systems. As
such, we will use Lorentz symmetries again for this purpose. For the time being, we will take all
directions which are not part of the compact direction to be Md = R1,d−1 which has d-dimensional
Lorentz symmetry.

Additionally, as it is useful in classifying the string theories, it also makes sense to classify
our theories by the amount of supersymmetry. For our purposes rather than using the number of
supersymmetries N which is adapted for each dimension, we will make use of the notation NSUSY

which counts the total number of conserved supercharges, as this will not change upon flat toroidal
compactifications. As with the 10D string theories, we will also classify by the chirality of the
supersymmetries. For example, Type IIA string theory has NSUSY = 32 charges and is non-chiral
since it has N = (1,1) SUSY whereas Type IIB string theory has NSUSY = 32 and is chiral since
it has N = (2,0). The relation between the two notations is that in even dimensional spacetime,
a theory with N = (p,q) has NSUSY = 16(p+ q), NSUSY = 8(p+ q), or NSUSY = (p+ q) con-
served supercharges in 10D, 6D, or 2D respectively. Apart from the chirality information in these
dimensions, NSUSY completely captures the structure of the super Lorentz group.

Thus far, we have been implicitly assuming that we are compactifying with compact man-
ifolds. However, even though the name and procedure of compactification requires a compact
manifold, there has actually been a significant amount of work on “compactifying on non-compact
manifolds.” This means that we can also study string theory on Md×K where the volume of K is
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infinite and the theory has local normalizable modes in Md which are decoupled from gravity. This
is based on the way that the gravity appears in the low energy effective action for the “compactified”
theory.

Consider the background to be Md×K where K is our compactification manifold. To leading
order the gravitational part of the action on Md will be of the form

S∼Vol(K)
∫

Md

ddx
√
−g Rd , (1.1)

where Rd is the d-dimensional Ricci scalar. Comparing to the Einstein-Hilbert action

SEH =
1

16πGN

∫
Rd

ddx
√
−g Rd = Md−2

pl

∫
Rd

ddx
√
−g Rd , (1.2)

means that Vol(K) should be identified with Md−2
pl . Therefore in the limit4 Vol(K)→ ∞, Mpl → ∞

and hence GN → 0, decoupling gravity5. However depending on the structure of K we may get
normalizable modes of some of the fields with a finite kinetic term in d-dimensions. These can in
principle lead to interesting interacting quantum systems in d-dimensions which are not coupled to
gravity. From this, it is clear that studying non-compact “compactifications” is useful for studying
QFTs that are not coupled to gravity.

Non-compact backgrounds are also interesting for the purpose of studying holography. Con-
sider string theory in AdS space. This has negative curvature that requires background fluxes to be
stable. In general this requires string theory to be on a space AdSd×K where K is an appropriate
dimensional manifold with positive curvature to balance the total curvature in Einstein’s equation.
Holography tells us that sometimes we can relate non-compact compactifications to a true com-
pactification with AdS spacetime. For example, consider Type IIB with a stack of N D3-branes in
R1,9. Holography tells us that this is dual to AdS5× S5 supported by N units of flux. From the
non-compact geometry we have ended up with a compact one! This happens by “zooming” in to
the near horizon limit in which the transverse direction to the D3-branes looks like R+× S5. In
a sense the D3-brane worldvolume direction, R1,3, absorbs the non-compactness of the transverse
R+ direction to become AdS5, resulting in a compact geometry with flux. This is the statement
of holography - that branes’ interaction with gravity leaves an imprint on space which leads to an
equivalence between a QFT living on the branes and its gravitational imprint where the brane has
been replaced by flux [13]. The distinguished role of AdS space in holography begs the question if
de Sitter spacetime also has similar properties. However these spaces may be impossible to obtain
in string theory as we will discuss in Section 1.3.5. For the rest of the discussion here we will focus
on compactification to Minkowski background.

Thus far, the only known stable compactifications to Minkowski space require some amount
of preserved supersymmetry. Therefore, an important part of understanding what theories are pro-
duced by compactifying string theory is understanding what conditions are sufficient and necessary

4Here we assume that we are compactifying to d > 2.
5More generally, the procedure to decouple from gravity is more involved than just taking Vol(K)→ ∞. However,

we will ignore this subtlety for simplicity. In general, we cannot always decouple a theory from gravity. For example
when the compactified theory is not asymptotically free. It is sufficient for a theory to be asymptotically free/conformal
to be able to decouple from gravity. See [12] for some additional details of decoupling gravity.

4



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
5

The String Landscape, the Swampland, and the Missing Corner Cumrun Vafa

to have supersymmetry for the low energy theory. This is determined by the number of covariantly
constant spinors on the compactification manifold. These are globally defined spinors which are
invariant under translation along the compact manifold - they are intuitively spinors that are in-
dependent of their position on the internal manifold. In many cases the statement of existence of
covariantly constant spinors can be translated into a statement about the holonomy of the tangent
bundle.

This can be described as follows. Pick a tangent vector at any point on the (oriented) manifold
K. As we parallel transport this vector along any closed path in the manifold, the vector is “pushed
around” so that when it returns to the basepoint, the change of the vector can be described by the
action of an element of SO(n) for a n-dimensional manifold. Generically this action lifts to the
spin bundle by spin representations induced from the lift of SO(n) to Spin(n). However, there are
special cases when this group is reduced to a subgroup6 G ⊂ SO(n). In this case, we can find an
element of the spin bundle which is fixed by the lift of the action of G and hence can be extended
to all of K by geodesic translation.

A special class of manifold which has a guaranteed reduction of structure group are Calabi-Yau
manifolds. These are Kähler, Ricci flat, complex manifold of real dimension 2n whose holonomy
is given by SU(n) ⊂ SO(2n). As we will see, these will provide an important class of internal
manifold for compactification.

Some general classes of compactification manifolds that are useful for string compactifications
to 4D which preserve some amount of SUSY are:

• T n - the n-torus. This preserves full SUSY since the holonomy group is trivial.

• K3 surface. This is the first non-trivial Calabi-Yau manifold which is a complex 2-fold (4-
real dimensional). In this case the holonomy is reduced from SO(4)→ SU(2). So there is a
trivial direction in the spinor bundle and hence a covariantly constant spinor. This preserves
1
2 -SUSY.

• Calabi-Yau 3-manifolds (CY 3) are complex 3-folds with SU(3) holonomy. These preserve
1
4 -SUSY.

• Calabi-Yau 4-manifolds (CY4) are complex 4-folds dimensional with SU(4) holonomy. These
preserve 1

8 -SUSY.

• G2-manifolds are 7-real dimensional manifolds with G2⊂ SO(7) holonomy. These preserve
1
8 -SUSY.

• Spin(7)-manifolds are 8-real dimensional with Spin(7)⊂ Spin(8)∼ SO(8) holonomy. These
preserve 1

16 -SUSY.

1.3 Dualities of Compactified Theories

Since we have seen that the full string theories are all interrelated by a sequence of dualities,
one would expect that their compactifications are also related by dualities. As it turns out, these

6Note in order to have the reduction of the holonomy group, we must have that this holds for all choices of basepoint.
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relations are so abundant that we can make the following observation:

“Conjecture”: Whenever the dimension, number of preserved supercharges, and chiralities
of two different compactifications of string theory match, there are choices of compactification ge-
ometries such that they are dual descriptions of the same physical theory.

Surprisingly, we are aware of no known counter examples. In this sense, dualities in lower
dimensional theories are not hard to find, but rather are hard to prevent! One rationale for the
existence of dualities is as Sergio Cecotti puts it, “the scarcity of rich structures”. In particular the
very existence of quantum systems of gravity is hard to arrange and if we succeed to get more than
one theory with a given symmetry, there is a good chance we have landed on the same theory.

We will now briefly review some of interconnected web of string dualities with definite NSUSY

in various dimensions. We will not be exhaustive in the discussion below, but aim to illustrate some
key examples.

1.3.1 Adiabatic Principle

A general principle which helps us in identifying dualities upon compactification is to use
known dualities in higher dimensions to build new ones in lower dimensions. This is based by use
of a sort of “adiabatic procedure" [14] where we step-by-step reduce the dimension by acting on
both sides of a given duality by a geometric procedure such as compactification. However, in most
applications the fibration data does not vary adiabatically. Therefore, there is no rigorous reason
why this should work since it is not really adiabatic in any sense of the word as things change
drastically at every step. However, amazingly it does work in all known examples as long as some
supersymmetry is preserved.

1.3.2 NSUSY = 32

Let us start with NSUSY = 32. M-theory in 11 dimensions, F-theory in 12 dimensions, and Type
IIA and Type IIB and all their toroidal compactifications to lower dimensions have NSUSY = 32.
Moreover, except for Type IIB in 10 dimensions whose chirality is N = (2,0) and F-theory, all
these theories are non-chiral and so one would expect based on our general conjecture that they are
all equivalent once compactified to the same dimension. And further, we expect (correctly) that
both the chiral and non-chiral theories to be equivalent when toroidally compactified to the same
dimension.

1.3.3 NSUSY = 16

Consider the case of NSUSY = 16. This includes Heterotic and Type I theories in 10D as well as
M-theory on S1/Z2. We have already discussed dualities among these, so let us move on to further
dualities with this much supersymmetry. We will start by compactifying F-theory. Recall that in
order to make sense of F-theory we need a torus embedded in our compactification manifold - that
is we need at least some kind of torus fibration. We will begin by compactifying F-theory on an

6
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elliptic K3-manifold. This may be written as a torus fibration over P1

T 2 // K3

��
P1

K3 = {y2 = x3 + f (z)x+g(z) | z ∈ P1} . (1.3)

Note that this reduces the NSUSY = 32 of F-theory to an 8d, NSUSY = 16 theory. The Heterotic and
Type I theories also have NSUSY = 16, but they are 10D theories. So if we reduce them on a T 2, we
get an 8d theory with NSUSY = 16. As it turns out, these theories are dual to each other [9].

One can check aspects of this duality by studying singularity structure of the K3 manifold.
The key to the duality is that the singularities of K3 manifold, which are points where the T 2

fiber degenerates7, which are interpreted in Type IIB setup as giving rise to a system of (p,q) 7-
branes which can lead to non-abelian gauge symmetry as expected for Heterotic or Type I toroidal
compactifications. It turns out that compactification on an elliptic K3 manifold leads to singularities
associated to a Lie algebra g such that rnk g ≤ 20 and in paritcular we cannot obtain arbitrarily
large rank non-abelian gauge groups in this way. This is compatible with the Heterotic and Type
I compactifitions on T 2 which leads to a rank 16 plus an additional 4 coming from winding and
momentum charges on each circle but we can have gauge symmetry enhancement at certain points
in the moduli space which give rise to (semi-simple) factors of non-abelian groups with up to
rnk g= 18 gauge groups [15]8.

Additionally, there is an important family of dualities relating F-theory and M-theory. Recall
that F-theory and M-theory have the same NSUSY = 32 and hence F-theory on T 2×S1 is equivalent
to M-theory on T 2. If we compactify F-theory on Kell o S1, it will have the same dimension and
NSUSY as M-theory on Kell where Kell is an elliptically fibered manifold. Therefore, we expect
these theories to be dual. This can be derived by the adiabatic principle, where we adiabatically
fiber the T 2 factor on both sides of the 9D duality over a base manifold to construct Kell .

Similarly as we discussed M-theory on S1 is equivalent to Type IIA. This gives rise to the chain
of dualities [9]:

• F-theory on Kell×S1 is dual to M-theory on Kell

• F-theory on Kell×S1×S1 is dual to M-theory on Kell×S1 and to Type IIA on Kell

If we apply this to the case where Kell = K3, then we find that F-theory on K3×S1, which is
conjectured to be the same as Heterotic on T 2×S1 = T 3, is dual to M-theory on K3 [2]. Moreover,
going one dimension down on another S1 shows that Type IIA on K3 is dual to is dual to Heterotic
on T 4. Generically in the compactification of Heterotic string theory on T 4 includes non-trivial

7These singularities have a classification given by Kodaira, which mirrors the more well known one for an ADE
classification of K3 singularities. See Section 1.4.2 for a discussion of ADE singularities.

8As it turns out this is a special case of a more general string duality which relates Heterotic string theory on
a complex n− 1 dimensional elliptically fibered Calabi-Yau πH : Z → B to F-theory compactified on an complex n-
dimensional Calabi-Yau πF : X → B with elliptic K3-fibers over the same base. The physical motivation for this is the
same as compactification on the K3 fibers again give rise to a system of 7-branes which has non-abelian gauge symmetry
matching that of the Heterotic string compactified on the T 2 fibers with Wilson lines. These can further be shown to
have the same moduli and low energy spectrum. See [16] for more details.
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Wilson lines along the different S1 factors in the T 4 which break gauge symmetry. But by turning
these off, our compactified theory will exhibit non-abelian gauge symmetry. This is reflected in the
Type IIA side by taking the limit where non-trivial 2-cycles in the K3 manifold become coincident
and develop orbifold singularities as above. We will comment more on this in the next section.

1.3.4 NSUSY = 8

Now consider the case of NSUSY = 8. This can be achieved by compactifying Type I or Het-
erotic string theory on a K3 manifold and Type IIA, IIB, M-theory and F-theory on a CY 3-fold.
Now that we are considering non-trivial compactifications of Heterotic string theory we have to
account for the interplay between the non-trivial geometry and gauge field fluxes.

In Heterotic string theory there is a 2-form tensor field B whose field strength is given by
H = dB. The bosonic part of the low energy effective action of the Heterotic string (Heterotic
supergravity) is given by

S =
1

2κ2
10

∫
d10x
√
−ge−2Φ

(
R+4(∇Φ)2− 1

2
|H̃3|2

)
− 1

2g2
10

∫
d10x
√
−ge−2Φ Tr|F2|2 ,

(1.4)

where

H̃3 = dB− 1
4
(ΩY M−ΩGR) ,

ΩY M = Tr A∧dA− 2i
3

A∧A∧A , ΩGR = Tr ω ∧ω +
2
3

ω ∧ω ∧ω ,

(1.5)

where A is the 1-form gauge field and ω is the spin connection. This leads to the equations of
motion

dH3 =
1
2
(Tr R∧R−Tr F ∧F) , R = dω +ω ∧ω . (1.6)

Compactifying F-theory on an elliptic CY 3-fold gives a six-dimensional theory with NSUSY =

8. This matches the SUSY and dimensions of Heterotic string theory on K3. By the conjecture
above, we expect these to be dual. Consider a compactification with only trivial H-flux, that is the
case without five-branes (sources of the B-field). This imposes the condition

Tr(R∧R)−Tr(F ∧F) = c2(T M)− c2(F) = 0 , (1.7)

on the gauge bundle, where c2(F) represents the second Chern class. This means that if we com-
pactify on a non-trivial manifold, we must have instantons living in the gauge bundle.

We will now consider the extended example of Heterotic string theory on K3. Before we derive
the duality with F-theory, we will demonstrate some physical features of this compactification.
This manifold has the feature that c2(T K3) = 24. This means that if there are no five-branes, there
must be 24 instantons living in the gauge bundle. Since the structure group of the gauge bundle
is E8×E8, we can have these 24 instantons divided between the two factors E81×E82 as k1,k2

where k1 + k2 = 24 [17].
Now consider the case where [dH] 6= 0 - that is the case of compactification with five-branes.

This case is actually more clear from the Hor̆ava-Witten construction by taking M-theory on R1,5×

8
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K3×S1/Z2. At the ends of the S1/Z2 interval, there are M9-branes - each of which support an E8
gauge group. Instantons in the M9-branes are described by dissolved M5-branes. These instantons
in the gauge theory can shrink to zero size in the K3×S1/Z2 direction and eject from the M9-brane
as M5-branes into the bulk of the S1/Z2 (whose worldvolume is transverse to the K3×S1/Z2) and
can also be absorbed by the other wall and dissolved in it. The point is that there must be a total of
24 M5-branes for this compactification to be stable spread out between the two M9-branes and the
bulk [18].

Now using the duality conjecture, we know that the compactification of Heterotic string theory
on K3 is a 6D theory with NSUSY = 8. This can also be achieved by considering F-theory on an
elliptically fibered CY 3 manifold. As we will see this can be derived from the previous subsection
by applying the ‘adiabatic argument’.

Let us start with the duality of F-theory on K3 and Heterotic string theory on T 2. Recall that
K3 can be written as an elliptic fibration

T 2 // K3

��
P1

. (1.8)

Now if we take both sides of the duality and fiber them over a 2-sphere P1, then we get

F-theory on

K3 // CY 3

��
P1

∼=

T 2 // CY 3

��
P1×P1

⇐⇒ Heterotic on

T 2 // K3

��
P1

. (1.9)

Here CY 3 is a Calabi-Yau 3-fold which is K3 fibered over P1. For the case k1 = k2 = 12 this
corresponds to a CY 3 which is elliptically fibered over P1×P1 [17]. For the more general splitting
k1 = 12−n,k2 = 12+n the the base P1×P1 is replaced by a Hirzebruch surface Fn [19, 20] . The
comparison between the Higgs branches of Heterotic side and its geometric interpretation on the
F-theory side can be found in [21]. In this duality, the transition of an instanton from one E8 factor
to the other has an interesting geometric interpretation on the F-theory side. Emitting an instanton
to the bulk corresponds to blowing up a point on Fn and absorbing it on the other side is equivalent
to blowing another P1 down to a point and the net effect is converting Fn to Fn±1 [22].

1.3.5 NSUSY = 4 and 4D theories

Similarly we can continue down to theories with 4 supercharges. The highest dimension for
which this happens is N = 1 supersymmetric theories in four dimensions. We can obtain these
theories compactifying by Type I or Heterotic strings on Calabi-Yau 3-folds, F-theory on Calabi-
Yau 4-folds, or M-theory on G2 holonomy manifolds. Needless to say we expect these to be dual
to one another with suitable choices of parameters. There has been a large and growing literature
on this subject which is beyond the scope of the current review. A particularly powerful description
of this class of theories involves F-theory, as it is based on relatively simple geometrical data. This
description has led to many potential connections with supersymmetric particle phenomenology
involving supersymmetric extensions of the standard model. See [11] for a partial review.
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Given the large number of six-dimensional manifolds, we would like to know something more
about what kinds of compactifications are allowed. Generic compactifications of this type can have
a large amount of matter fields depending on the number of non-trivial homology cycles. As we
go to large number of matter fields in any theory, we run into the problem of the theory being not
asymptotically free. In general this means that we cannot decouple gravity. The question now be-
comes what constraints does this place on our theory, or in other words, can the non-asymptotically
free theory be arbitrary? As it turns out the restrictions are quite strong.

Since the standard model is asymptotically free9, we can decouple gravity even though we do
have gravity in our universe (and hence have a compact internal manifold assuming this is the cor-
rect description). In order to study just the gauge theory part of this, we can study a non-compact
version of the internal manifold, Ync, which describes the local structure of the true compact man-
ifold, Yc. In essence we can think of this as “zooming” into a local part of Yc so that it appears to
be so large that we can think of it as a non-compact manifold. One of the lessons one learns in this
context is that local singularities of CY geometry play a key role in encoding and restricting some
aspects of phenomenology. One particularly promising example of this is how flavor hierarchy can
be geometrically encoded [23]. Given the importance of local singularities we turn to a brief review
of it later in this lecture.

An important difference between compact and non-compact Calabi-Yau manifolds is that com-
pact manifolds cannot have global symmetries while non-compact ones can. This means that the
global symmetries of the standard model (decoupled from gravity) can only be approximate sym-
metries when we take gravity into account, matching beautifully with the first swampland conjec-
ture in Lecture 2 [24].

Of course we need to understand the full compact geometry in order to understand the structure
of the complete standard model, however studying a non-compact version should be sufficient for
some low energy approximations which we can think of as only probing the local geometry of Yc.
It is also worth pointing out that not every local model of this type is permissible. These can lead
to contradictions with observations and consistency and hence should be counted as being in the
“swampland” of the string landscape - the part that appears to be a consistent low energy theory
which does not have a consistent UV completion with gravity. This will be the topic of Lecture 2.

1.3.6 Supersymmetry Breaking

At the time of writing these notes, supersymmetry had not yet been realized at energy scales
tested by collider experiments. However, supersymmetry is a fundamental component of string
theory model building. Therefore, in order to properly describe real physics at low energy, we must
somehow figure out how to break supersymmetry. This has been a topic of intense study for a long
time which is deceptively difficult. For example, consider the following two cases

1. Compactify a supersymmetric theory on T 2. We can then break supersymmetry by hand by
imposing anti-periodic boundary conditions for fermions. This is called the Scherk-Schwarz
compactification [25]. One drawback of this approach is that this theory will develop a
tachyon for a small enough radius of the circle compactification. This problem is unavoidable

9We assume that it is embedded in some grand unified theory.
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because we cannot study such a system and ignore the radial modulus, or arbitrarily restrict
attention to only a subset of the radion moduli space [26].

2. We can break supersymmetry by considering compactifications on manifolds without a spe-
cial holonomy. For example if compactify on two complex dimensions and if we have a
local orbifold singularity of the type C2/Γ , where Γ 6⊂ SU(2) this breaks SUSY. But again,
studying string theory in this background we learn we have tachyons and hence the system
is unstable [27].

This tachyonic behavior and more generally lack of stationary solutions appears to be a ubiquitous
behavior when we try to break supersymmetry. It would appear that string theory is sending us a
message.

A notable proposal to break supersymmetry and reduce to our universe with positive cosmo-
logical constant is given by KKLT [28]. This approach broadly consists in two steps: 1.) sta-
bilizing the moduli while preserving supersymmetry and 2.) breaking supersymmetry by adding
anti-D3-branes wrapped on highly warped cycles in the internal manifold. We will now review this
construction in more detail.

Consider F-theory/IIB supergravity on a Calabi-Yau orientifold with fluxes, with the simpli-
fying assumption of having only one Kähler modulus. Due to the scale invariant property of the
effective Lagrangian, the complex structure moduli can be stabilized perturbatively while the Käh-
ler moduli cannot. Therefore in order to stabilize all moduli one must add non-perturbative features
such as Euclidean D3 instantons [29]. Once all moduli are stabilized, we will add anti-D3-branes. It
should be noted that those anti-D3-branes will not bring other moduli, as their worldvolume scalars
are all automatically stabilized by the fluxes. These anti-D3-branes are then wrapped on a cycle
at the tip of a Klebanov-Strassler throat [30], inside the Calabi-Yau orientifold. The anti-branes
will then back react on the non-compact part of spacetime, causing it to have a positive cosmo-
logical constant, much like how D3-branes lead to AdS space. In order to properly understand the
KKLT construction, one must have full control of the large number of moduli which is generally
intractable. See [141] for related issues in the KKLT scenario.

We are now at an impasse. It might be that the KKLT construction consistently breaks SUSY
and reproduces a dS-like vacuum with positive energy, but we are just unable to analyze it yet.
Since we do not have the tools to analyze the KKLT construction in a realistic case, it is impossible
to make any strong claims about a KKLT-like realization of dS in string theory. Indeed there are
various problems which arise in this class of theories. In introducing anti-D3-branes on a compact
manifold, we need to take special care of having them well separated from the D3-branes, so
that they do not annihilate. Therefore, to analyze stability when introducing both D3-branes and
anti-D3-branes, we really must have a complete knowledge of the moduli space, including both
open and closed string moduli. This is clearly a very complex problem, as the question of moduli
stabilization remains an active area of research to date.

1.4 Singularities and Branes

Another important facet of our modern understanding of string theory is the role of singulari-
ties. This is demonstrated in an example from the previous section where Type IIA on K3 is dual to
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A
B

Y

X

Z

Figure 2: In this figure we illustrate the idea of toric varieties. Here the two boundaries (labeled A, B) are
where the A- and B-cycles of the T 2 torus fiber degenerates. So the fiber above points X, Y, and Z will be
the S1 B-cycle, full T 2, and S1 A-cycle respectively.

Heterotic string theory on T 4. In this example, non-abelian gauge symmetry on the Heterotic side
is dual to the K3 manifold developing singularities. It is clear from this that the singularities must
play an integral part of understanding these physical theories. This is just an example of the general
principle that singularities give rise to interesting physical phenomena. Moreover understanding
local singularities can lead to a deeper understanding of quantum systems, decoupled from gravity.
This in particular has led to insights about the existence of non-trivial interacting quantum systems
in up to six dimensions. Before we demonstrate some of the interplay between singularities and
branes, it is helpful to do a quick review of toric geometry.

1.4.1 Lightning Review of Toric Geometry

Toric geometry is the study of toric varieties. A toric variety X is the zero set of a collection
of complex polynomial equations that have an algebraic torus T = (C∗)r as a dense open subset
and has a natural action action T : X → X such that the restriction to T ⊂ X is the usual translation
action [31].

A natural way to encode the topological data of a toric variety is by realizing them as torus

Figure 3: This figure is a representation of how C1 can be realized as a toric variety which is a circle fibered
over the positive real line.

12
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fibrations. Since we can realize a generic toric variety X as

T r // X

��
Br

, (1.10)

with a T r fiber, we can realize the base of the fibration as a polyhedra where different cycles of
the fiber degenerate along the different boundary components ∂Br =

∏
i σi where the number of

degenerate cycles on σi is given by codimBr σi. See Figure 2. When ∂Br forms a closed polyhedra,
we can encode its data in the dual graph – this dual graph is called the toric fan and is related to the
way in which branes arise in the Type IIB description of M-theory compactified on a toric variety
[32].

Consider the example of C. This can be realized as a plane where the complex coordinates
(z, z̄) can be exchanged for the real coordinates (r,θ) in the usual way. This allows us to realize C
as a a circle (θ -coordinate) fibered over the positive real line, R+, (r-coordinate) where the radius
of the circle is given by r. See Figure 3.

A

A

A

B

A-B

(a)

B

A+B

(b)

A

A

B

B

B

S3

Figure 4: This figure shows the two possible resolutions ( left and right) of the conifold (center). In the
conifold, the vertical and horizontal line represent the locus in the base where two perpendicularly cycles
(A- and B-cycles) in the T 2 fiber degenerate. This means that the preimage of a line running diagonally
from one axis to the other in the base represents a 3-sphere since it is a 3-real dimensional manifold with a
perpendicularly embedded S1 degenerating at each end. This can be resolved in two different ways which
corresponds to resolving with an S3 (left) or by gluinga CP1 at the origin (right) where the degenerate S1

fiber is either the (a) A+B cycle or the (b) A-B cycle in the T 2 fiber.

In this way, we can similarly realize C3 as 3-perpendicular copies, that is a T 3 fibered over R3
+

which looks like an octant in R3 where the radius of the different cycles of the torus are determined
by their distance from the 3 axes.
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An important feature of the description of toric varieties as torus fibrations of a base polytope
is that it has a clear geometric interpretation of blow ups. The geometric operation of blowing up
is a method of resolving a singularity by replacing a singularity with a smooth manifold. In some
sense, the most fundamental blow up replaces a singularity with a copy of CP1. More generally
singularities can be replaced by a collection of CP1’s which can be glued together in interesting
ways to form more complicated resolutions, or by other manifolds. As a toric variety, CP1 can be
realized as a S1 fibered over a finite line segment where the fiber degenerates at the two ends. Using
this, the fundamental resolution of singularity simply replaces the singular point where cycles
degenerate on the base with a line segment where the fiber is given by a linear combination of the
degenerating cycles at the unresolved singularity. See Figure 4 for an example. See [32, 31, 33] for
more details.

1.4.2 The McKay Correspondence and Theories of Class S

Let us study the case of K3 singularities in more detail. The allowed singularities of K3-
manifolds are locally of the form C2/Γ where Γ ⊂ SU(2) is a finite group. These generally have
an ADE classification10. These are given by

• A-type: Γ is a binary cyclic group, Γ = Zn

• D-type: Γ is a binary dihedral group, Γ = BD2n

• E6-type: Γ is the binary tetrahedral group Γ = 2T

• E7-type: Γ is the binary octahedral group Γ = O

• E8-type: Γ s the binary icosahedral group Γ = 2I

To illustrate these we will consider the An−1 type singularity in detail. Consider the group Γ = Zn

which is defined by the generator

Γ =

〈(
α 0
0 α−1

)〉
, α

n = 1 , (1.11)

acting on C2. Roughly speaking, Type IIA string theory on R1,5×C2/Zn is T-dual to Type IIB with
n coincident D5-branes giving rise to a SU(n) gauge theory [34, 35]11. This SU(n) gauge theory
can be seen in the Type IIA side by blowing up the singularity: completely resolving the singularity
results in a collection of P1s that intersect as in the An−1 Dynkin diagram12. The gauge theory then

10That is they have a classification which is identical to that of A-,D-, and E-type Lie algebras.
11There is a slight subtlety associated with this. We technically need to have a singular Taub-NUT space, T Nn, (the

singular limit of n NUT centers) which locally has the same singularity structure as C2/Zn. The difference between T Nn

and C2/Zn is that in T Nn, the circle fiber asymptotically approaches a finite so that T-duality is well defined whereas the
S1 fiber of C2/Zn diverges as the distance from the singularity. Therefore, T-duality is not technically defined in C2/Zn

as one cannot shrink the asymptotic circle to apply T-duality [36, 37]. There is however, a version of mirror symmetry
which work for this case as well [38].

12Technically, there are 2n−1 different spheres in the fully resolved C2/Zn, Ĉ2/Zn, and we can choose a basis for

the homology group H2(Ĉ2/Zn) such that their intersection matrix is given by the An Cartan matrix.
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comes from D-branes wrapping these non-trivial 2-cycles which upon going to the singular limit,
all become effectively coincident, giving rise to a non-gauge symmetry.

We can also get the Dn type theories in a similar way. This corresponds to having orientifolds
in the Type IIB picture and in the geometric picture by replacing Zn→ BD2n ∼= Zn oZ2 where the
Z2 action acts as an orbifold. Understanding the interpretation of E-type singularities as branes in
Type IIB requires the use of F-theory since the branes have do not have a perturbative description.
It is known in the M-theory setup or the Type IIA picture that E-type singularities lead to E-type
gauge theories.

One can then fiber these geometries as in the adiabatic construction and obtain systems with
lower supersymmetry in lower dimensions. In particular fibering these geometries over P1 leads
to N = 2 supersymmetric systems in 4 dimensions. Using this picture and applying local mirror
symmetry, the Seiberg-Witten curve of these theories can be identified in string theory [39] as in
Appendix B.3. As we will now explain, this curve can also be realized in Type IIA as the geometry
of intersecting D4/NS5-branes, which lift to M5 branes in the M-theory lift of Type IIA [40, 41].

If instead of Type IIA, we consider the compactification of Type IIB string theory on a K3-
manifold with C2/Γg singularities, this leads to a six dimensional theory with N = (2,0) with
type g conformal systems [42, 43, 44, 45]. Compactifying these theories on a Riemann surface
C (with a topological twist) produces the four dimensional N = 2 theories of class S [46, 44,
40, 41]. These theories can be constructed for type g = AN−1

13 by compactifying N M5-branes
on a Riemann surface Σ ×R4 with the same topological twist, where Σ → C is a multisheeted
cover of C. This derives the data of the Seiberg-Witten curve and Seiberg-Witten 1-form, where
the curve the Prym variety14 associated to the map Σ → C [40, 41, 46]. In addition, this gives a
clear geometric way to study the BPS spectrum, line operators, surface operators, and expectation
values of supersymmetric operators in the associated four dimensional theory [47, 48, 49, 50, 51,
52, 53, 54, 55]. See [56, 57, 58, 44] for a more general review.

1.4.3 Branes in F-Theory

The relation between singular geometry and branes is also evident in F-theory. If we take
F-theory on Kell where

T 2 // Kell

��
B

(1.12)

this is dual to Type IIB on B with (p,q) 7-branes where the (p,q) cycles of the T 2-fiber degenerate.
A choice of (p,q) cycles corresponds to a choice of S-duality frame for the Type IIB theory. These
branes are non-perturbative because they are co-dimension 2 and hence the magnetic dual of the
axio-dilaton has log-type asymptotic behavior. In general these branes are mutually non-local due
to their (p,q) axion, dilaton charges and can give rise to non-abelian exceptional groups as studied

13Note that this construction can be generalized to g= Dn type theories by wrapping an O5-plane on Σ ×R4.
14The Prym variety is the kernel of the induced map π ′ : J(Σ)→ J(C) from π : Σ →C. Here J(X) is the Jacobian

variety of X which is defined as the quotient of all global holomorphic differentials on X , H0(Ω 1
X ), quotiented by the

space of non-trivial closed 1-cycles on X , H1(C). By the universal covering construction, this space has the same 1st

homology group H1(X) = H1(J(X)).

15



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
5

The String Landscape, the Swampland, and the Missing Corner Cumrun Vafa

in [59]. One may worry about having these charged objects in a compact space because branes
source flux and as we know from general theorems of general relativity we cannot have a net
charge in a compact space as the flux has nowhere to go. However, this F-theory setup avoids this
problem because the 7-branes source non-abelian flux which can actually cancel with themselves
[9] and thus lead to realization of non-trivial stable charged objects in a compact space.

1.4.4 5-Brane Webs

Figure 5: This is the toric diagram for the CY 3-fold given by the affine cone over P1×P1: O(−2,−2)→
P1×P1. This diagram encodes the data of the singular structure of the T 2 fiber via its dual graph.

Another example of the correspondence between branes and geometry is the construction of
brane webs [60]. Consider M-theory on R1,6×Kell where K is an elliptically fibered

CY 3

. If we compactify and T-dualize on a pair of orthogonal cycles on the T 2 fiber, we get a Type
IIB theory with (p,q) 5-branes which have p R-charge (C̃2) and q NS-charge15 (B̃) where we
compactify along the (1,0)-cycle and T-dualize along the (0,1)-cycle. This generalizes the relation
of n coincident D6-branes in Type IIA to Taub-NUT geometry (with C2/Zn singularity) by lifting
to M-theory and the relation of Taub-NUT to NS5-branes by T-duality [32].

Let us consider an explicit example. Consider M-theory on the non-compact space

T 2 // O(−2,−2)

��
P1×P1

(1.13)

On the base P1×P1, the singular structure of the the T 2 fiber can be represented by the dual of the
toric diagram in Figure 5.

This means that after dualizing to Type IIB, we have a system of (p,q) 5-branes on R1,4×
R2

web×R3 where the 5-branes wrap the R1,5 direction and form the generically co-dimension 1
web in the R2

web direction as shown below:

15Here B̃ represents the magnetic dual of the form field B and similarly for C̃2 and C2.
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(1,0)

(1,0)

(0,1)(0,1)

(1,1)(1,1)

(1,1)(1,1)

In essence, this brane web depicts two D5-branes suspended between two NS5-branes. This
describes the 5D N = 2 SU(2) SYM where the displacement between the D5-branes (vertical
displacement x6) gives the Higgs vev and the displacement between NS5-branes (horizontal dis-
placement x5) determines the gauge coupling as ∆x5 = 4π

g2
Y M

.
One can also combine branes and singularities, by bringing branes to probe singularities and

obtain new and interesting quantum systems. A brief review of some examples is given in Appendix
A.

2. Lecture 2: The Swampland

In the previous lecture we briefly reviewed the string theory construction of many low dimen-
sional effective field theories. As we saw, there is a very large number of choices to make when
using string theory for model building, coming from the choice of the compactification manifold,
background fluxes, branes, and etc. Therefore a very relevant question is how to identify which
particular string theory solution, among the enormous set of possibilities, describes our universe.

It has recently been estimated that the number of possible consistent flux compactifications of
F-theory to 4D is at least 10272000 [61]. Although it is unknown if all of these compactifications are
distinct or may be dual descriptions of the same theory, this large number of string vacua suggests
that perhaps the direct study of all string vacua is futile. This remarkably large space of inequivalent
string backgrounds is called the string landscape.

To complicate matters even more, even if we were to be able to enumerate all of the distinct,
consistent string backgrounds, there is no known top-down mechanism to prefer one particular
choice over another. For example, what forces four dimensions to be extended and six to be com-
pact? Why did nature choose the specific string background describing our universe from the vast
number which can be constructed in the theory? While there have been some suggested ideas
[62, 63], there is no compelling solution yet.

Due to this huge number of possible choices involved in constructing string vacua, there has
been a distinct philosophical shift in the community over the past decade. The attitude towards
identifying “the correct” string vacuum has shifted from using a top-down approach to a bottom-up
one. Instead of starting with fully-fledged string theory and studying the compactifications down
to 4D, many have started studying effective four dimensional quantum field theories with nice
phenomenological features (such as supersymmetric extensions of the standard model) and then
trying to couple them to gravity. The common lore is that because the string landscape is so large,
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it is likely that any consistent looking lower dimensional effective field theory (EFT) coupled to
gravity can arise in some way from a string theory compactification. Indeed this idea would make
string theory pretty much irrelevant for phenomenological questions.

In this lecture, we aim to argue that this way of thinking is incorrect – that not all consistent
looking EFTs can be coupled consistently to gravity with a UV completion. Since string theory is
the only known UV complete theory of gravity16, we will necessarily demand that these theories
arise from some string theory compactifications [24]. The rest we believe are ultimately inconsis-
tent. In analogy with the string landscape, we will call the set of all EFT which do not admit a
string theory UV completion as the swampland.

It is therefore crucial to understand if a given EFT coupled to gravity lies in the string landscape
or the swampland. In order to do so, we would like to identify a complete set of swampland criteria
which will identify if an EFT admits a string theory UV completion or not. Thus far, we have a
conjectured, minimal criteria that allows us to exclude a theory from the string landscape. In this
lecture we plan to briefly discuss ten swampland criteria. We will be unable to provide proofs, but
rather will provide physical reasoning based on realization in string theory and general facts about
qunatum gravity to motivate each of the conjectured criteria. The criteria we present here are based
on [24, 67, 68, 69].

2.1 No Continuous Global Symmetries

An effective field theory coupled to gravity cannot have (continuous or discrete) global symmetries.

The motivation for this criterion relies on black hole physics. Suppose we have an EFT coupled
to gravity which has a global symmetry G. In the spectrum of the EFT we will have states charged
under such global symmetry. Now send a state charged under a global symmetry inside a black
hole. The information of this global symmetry is lost by the no-hair theorem. Thus, when the black
hole evaporates via Hawking radiation [70] it will do so by emitting particles which carry equal
number of positive and negative charges under G since there is no imprint of global charges on a
black hole. This process would then violate charge conservation in G as we started with non-zero
charge and all the charge has disappeared after the evaporation of the black hole and no net charge
has come out.

The only way to avoid this seeming contradiction is by forbidding any theory of quantum
gravity from having global symmetries. Remarkably, it appears that string theory already knows
about this criterion, as in all examples we know, all global symmetries are actually gauged. This
is true because usually global symmetries in EFTs obtained by string compactification arise from
symmetries of the extra dimensions, but such symmetries are gauged since diffeomorphisms of the
compactification manifold are part of the gauge symmetry of gravity.

2.2 All Charges Must Appear

A consistent effective field theory with gauge group U(1) coupled to gravity must have states with

16One could make the argument that there are other theories of quantum gravity different from string theory, such as
Vasiliev higher spin theories[64] or even loop quantum gravity[65]. However, it has been conjectured that all these other
theories can be attained as a special limit of string theory[66].

18



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
5

The String Landscape, the Swampland, and the Missing Corner Cumrun Vafa

arbitrary charge Z.

A nice discussions of this condition for swampland is given in [71]. Suppose we have a U(1)
gauge symmetry in the EFT. The Hilbert space of the EFT will be split into different sectors, one
for each value of the U(1) charge of the states in that sector. Now, if the theory is not coupled to
gravity, it is possible that the spectrum contains only states of some specific subset of charges, or
even maybe no charged states at all. However, this cannot happen once the theory is coupled to
gravity.

Consider a U(1) theory coupled to gravity. We will have charged black hole solutions of
Einstein’s equation for any integral charge Q. By Hawking’s formula, we know the black hole
entropy is given by

S =
A

4G
. (2.1)

Such an entropy must have a statistical mechanics interpretation as a sum over the black hole
microstates. As the black hole is charged, such microstates must be charged. Therefore all charged
states should exist in the spectrum17.

Notice that this criterion rules out many simple quantum field theories, as for example pure
Maxwell theory coupled to Einstein gravity. Such a theory must also have (perhaps massive)
charged particles. Note that at this level we did not say anything about the masses of this infinitely
many charged states which should belong to the spectrum.

2.3 Finite Number of Massless Fields

A d-dimensional EFT coupled to Einstein gravity must have a finite number of massless fields.
Moreover, the number of massless fields is bounded from above by a certain number Nmax(d) which
depends only on the number of spacetime dimensions d.

The motivation for this criterion is based on supersymmetric examples. Massless scalar fields
in a lower dimensional EFT are generated in string theory by compactification. For example if
we compactify on a Kähler manifold in order to preserve some supersymmetry in the lower di-
mensional EFT, the number of scalars will generically be proportional to specific Hodge numbers
of the compactification manifold. For the case of compact CY manifolds, there seems to be an
upper-bound on the possible hodge numbers, even though there is no proof of this.

Remarkably, string theory seems to “be naturally aware" of this fact, and seems to have ways
for preventing us to get consistent lower dimensional EFT with arbitrarily large number of light
scalar fields. An easy example in which we can see this at work is the following. Consider Type
IIA on C2/ZN . We saw in the first lecture that in this way we can realize an SU(N) gauge group.
There are therefore N2−1 massless gluons in the spectrum. At this level there is no bound on N,
which we can take as large as we want, therefore having an arbitrary high number of gluons. This
is in no contradiction with the conjecture stated above, since C2/ZN is non-compact and therefore
gravity is decoupled in the EFT.

17This argument is valid as long as charge is large enough so we can truly interpret the object as a black hole. In
other words, as long as the area of the horizon is much bigger than the Planck scale.
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However, in order to couple this SU(N) gauge theory to dynamical Einstein gravity, we need
to embed C2/ZN into a compact manifold, i.e., K3. Quite remarkably, what happens in this case is
that in order for the compactification to be consistent, it must have N ≤ 20zx, therefore putting an
upper bound on the number of gluons [15]. See Section 1.4.2 for more details.

Note that since we are assuming only Einstein gravity, we exclude more exotic gravity theories
with infinite number of massless fields such as Vasiliev theory [72].

2.4 No Free Parameters

A consistent EFT coupled to gravity must have no free parameters. Every parameter entering in
the Lagrangian should be viewed as the vacuum expectation value of a field.

Notice that this criterion puts a lower bound on the number of possible scalar fields, therefore
being complementary to criterion number 3. Again the motivation is that this appears to be true
in string theory. For example M-theory in 11 dimensions has no free parameter. 10 dimensional
superstrings would naively appear to have a free parameter given by the choice of the coupling
constant, but upon closer inspection one find out that the coupling constant is the expectation value
of a scalar field called the dilaton. When we compactify to go to lower dimensions we end up with
effective theories whose parameters get related to the internal geometry of the compactification
which again can be viewed as part of the dynamical degrees of freedom of the theory.

An interesting consequence of this conjecture is that 4D pure N = 2 supergravity may be-
long to the swampland (conjectured in [24]). This theory has a U(1) graviphoton in the gravity
multiplet. Since all charges must be in the spectrum, the coupling constant of the graviphoton is
observable, and by the above conjecture it should be the expectation value of a scalar field (which
for supersymmetric reasons must be massless). But we have no massless scalar field in pure N = 2
supergravity. This is consistent with string theory, in the sense that attempts of reproducing N = 2
pure supergravity from string theory has failed so far.18

2.5 The Moduli Space is Non-Compact

The moduli space M of vacua (if non-trivial) is non-compact. In more detail, fix a point p0 ∈M .
Then ∀ T > 0 ,∃ p ∈M such that

d(p0, p)> T . (2.2)

where d(p0, p) is the distance between p0 and p, computed by using the moduli space metric as the
length of the geodesic passing through p and p0.

To elucidate this criterion, we first need to discuss what we mean by the moduli space metric.
Consider an EFT coupled to gravity, with N massless scalar fields Φi, i = 1, ...,N with no potential.
Such scalar fields arise generically in string compactification, and their vacuum expectation values
〈Φi〉 is related to geometrical quantities in the compactification manifolds such as for example the
volumes of some cycles or their shapes. We will call the algebraic variety parametrized by the
various 〈Φi〉 the moduli space M . In the EFT, the kinetic term for those scalar fields typically

18This argument was put forward in discussions of C.V. with S. Cecotti and T. Dumitrescu.
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takes the form
Le f f = gi j(Φ)∂µΦ

i
∂µΦ

j + ... , (2.3)

where gi j is the metric on M . We can use this metric to compute distances in the moduli space,
and ask if M is compact or not. As it turns out in all known examples from compactifying string
theory, the moduli space is non-compact [67].

As an easy example in which this conjecture is realized, we can consider here the case of the
moduli space of IIB supergravity. In this case, there is only the axiodilaton modulus τ , which is the
combination of the string coupling constant and a RR 0-form. The moduli space which will be the
fundamental domain of SL(2,Z). Now, fix a point τ0 in the moduli space, and consider the length
of the geodesic from τ0 to τ . When we take the limit τ → i∞ while keeping τ0 finite, the geodesic
length will be approximately

T ∼ log(Imτ/Imτ0) , (2.4)

and we clearly see that this distance is logarithmically divergent.

2.6 New Physics from the Boundaries of Moduli Space

Fix a point p0 ∈M . In the limit of infinite distance from p0, that is as d(p0, p) = T →∞, there
will be a tower of states in the EFT whose mass decreases exponentially with T ,

m∼ e−αT . (2.5)

In the previous criterion we saw that for any choice of a starting point p0 ∈M and any real
number T > 0, we will always be able to find a (in general not unique) point p ∈M such that
the distance between p and p0 is larger than T . So in general M will have some non-compact
directions. We want to ask now what happens when we go extremely far away in moduli space
along one of those directions, or equivalently we take T to be extremely large [67].

Heuristically, we can understand this by considering the point compactification of moduli
space, M̂ , so that M̂ is a finite manifold where the infinities of M correspond to singular points
of M̄ . Now going to infinity corresponds to going to a singularity where generically extra massless
degrees of freedom appear.

We can illustrate this criterion in a very easy example. Consider the compactification of a EFT
on a circle S 1

R . This theory has a modulus, which is the radius R of the circle. The Lagrangian for
this scalar field, in one lower dimension, will be given by

Le f f =
∫ (dR

R

)2

+ ... (2.6)

Now, let us see how the criterion 5 and 6 apply to this case. In this example, the moduli space is
just 1-dimensional, and we can see immediately that there are infinite distances. For example, fix a
radius R0 and pick a T > 0. The distance from R0 to some other point R̃ will then be given by

∫ R̃

R0

dR
R

= log(R̃)− log(R0) , (2.7)
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Figure 6: A schematic picture of the moduli space.

and we see that we can always find a suitable R̃ to make this distance as big as we want. So the
criterion number 5 is satisfied. Let us consider the limit of very large radius, to see criterion 6 at
work. As the radius R̃ grows to infinity, we will have Kaluza-Klein modes, with mass given by

m∼ 1
R̃
. (2.8)

On the other end, T ∼ log(R̃) and therefore we see that we have some fields with mass

m∼ e−T , (2.9)

which get exponentially light when we go to infinity in M .

This conjecture also implies the remarkable fact that a consistent theory of quantum gravity must
have extended objects in its spectrum.

Those extended objects can be for example membranes, strings, etc. Therefore, by this crite-
rion one can argue that quantum gravity cannot be a theory of just particles. We will now show this
in the same easy example we used. Pick now the same reference point R0 but instead of going to
larger radius go to smaller and smaller radius. We also find that this is another infinite distance in
moduli space, as

lim
R̃→0

∫ R0

R̃

dR
R

, (2.10)

diverges. Therefore, due to criterion 6, we also expect to have in this case some states with mass
getting exponentially low. However, such states cannot be particle states because all the particle
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states will be given by KK modes, and those KK modes will be instead very massive in the small
radius limit. The only way we can get light objects in the small radius limit, is to have some
extended objects which can wrap around the circle which thus become lighter as we go to the small
radius limit. So if our theory does not have extended objects, we do not have any light states at all
in this limit and we therefore violate the criterion number 7. This is for example what happens in
M-theory when we compactify on the circle: The M2 branes wrapping the circle become light and
give rise to the light string states in 10 dimensions. We thus see that this conjecture implies the
existence of extended objects in a consistent theory of quantum gravity.

2.7 The Moduli Space is Simply Connected

The first fundamental group of the closure of the moduli space is trivial, and therefore the closure
of moduli space is simply connected:

π1(M ) = 0 . (2.11)

In all known examples in string theory, the moduli space is obtained by quotienting a con-
tractible Teichmüller space T by a group action Γ [67]

M = T /Γ . (2.12)

In every known case, Γ is generated by group elements which act with fixed point [67]. These fixed
points in M have extended gauge symmetries given by the stabilizer in Γ . If we take Γ = 〈gi〉
(group generated by gi) where each gi has a fixed point in M , since T has no non-trivial loop,
the only way to get one is by the action of Γ . But since each element of Γ can be decomposed
to elements with fixed point, it implies that each loop can be contracted. This is because under
the usual identification π1(M̃ /Γ ) = Γ , we can identify each loop γ ⊂M with an element h ∈ Γ .
Generally h = ∏i gi where each gi has fixed points. This means that we can decompose γ as a
product of paths. Each of these path components are contractible since they can be unwinded at
the fixed point. Therefore we have that γ must also be contractible and thus M will be a simply
connected space.

2.8 The Weak Gravity Conjecture

In a consistent EFT coupled to gravity, gravity must always be the weakest force.

This conjecture applies to charged particle states as well as charge p-branes. This powerful
conjecture was originally formulated in [68] and recently recieved much interest as it is able to
put constraints or completely rule out different large-field inflation models. This is the so called
weak gravity conjecture (WGC). There are many inequivalent and more precise versions of this
conjecture, see for example [73, 74, 75, 76, 77]. Here we will present a particular version, just
to give the reader the main idea. Suppose we have a 4D U(1) gauge theory. We already know
from conjecture 2 that we need to have charged states in the spectrum of the theory. Consider then
the lightest charge state, and suppose it has positive charge q. Consider now two of these objects
together, placed at distance r.
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There will be a repulsive electric force Fe ∼
q2

r2 . There will also be an attractive gravitational

force Fg ∼
m2

M2
pr2 . The claim is that Fg ≤ Fe. For this to hold, it must happen that the lightest state

in the spectrum satisfies (
m

Mp

)
≤ q . (2.13)

We can motivate this conjecture as follows:

1. It is true in our universe. The electric repulsion among two electrons, for example, is much
stronger than the gravitation attraction among them.

2. Another motivation is a posteriori: it is always upheld in string theory constructions. For
example, we could try to violate this conjecture by making an internal manifold smaller and
smaller, as we know that for example KK masses are proportional to the inverse of some
geometrical size of the cycles of the compactification manifold. In this way one can get
close to violating the conjecture, but then the size of the extra dimension is so small that the
extra degrees of freedom become light and this description breaks down. In some way, it
appears that string theory knows about the WGC, and prevents us from violating it.

3. Another motivation for the WGC is the fact that all non-BPS black holes should be able to
decay. So let us consider the example at an extremal black hole, with mass M and positive
charge Q. The extremality condition implies M = Q. For this black hole to decay via Hawk-
ing radiation, it has to emit particles. But suppose now that for all the states in the spectrum
we have m > q, then when the black hole radiates a particle it will inevitably have M′ < Q′

after. Therefore it would violate the extremality bound, developing a naked singularity and
thus also violating the cosmic censorship conjecture. The only way out is to assume that the
spectrum contains at least one particle which satisfies the bound (2.13).

In order to illustrate this criterion at work, we consider now an illustrative string theory ex-
ample. Take Heterotic strings on a d-dimensional torus. We have an equation relating the allowed
masses of string excitations with momentum and winding numbers

1
2

m2 =
1
2

P2
L +NL−1 =

1
2

P2
R +NR . (2.14)

As we will now show, the (-1) in the left moving sector is related to the inequality in the WGC.
Consider first supersymmetric BPS states. NR = 0 and then

m2 = P2
R , (2.15)

which is the analog of M =Q in the weak gravity conjecture. Consider now the non-supersymmetric
states, in which NL = 0. We now have

m2 = P2
L −1 . (2.16)

Again, the charge is given by P2
L and we have that this is the analog of the strict inequality in the

weak gravity conjecture.
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A natural question to ask now is for which states the WGC bound is saturated. The answer is
given by a more sharpened version of the WGC, which is the following [69]:

The equality sign in the Weak Gravity conjecture holds if and only if

1. The underlying theory is supersymmetric

2. The states saturating the WGC bound are BPS states.

A very nice application of the WGC was recently discovered in the context of cosmic cen-
sorship [78]. It was found that if you couple Einstein theory only to a U(1) Maxwell theory, with
sufficiently strong background electric field you can develop naked singularities, thus violating
the cosmic censorship conjecture. However, given conjecture 2 (that there are electrically charged
states) and the WGC we deduce that there must also be light enough particles to be produced by
such strong electric fields. Taking this into account resolves the naked singularity and thus avoids
the violation of cosmic censorship.

2.9 Non-Supersymmetric AdS/CFT Holography belongs to the Swampland

Non-supersymmetric AdS/CFT holography belongs to the swampland [69].

Let us say immediately that this radical sounding claim is not saying that non-supersymmetric
holography does not make sense in general. The claim is that non-supersymmetric AdS/CFT holog-
raphy does not make sense, provided we have a finite number of particles. Indeed there can be
versions of AdS/CFT, like in SYK [79, 80] or higher spin Vasiliev theory [64], with infinite towers
of particles which do not lead to ordinary theories of gravity. We will not consider these cases.

The motivation for this criterion is very simple. We typically get holography by putting branes
next to each other in string theory and then by taking the near horizon limit. However, the problem
is that if the branes are not supersymmetric, then the repulsion between branes wins over attraction
due to WGC. In this case there is no way to keep the branes close to each other. The refined WGC
is simply saying that in the non-supersymmetric setup, those branes will repel and fly apart!

To illustrate this conjecture let us look at holography in the context of 2D CFT’s. Consider
a sigma model with target space given by symmetric products of T 4. The AdS dual is known to
be AdS3× S3×T 4. More precisely in order to find a weak coupling holographic dual we need to
blow up the singularity associated to coincident T 4’s. This case is supersymmetric holography. In
principle, one could think of doing the non-supersymmetric analog of exactly this construction by
for example taking symmetric product of tori without fermions which does exist in the orbifold
limit as a CFT. The problem arises when we try to find the AdS dual, and for that we need to
perform the blowup of the singularity. But as can be readily checked the blow up modes are not
marginal deformation of the CFT and so we cannot blow it up and we are stuck with the singularity
and so we will not find a weak coupling non-supersymmetric AdS dual19.

19Another piece of evidence that supersymmetric holography with finite number of particles is in the swampland can
be seen by examining the SYK model. In this case there is an infinite tower of massless states, so this conjecture does
not apply. However, we can ask if there is some way to adjust the potential in the SYK model in order to truncate this
infinite spectrum so that the model would violate the swampland conjectures. So far all attempts have been unsuccessful.
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The lack of stable non-supersymmetric AdS geometries in a consistent theory of quantum
gravity has interesting phenomenological implications related to neutrino physics [69]. This is
related to the fact that depending on the neutrino mass types and ranges upon compactification to
3D one may obtain non-supersymmetric AdS geometries in 3D [81]. This places restrictions on
neutrino mass types and ranges. Interesting extensions of this have been recently considered in
[82]. The implications of these constraints on neutrino (and Higgs) physics upon compactification
has also been studied recently in more detail in [83].

2.10 dS and the Swampland

dS space does not exist as a consistent quantum theory of gravity and it belongs to the swamp-
land.

We have seen that non-supersymmetric AdS/CFT holography lies in the swampland, while
supersymmetric AdS is of course possible. This can be summarized as:

Non-SUSY is not allowed ⇐= Λ < 0 =⇒ SUSY is allowed , (2.17)

where Λ is the cosmological constant.
One may wonder if the opposite situation happens for positive cosmological constant. In this

case, we know that supersymmetric dS does not exist, as it is impossible to define a supersymmetry
algebra in a de Sitter spacetime [84]. Could it then be possible to have non-supersymmetric dS
realized from string theory?

SUSY is not allowed ⇐= Λ > 0 =⇒ Is Non-SUSY allowed? (2.18)

Answering this question looks difficult for many reasons. There are typically two different
ways in which we can get dS in string theory:

1. Metastable dS, as in KKLT, LVS, etc. [28, 85]. In this class of models the dS vacuum is
obtained from some uplift of a previously AdS vacuum by introducing extra ingredients such
as anti-D3-branes to make the cosmological constant positive. The scalar potential for the
cosmological constant takes the form given in Figure 7.

2. Quitessence models. In this class of model the dS vacuum is completely unstable, and slowly
rolling down to the Minkowski case. The potential takes the form given in Figure 8.

We may conjecture that metastable dS belongs to the swampland. There are a number of no-go
theorems for constructing dS in string theory. For example, an argument by Maldacena-Nunez [86]
shows that in M-theory without strong curvature background dS vacuum is not possible. Of course
this does not prove it for all backgrounds. For exmaple, it may possibly be avoided by considering
orientifolds or higher stringy corrections. Nevertheless, this and the many similar no-go theorems
could as well be taken as mild evidence supporting this last Swampland Conjecture that dS does
not exist as part of any consistent quantum theory of gravity. Even though we can write the EFT
for dS and quintessence, however it seems that all known examples from string theory which are
computationally under control are of the quintessence type. For a recent discussion of this see [87].
It is possible therefore that quintessence models are the only ones allowed in string theory. This is
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Figure 7: The scalar potential for a metastable dS.

0 100 200 300 400

T0.0

0.2

0.4

0.6

0.8

1.0

1.2

V

Figure 8: The scalar potential for an unstable dS.

the motivation for our last criteria for the swampland that dS does not exist! Arguments based on
lack of holographic duals for dS space have been advocated by L. Susskind20 as another motivation
for their lack of existence.

This is of course a conjecture, but it is physically well motivated. For example, we live in
a universe right now which is about 14 billion years old. The current value of the cosmological
constant Λ also defines a time scale, which is about 100 billion years. Why the current age of the
universe is so close to the Hubble scale? If we are in the metastable dS case, this is quite hard
to explain, since the metastable vacuum can be extremely long-lived whereas in the quintessence
models it could more naturally be of the same scale. Maybe this points to the fact that we are
always in a runaway situation, and there is no way to stabilize the cosmological constant to the
present value. If this is the case it should be observable in the near future by the measurement of

20Private communication with C.V.
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w 6= −1 for the equation of state for the dark energy which we would conjecture should soon be
found!21

One can continue this logic by deducing that the corresponding scalar field responsible for
quintessence should interact strongly with the dark sector. This is because an extension of the
WGC [89] would suggest that the scalar field has to couple stronger than gravity to some matter
fields and we already know, by lack of violation of the equivalence principle in the visible matter
sector, that this should be in the dark sector. It would be interesting to find evidence for such a
picture by finding apparent violation of equivalence principle in the dark sector due to the force
generated by this scalar.

3. Lecture 3: The Missing Corner

One of the important promises of string theory is that it gives a UV complete description of
quantum gravity including at the Planck scale. Despite being of primary interest, there is very little
known about how to give a fundamental formulation of quantum gravity arising from string theory.
One way we can try to study quantum gravity is by holographic duality.

Dualities are a crucial part of our understanding of string theory. In general, a duality relates
two different descriptions of the same physical system – each with different regimes of validity
and utility. They relate a description with strong coupling (without a good perturbation series) to
another with weak coupling (with a good perturbation series). This picture of dualities tells us that
there is no physical system with two descriptions where both are weakly coupled. If there were,
they would have to be exactly the same description as they would have to match every process
order by order in perturbation.

A good example of a duality in which we have full control over both sides of the theory is
T-duality in string theory. This duality relates strings on S1

R to strings on S1
R′ where R′ = `2

s/R.
In general, we only have a good description of the string states for R >> `s. This is because we
can only make sense of particle states on the circle if the radius is much larger than the Compton
wavelength of the states. However, in the regime where R << `s, we can use the duality to map
to the dual perturbative description where R′ = `2

s/R >> `s and the perturbative modes are now
the winding modes. Just as position x is related to Fourier transform of momentum states, we can
define a new notion of position x′ suitable for winding states by:

|x〉= ∑
p

eipx|p〉 , |x′〉= ∑
w

eiwx′ |w〉 , (3.1)

where |p〉 and |w〉 are the momentum and winding modes respectively, x is periodic with period
2πR, and x′ is periodic with period 2πR′.

This mapping makes it clear that x′ is not a useful description of the theory for the case where
R >> `s because a single wave packet is made up of a number of very massive winding modes.
On the other hand when R << `s the momentum modes are very massive and x becomes useless
because we can hardly excite momentum modes. In this limit, the theory is more appropriately
described by x′. The example of T-duality demonstrates the idea that in general, there is at most

21The current experimental bounds place w = −1 to within 5 percent [88]. So this is somewhat puzzling for the
quintessence picture which suggests no particular reason for it to have this value.
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one useful description of a physical system for each point in parameter space and no description is
singled out globally as the best description; sometimes there is no good description. We will call
this philosophy the “Democracy of Theories.” Of course we can use either description in all ranges
but the physics will look very complicated in terms of the wrong variables and we may have to
define things which may look non-local with respect to that variable.

While dualities are an integral part of our understanding of string theory, the fact that there are
many dual descriptions does not mean that string theory itself is an effective theory. String theory
provides a good theory of quantum gravity that is perturbatively well defined to all orders and in
fact is arguably the only complete quantum theory of gravity22. However, this restricts us to the
regime of small gs.

In order to have a complete understanding of string theory, we need to have to go beyond per-
turbative description and find a full non-perturbative description. There have been many attempts
to accomplish this. Some of these approaches include string field theory which has had varying de-
grees of success. The idea of string-field theory is to create a spacetime quantum field theory that
would replicate all of the scattering amplitudes of full string theory. If such a theory were to exist
we could hope to have multiple dual descriptions which would allow us to study the strong coupling
limit of string theory and unify the different formulations. For a brief overview, see [92, 93, 94].
While there has been tremendous successes along this direction, such as formulating open string
theory as a Chern-Simons theory, there is still much that is unknown such as a good description of
closed string field theory.

These facts seem to suggest that string theory is a complete theory even though we only have a
perturbative understanding of it. To further illustrate the idea that string theory should be seen as a
complete theory, let us consider Seiberg-Witten theory. In 1994, Seiberg and Witten solved for the
low energy dynamics of N = 2 SU(2) supersymmetric gauge theory [95, 96]. They showed that
the theory can be described by a U(1) theory with coupling parameter τ(u) which is dependent on
the vev of the vector multiplet scalar

u =
1
2
〈
Tr φ

2〉 . (3.2)

Since the U(1) theory is not UV complete, just by field theory reasoning, it is clear that this must be
a low energy effective theory for the SU(2) SYM. However, we can UV complete both theories, the
N = 2 SU(2) SYM theory and the U(1) effective theory, by embedding them into string theory.
This is evident from mirror symmetry where Type IIB on the CY 3-fold:

{vw = z+ x2−u+1/z} ⊂ C4 , (3.3)

which describes a U(1) theory is mirror dual to Type IIA with D-branes which describe an SU(2)
N = 2 SYM theory [39]. In this duality, the worldsheet instantons of the Type IIA side are
computed in the Type IIB mirror decription as period integrals of a holomorphic 3-form which
reduces to the Seiberg-Witten solution [95, 96]. See Figure 9. In this setup it is not correct to say
that the Type IIB side is only an ‘effective’ description of the physics and the Type IIA side is the

22One could make the argument that there are other theories of quantum gravity different from string theory, such
as Vasiliev higher spin theories [64] or even loop quantum gravity [65]. However, it is also possible that all these other
theories could be attained as a special limit of string theory[66].
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‘real’ definition. The Type IIA and Type IIB are both on the same footing in terms of defining a
theory. We thus see this as another example of ‘democracy of theories’.

(1,0)

(1,0)

(0,1)(0,1)

(1,1)(1,1)

(1,1)(1,1)

Figure 9: (Left) This is the toric diagram for the CY 3-fold given by the affine cone over P1×P1. This is
dual to a Type IIB brane web with given (p,q) 5-branes (right)[32, 97].

Now we discuss a way to define quantum gravity which is called holography. But in order to
do so, we will first need to take a brief historical detour. In the mid 1970s ‘t Hooft was studying
the large N limit of SU(N) gauge theory [98]. In taking the limit

gY M → 0 , N→ ∞ , λ = g2
Y MN fixed , (3.4)

the perturbation theory in 1/N becomes a sum over ribbon graphs which have the topology of
Riemann surfaces. See [99, 100, 101] for a review. This is very reminiscent of the summation in
string theory over worldsheet topologies. ‘t Hooft realized this and thought that at strong coupling
the boundaries of the Riemann surfaces (or really the ribbon diagrams) could close up to form
smooth closed surfaces without boundaries [98]. Because of this, he suggested that perhaps closed
string theory would be a solution to strongly coupled Yang-Mills theory.

As it turns out, ‘t Hooft’s intuition was correct. This can be exactly realized in string theory
in the context of celebrated AdS/CFT correspondence [13]. In this correspondence Type IIB string
theory on AdS5× S5 is dual to N = 4 SU(N) SYM theory on the boundary of AdS5. Here the N
in the SYM theory relates to the size of the the AdS5 space

L4
AdS = 4πgsNα

′2 . (3.5)

This duality has been checked very rigorously in the large N limit: string perturbation in 1/N
matches to all orders in the expansion on the SYM theory. For more details see [102].

We can now ask the question if using this AdS/CFT correspondence gives a non-perturbative
definition of string theory. The motivation for this is that we can give a non-perturbative definition
of SYM theory, for example by lattice regularization, whereas the holographic quantum gravity
dual theory in AdS has no complete definition. The fact that the CFT side, i.e. the non-perturbative
definition of SYM, gives in principle, a non-perturbative definition of the AdS side, is of course
true. But this may be not very useful for deeper questions of quantum gravity. In fact the regime
that the gravity side is weakly coupled is big corresponds to when the SYM is strongly coupled.
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In fact ‘t Hooft was trying to use string theory as a solution to the gauge theory question at strong
coupling and not the other way around!

This is analogous in the context of T-duality to defining the physics of a boson on S1 using
winding modes when the space is much larger than the string scale. While the AdS/CFT duality
can give us some very useful insights into the non-perturbative regime of string theory, it does not
tell us directly how to describe it. Some have argued that perhaps there is no direct definition of
the AdS side. In a sense, gravity is always an ‘effective theory’ rather than fundamental theory.
This is analogous to the example of the effective U(1) theory in the SW example discussed above.
However, we saw in that case there is a complete string theory behind the would be effective U(1)
theory. Moreover if there is no direct definition of AdS side, the democracy of theories is violated:
the CFT side would be viewed as more fundamental than the AdS side. This is counter to the
fundamental idea of a duality as well as to all the other known examples.

Despite this, the the AdS/CFT correspondence has given us a lot of insight into strongly cou-
pled CFT by using the semi-classical gravitational picture. However, it is not a good tool for
answering many questions we have about the bulk. This is because it is very hard to discuss bulk
locality starting from the boundary theory, similar to how it is difficult to describe locality using
winding modes in the T-duality example from before. This makes it difficult to answer some of
the most interesting phenomena, such as what happens with black hole evaporation or with fire-
walls, and additionally suggests that the AdS/CFT correspondence should be used in order to try
to understand the CFT side, rather then attempting to use the CFT side in order to define and study
quantum gravity in AdS.

After this very long introduction to the problem, we find ourself back at the beginning: we
want to know fundamentally, what is quantum gravity? It should describe the quantum fluctuations
of the metric. From a brief analysis of the standard Einstein-Hilbert action, we see that fluctuations
of the metric at the Planck scale should become very violent, leading to potential changes in the
topology of the spacetime [103, 104]. This leads naturally to the idea that quantum gravity should
be equivalent to summing over all spacetime topologies and geometries:

ZQG ∼ ∑
top. and geo.

e−S . (3.6)

In general we have no idea about what description will lead to the correct sum over geometries
and topologies. We only do know that there should be some mechanism that washes out the Planck
scale fluctuations to produce a smooth space at lower energies. It seems that this description must
come from some new fundamental principle, rather than from some duality such as mirror symme-
try or AdS/CFT. This lack of knowledge of describing the gravity side quantum mechanically is
“the missing corner" in our understanding of string theory.

3.1 Introduction to Topological String Theory

One case where we have special insight on how to give a non-perturbative description of
quantum gravity is in topological string theory. This can be thought of as a sort of toy model of
string theory that was introduced by Witten [105, 106, 107]. Topological string theory can be seen
as a restriction to a special, supersymmetric subspace of the Hilbert space of full string theory
[108, 109]. A review of basic aspects of topological strings is given in Appendix B.
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As discussed there, we have two types of topological strings A-model or B-model, which we
will take to be on a Calabi-Yau 3-fold X . The A-model only depends on Kahler structure of X
and B-model depends only on the complex structure. Moreover they are related to one another by
mirror symmetry. The path-integral for the A-model is restricted to be on holomorphic maps to CY
3-folds. The partition function is given as

Z = exp

[
∑
g

Fg(t)g2g−2
s

]
, (3.7)

where Fg(t) = ∑d nd
g exp(−d · t) is the contribution of the genus g worldsheet to the free energy, t

denotes the Kahler parameter, nd
g is the ‘number’ of curves of genus g with degree d in X , and gs

is the string coupling constant. The B-model is the mirror of this computation and t gets mapped
to complex deformation parameters. Moreover F0 on the B-model side is captured by the period
integrals of 3-forms on X .

We can also make sense of open topological string theory by considering worldsheets that have
boundary components. In this case the boundary components map to branes in the target space.

A-model: In the topological A-model, these boundary components will map to Lagrangian
submanifolds of the target space. This is because the map φ i : Σ→ X is independent of the complex
structure and hence the boundary component must also be invariant.

Consider a stack of N D-branes wrapped on M ⊂ X a Lagrangian submanifold. The local
structure near M is of the form T ∗M so that in a local patch U ⊂M with local coordinates qa, then
the Kähler form is of the form

J = ∑
a

d pa∧dqa , (3.8)

where pa are the fiber coordinates on the trivialized T ∗U ∼= R3×U ⊂ T ∗M. A string field theory
computation following [110] shows that the branes will induce an analytically continued Chern-
Simons theory on the worldvolume of the D-branes given by

Sbrane =

(
1

2gs

)∫
M

Tr
(

A∧F +
2
3

A∧A∧A
)

, (3.9)

with gauge group G = U(N). Here we say analytically continued Chern-Simons theory because
we have that the level is generically non-integer.

B-model: In the topological B-model, these boundary components will map to holomorphic
submanifolds of the target space. Consequently this will induce holomorphic Chern-Simons theory
on the worldvolume of the wrapped D-branes

S =

(
1

2gs

)∫
X

Ω ∧ Tr
(

A∧ ∂̄A+
2
3

A∧A∧A
)

. (3.10)

Consider compactifying Type IIB string theory on the CY 3-fold X

X ≡ {uv+ y2 +W ′(x)2 = 0} ⊂ C4 , (3.11)
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For each critical point of W (x): W ′(x) = 0 we get locally a conifold geometry which can be reolved.
We can wrap branes around it. This leads to a 4D N = 2 theory which is broken to an N = 1 by
giving a superpotential to the adjoint field Tr W (Φ) [111, 39, 112, 113, 114].

If we consider the topological B-model on X we again see that there will be branes wrapping
the holomorphic 2-cycles given by the degenerate 2-spheres given by blowing up

uv+ y2 = 0 . (3.12)

The theory in this case is described by a matrix model with action given by 23

S =
1
gs

Tr W (Φ) . (3.13)

3.2 Large N Holography in Topological String Theory

Topological string theory is a very powerful tool and a good first step towards understanding
string theory in its full generality. In addition to giving tools for studying exact quantities in 4D
theories, it also gives a clear manifestation of large N duality and holography.

One of the key features of D-branes in string theory is that they source p-form flux. In addition,
they can often be exchanged for a different background geometry supported by their sourced flux
as in AdS/CFT [13]. In topological string theory we would expect a similar behavior. In both the
topological A- and the B-model, there is only a single p-form: the Kähler 2-form and holomorphic
3-form respectively. This means that the branes in each theory must support the respective p-form
field of the theory. In the A-model, D-branes wrap a Lagrangian 3-cycle L such that we can link it
with a homologically trivial 2-cycle C (since together they have co-dimension 1 in X) such that C
is non-trivial in X\L. Since C is a trivial in the absence of branes∫

C
k = 0 , (3.14)

since dk = 0 by nature of being a Kähler form. However, once we wrap branes on L, this result
changes to count the flux of the D-branes ∫

C
k = Ngs , (3.15)

where N is the number of D-branes wrapped on L.
Similarly in the B-model, the D-branes are wrapped on holomorphic 2-cycles. Following the

same argument, we find that there is a homologically trivial 3-cycle Y linking any holomorphic
2-cycle M such that if we wrap N D-branes on M, then the integral∫

Y
Ω = Ngs . (3.16)

Now we discuss how the large N duality works in this context and how it relates to geometric
transitions [115]. Consider the topological A-model with a real codimension 3 Lagrangian sub-
manifold M3 ⊂ CY 3. Locally CY 3 looks like M3 times the normal direction in CY 3 which is a

23It is interesting to note that these matrix models (with suitable choices of W ) are dual to Liouville theory on the
Riemann surface given by ΣSW above. As it turns out, this theory is exactly the 2D CFT that describes the vertex operators
corresponding to brane insertions and further is 2D CFT associated to the AGT correspondence which describes the
physics of the corresponding four-dimensional theory of class S [48, 113, 114].
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cotangent space and can be written as CY 3 ∼ T ∗M3. Now wrap N D-branes on M3. Now if we
wrap N D-branes on M3, then we have open topological strings ending on the D-branes. As al-
ready discussed, the effective theory on these branes is given by complex Chern-Simons theory
CSk(U(N);M3).

However, these branes back-react on the geometry. By integrating the Kähler class over an S2

surrounding M3 in the fiber of the cotangent bundle we find∫
S2

k = Ngs . (3.17)

This means that we can interpret D-branes as sourcing the volume for the S2. In other words
the D-branes can be replaced by giving finite size to this S2. The bigger the N is the bigger this
S2 becomes. This is the content of large N duality in A-model topological string [115]. As an
example consider the topological A-model on the conifold CY 3 = T ∗S3 with N D-branes wrapped
on the base S3.

The normal direction to the base S3 in T ∗S3 is given by R3 so that the boundary ∂ (T ∗S3) is
given by S2× S3 at infinity. The S2 links with the S3 and so the D-branes on it give is a finite
size:

∫
S2 k = Ngs. This means we will have a geometric transition where S3 shrinks and S2 has

now a finite size leading to a geometry O(−1)⊕O(−1)→ P1 where S2 = P1 at the zero section of
this bundle. So we end up with topological A-model on the resolved conifold without any branes,
but with finite size P1. The geometric transition underlying this holographic duality is exactly the
physical manifestation of the conifold transition [116] as in Figure 10 and Figure 4. This large N
duality can be checked by computing both sides independently. The partition function of closed
string side which involves considering holomoprhic maps to the resolved conifold agrees to all
orders in the perturbative expansion with the Chern-Simons perturbative expansion for U(N) on
S3 [115]. Therefore, this holographic duality is indeed true. And as in the conifold transition, this

(a) (b)

S3
S2

Figure 10: Here the holographic duality replaces an S3 resolution (a) with an P1 resolution (b) of the singular
conifold.

holographic duality can be generalized to all toric geometries sitting inside CY 3-folds by gluing
together building blocks by using the technology of the topological vertex [117].

3.3 Missing Corner for C3

Now we can ask if there is any definition of the theory on the closed string side which is,
from the target space point of view, a non-perturbative theory of gravity? We will show that this is
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indeed the case and show how to recover the full partition function in topological string theory in
yet another way. In other words, we fill the missing corner of what the quantum gravity means in
this topological setup. We will proceed by computing the example of C3 since the techniques used
generalize to other CY 3-folds [33].

Consider the topological A-model on C3. Since C3 is non-compact, all maps X : Σ → C3 are
constant maps – i.e. they map to a point in C3 which we can without loss of generality take to be
the origin. Using various arguments using topological string dualities and Chern-Simons theory
[109, 118, 119, 120, 121], the partition function of this theory has been computed to be

Z(gs) = exp

{
∑
g

g2g−2
s

∫
M (Σg)

c3
g−1

}
=

1
∏

∞
n=1(1−qn)n , q = e−gs , (3.18)

where Mg is the moduli space of Riemann surfaces with genus g, and cg−1 is the (g−1)th Chern
class of the Hodge bundle H →Mg over the moduli space24.

Now we can ask if there is a target space or quantum gravitational formulation of this result
where we sum over all possible geometries and topologies as we would expect from a theory of
quantum gravity? As it turns out there is. By using a string field theory computation using the
Batalin-Vilkovisky formalism [122, 123], the classical action for the A-model is given by [124]

S =
1
g2

s

∫
CY 3

k∧ k∧ k . (3.20)

This can be viewed as
Scl =

1
g2

s
Vol(CY 3) =

1
g2

s

∫
CY 3

k∧ k∧ k (3.21)

which we can think about as coming from a cosmological constant term.
Now we want to try to reinterpret the result of 3.18 as a sum over changing spacetime topolo-

gies. Note that we are summing over the moduli space of Kähler classes of the manifold X . A key
feature of Kähler forms is that they are closed forms

dk = 0 . (3.22)

In a sense, we can then interpret them as the curvature of a line bundle – the field strength of a
U(1) gauge bundle which is classified by its first Chern class c1 = k. Now in the sum over these
line bundles we have to integrate over the non-trivial classes such that∫

M2

k 6= 0 . (3.23)

However, as it turns out, in order to reproduce the results of 3.18, we must implement a quantization
condition ∫

M2

k = gsN , N ∈ Z+ . (3.24)

24The Hodge bundle is the line bundle (equivalently a U(1) gauge bundle) associated to the top holomorphic form
Ω (which has a phase redundancy). This bundle has a metric whose associated Kahler function is

h = i
∫

Ω ∧ Ω̄ , (3.19)

which has a compatible connection with a generically non-trivial curvature F . Chern classes are differential forms given
by wedge products of the curvature of a bundle that encode topological data of the bundle.
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This quantization of the Kähler form implies that the k form should be in the class

[k] = gsδ
(3)(L) , (3.25)

where the D-branes are wrapping a Lagrangian 3-cycle L and that spacetime geometry fluctuations
should be sourced purely by D-branes. This suggests that we should rather take k = gsF for F ∈
H(1,1)(CY 3;Z). Here we interpret F as curvature of a U(1) gauge field. In this case we now have
that

S = gs

∫
CY 3

F ∧F ∧F . (3.26)

Now we are summing over Kähler classes with singularities. Without loss of generality, we
can take these singularities to be at the origin – arising from D-branes wrapping a collapsed 3-cycle
– giving rise to the non-trivial integral 3.24. In the line bundle interpretation, this corresponds to
summing over singular line bundles localized over the origin since the curvature is only non-trivial
there.

By performing blow ups of this geometric singularity at origin, the singular line bundles are
replaced with smooth line bundles that have non-trivial curvature on the blown up geometry. By
blowing up a sufficient number of times, we can in fact make any line bundle smooth so that the
curvature has a single unit of charge for each blown up CP1. In this way we can translate the sum
over singular Kähler classes to actual changes in spacetime topology [33].

Now we can rewrite the action as

S = gs

∫
CY 3

ch3 , (3.27)

where ch3 is the third Chern character of a line bundle over the different components of the blown
up geometry. Summing over the line bundles (that is U(1) gauge fluxes) or equivalently the blown
up geometry amounts to counting the number of sections of these line bundles which can be realized
as the number of terms in the polynomial

Figure 11: Here we demonstrate the changing spacetime geometry depending on energy scale `. When
` >> `s, spacetime is that of classical geometry, `∼ `s is a smooth quantum geometry, and `∼ `p = gs`s is
the “quantum foam" with violently changing topology given by fluctuating blow ups.

∑
ni

an1,n2,n3zn1
1 zn2

2 zn3
3 , (3.28)
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where the non-vanishing coefficients an1,n2,n3 in the sum are constrained based on the blown up
geometry.

Specifically viewing the n1,n2,n3 as giving an octant of a lattice Z3
+, then we can blow up by

taking 3D Young diagrams and removing points starting from the corner near (0,0,0). Then we
would have the restriction that the non-vanishing coefficients of a correspond to (n1,n2,n3) ∈ Z3

+

in the complement of the deleted set of points [33]. This physically corresponds to a sum over all of
the ways in which the flux can be “distributed” among different blown up geometries. So deleting
no points gives a contribution 1. Deleting the origin give a contribution of q = e−gs . Deleting the
origin and one of the three points next to it, gives the contribution of 3q2, etc. When we take all of
these contributions and sum them we end up with

Z(gs) =
1

∏
∞
n=1(1−qn)n = 1+q+3q2 + ... , (3.29)

thus reproducing the perturbative closed string answer in a rather novel way. This is the quan-
tum gravitational foam realization of the same partition function filling the missing corner in the
description of the quantum gravity side. The quantum foam gives a different description of the
geometry depending on which scale we consider. This scale dependent view of spacetime is shown
in Figure 11. This gives a satisfactory realization of how smooth geometry emerges in the limit of
gs << 1, when we look at scales much bigger than the Planck scale of gsls.

We have now seen that using topological string theory as a toy model of full string theory
provides many promising results. Besides giving tools to study four dimensional quantum field
theories, it also has many other properties we know to hold in full string theory such as AdS/CFT
type holography. We have seen that topological string theory suggests that in the full string theory
there may be an independent complete definition of the gravity side, which will in particular in-
clude a sum over spacetime topologies but still give rise to a smooth spacetime geometry at large
scales. Topological string theory thus strongly suggests that indeed there is a missing corner in our
understanding of quantum gravity.
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A. Branes Probing Singularities

Another important facet of understanding the role of branes and singularities in string theory
is how they interact when a brane probes a singularity (when a brane transversely intersects a
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singularity). There has been a large amount of research on this in the past twenty years [125, 126,
127, 128, 129] and has recently been revived as a possible extension of the story of theories of class
S [130, 127, 128, 129].

We will first consider the work of [125] on branes probing orbifold singularities where a stack
of N+1 D3-branes probes an orbifold singularity C2/Zn. Consider a spacetime M6×C2/Zn where
the D3-branes are transverse to and localized at the origin of C2/Zn. The worldvolume theory of
a free stack of D3-branes is given by four dimensional U(N) N = 4 SYM theory to leading
order. The presence of the C2/Zn singularity breaks SUSY by half since rotational symmetry is
no longer a symmetry along this direction, thus reducing the R-symmetry group, resulting in a
four-dimensional N = 2 theory.

Intuitively, since the fields living on the D3-branes come from oscillations of strings stretching
in the perpendicular directions, they are acted on by the Zn action. This means that they generically
decompose as irreducible representations of the Zn action so that a generic field Φ decomposes as

Φ(x) =
n−1⊕
i=1

Φ
(i)(x)ρi , (A.1)

where the ρi are irreducible representations. This means that we now have a collection of fields
Φ (i)(x) by projecting onto the different irreducible representations.

More precisely, the Zn action acts on the fields by global gauge transformations coupled with
an R-symmetry transformation. This means that the gauge group is broken down to the commutant
of Zn. Generically this means that the gauge symmetry is broken

U(N)→∏
i

U(Ni) , ∑
i

Ni = N , (A.2)

where the {Ni} are determined by the embedding of ι : Zn ↪→U(N). Under this embedding, the
N = 4 vector multiplet is broken into a sum over vector multiplets with gauge group U(Ni) and
bifundamental hypermultiplets of the U(Ni)×U(Ni+1) representation.

We can additionally couple the D3-branes to D7-branes so that the D3-D7 strings introduce
fundamental hypermultiplets in the worldvolume theory of the D3-branes [125]. These fields
will similarly decompose as a sum over Zn representations depending on the embedding of the
ι f : Zn ↪→ GF where GF is the flavor symmetry. This will lead to a collection Fi of fundamental
hypermultiplets coupled to each U(Ni) vector multiplet. This leads to a cyclic quiver with funda-
mental hypermultiplets as displayed in the quiver below:
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N1

N2

N3

N4

N5

NN

F1

F2

F3

F4

F5

FN

In general, there are other types of orbifold singularities which are of the form C2/Γg. These
theories will generally lead to quivers which are are of the form of the Dynkin diagram of the
associated affine Lie algebra ĝ. See [125] for more details.

We can additionally consider branes probing more complicated singularities. We will con-
sider a wide class which will illustrate the general method for analyzing generic singularities of a
Calabi-Yau manifold. Consider Type IIB on a generic CY 3-fold X with singularities. The allowed
singularities for these manifolds are toric – that is locally they locally look like a toric singular-
ity Y ×C where Y is a toric variety with degenerating T 2 fibers [126]. Now consider a stack of
D3-branes probing this singularity. As in the case of orbifold singularities above, the structure
of the singularity restricts the fluctuations of the D3-branes and hence modify their worldvolume
theory. Note that since we are considering Type IIB on a CY 3-fold with transverse D3-branes, we
are generically studying a four-dimensional N = 1 theory.

Consider a stack of N D3-branes probing a toric singularity. The worldvolume theory is given
by a quiver gauge theory that arises from what is called a brane tiling. Recall that the toric singu-
larity can be described by a toric diagram as in Figure 5 where the dual graph describes where the
different cycles of the T 2 fiber degenerate. The idea of a brane tiling is that we have N D5-branes
wrapping a T 2 which is partitioned into “tiles” by transversely intersecting NS5-branes whose an-
gle on the torus is determined by the degenerate cycle of the external components of the toric
diagram. These pieces together form a tiling of the torus where each tile is a stack of (N,±1) or
(N,0) 5-branes. This tiling creates a 3-colored torus where no two adjacent tiles are of the same
color. Then the stacks of (N,0)-branes give rise to a four-dimensional N = 1 gauge theory since
the combination of NS- and D-type boundary conditions on the (N,±1) 5-brane stacks freeze out
massless degrees of freedom. Then we get bifundamental chiral multiplets by diagonally touching
stacks of (N,0) branes which results in a four-dimensional N = 1 quiver gauge theory. As an
example, see Figure 12

This brane tiling arises physically as follows. Consider the mirror dual of the stack of N D3-
branes probing the toric singularity. This is given by a stack of N D6-branes wrapping non-trivial
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Figure 12: This figure shows how to pass from toric diagram (left) to brane tiling (center) to quiver gauge
theory (right). In going from the toric diagram to the brane tiling, the normal of the external legs of the toric
diagram give the angles of the cycles on the torus where the NS5-branes intersect the stack of D5-branes.
This leads to the tiling in the center where the white are stacks of branes with charge (N,0), black are stacks
with (N,+1) charge and grey are stacks with (N,−1) charge. In going from the brane tiling to the quiver, we
associate a quiver node with each white tile and then attach bifundamental hypermultiplets between nodes
corresponding to adjacent faces.

3-cycles in the dual CY 3-fold given by

uv+P(x,y) = 0 , P(x) = ∑
(p,q)∈Q

c(p,q)x
pyq , (A.3)

where Q are the coordinates of the toric diagram and c(p,q) are unfixed coefficients describing the
moduli of the CY 3-fold. We can more conveniently write this as a double fibration over CW , which
we will call the W -plane,

π : {P(x,y) = w, uv = w}→ w ∈ CW . (A.4)

This is a toric CY 3-fold where the three S1 fibers are given by the action

x→ αx , y→ βy , u/|u| → γu/|u| . (A.5)

These fibers degenerate at w = 0 ∈ CW where the γ-fiber degenerates. Here the (x,y)-fiber of is
given by a Riemann surface Σ0 which is defined by

Σ0 = {P(x,y) = 0} . (A.6)

See Figure 13 for more details on how this is related to the toric diagram
Therefore, we can view the CY 3-fold as a Σw-fibration. This Riemann surface has an embedded

S1
s ↪→ Σws that degenerates at points ws ∈ CW where

ws = P(xs,ys) , ∂xP
∣∣∣
(xs,ys)

= ∂yP
∣∣∣
(xs,ys)

= 0 . (A.7)

The D6-branes, which are the mirror image of the D3-branes, wrap the closed 3-cycles that are
formed by the pre-image of a T 2 ⊂ T 3 fiber over the straight line in the W -plane from the ws to the
origin. Here the T 2 fibers are locally given by S1

γ S1
s ’s where S1

si
degenerates at ws ∈CW . See Figure

14.
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Figure 13: This figure shows how the Riemann surface Σ0 (right) is related to the data of the toric diagram
(left). The Riemann surface associated to the brane tiling is the thickened dual graph to the toric diagram.

These D6-branes intersect on Σ0 along a graph Γ whose intersection matrix is the adjacency
matrix of the associated quiver gauge theory. This intersection graph can be “untwisted” in a
canonical way which leads exactly to the data of the brane tiling of T 2 described above. See Figure
15. In this way, the quiver gauge theory is derived from first principles by living on the intersecting
D6-branes under the mirror symmetry map of the D3-branes probing the Calabi-Yau singularity.
See [127, 128, 129] for more details.

B. Review of Topological Strings

In this appendix, we will review some basics of topological string theory following [101].
Topological string theory is the reduction of string theory to the topological sector: the part of the
theory invariant under deformations of the worldsheet metric. This can be formulated from a N =

(2,2) supersymmetric non-linear sigma model φ : Σ → X where we additionally include a sum
over the worldsheet topologies in the path integral, thereby coupling to 2D quantum gravity. We

Σ

w

Figure 14: This figure illustrates the mirror dual of D3-branes probing a toric singularity of a CY 3-fold.
Under mirror duality, the D3-branes become D6-branes wrapping 3-cycles which are shown here as fibered
over the W -plane intersecting the Σ fibered over the origin.
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Figure 15: This graph shows the flow of deriving the worldvolume theory of D3-branes probing a toric
singularity inside a CY 3-fold.

then make this theory topological by performing a topological twist. This projects onto the diagonal
component of the 2D Lorentz (or rather euclidean rotation in euclidean string theory) SO(2)E times
some worldsheet U(1) R-type symmetry. Since the SO(2)E representations determine the spin of
the different fields, this means that twisting by a U(1)R symmetry shifts the spins of the particles
by their U(1)R charge.

Let us see now in some more detail the construction of topological string theory. The theory
of a general N = (2,2) non-linear sigma model with target space given by a Kähler manifold is
described by the action

S =
∫

Σ

d4
θd2z K(Φ i,Φ̄ ī) , (B.1)

where the {Φ i} are chiral superfields with lowest component φ i and

Gi j̄ =
∂ 2K

∂φ i∂φ j̄
, (B.2)

is the Käler metric of the target manifold. Writing out the components of the chiral superfield as
{φ i,ψ i

A,F
i} we can write the action as

S =−
∫

Σ

d2z
{

Gi j̄
(
Dzφ

iDz̄φ̄
j̄ + iεAB

ψ̄
j̄

ADzψ
i
B

− (F i + ε
AB

Γ
i
jkψ

j
Aψ

k
B)(F̄

j̄ + εABΓ
j̄

k̄ ¯̀ψ̄
k̄
Aψ̄

j̄
B)
)
− ε

AB
ε

CDRi j̄k ¯̀ψ
i
Aψ

k
Bψ

j̄
Cψ

¯̀
D

}
.

(B.3)

This action is supersymmetric under the transformations

δφ
i = ε

AB
ηBψ

i
A , δψ

i
A =−2iεABη̄

BDzφ
i +ηAF i . (B.4)

While this is defined for general Calabi-Yau manifolds, we will restrict to the case of a Calabi-Yau
3-fold for the remainder of this review.

Now to make the theory topological, we must perform the topological twist. There are two
choices of R-symmetry for this procedure: U(1)A axial symmetry and U(1)V vector symmetry. Re-
call that the classical bosonic symmetry of the worldsheet theory respects SO(2)E×U(1)L×U(1)R

where SO(2)E is the Euclidean symmetry and U(1)L,R are the left and right chiral symmetries
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respectively. The U(1)L,R symmetries are often combined into vector and axial symmetries by
changing basis of the generators

U(1)L×U(1)R ∼=U(1)V ×U(1)A: FV = FL +FR , FA = FL−FR , (B.5)

where FL,R are the generators of the Lie algebra for U(1)L,R respectively. Similarly we can topo-
logically twist by projecting

A-twist: SO(2)E ×U(1)V →U(1)E,A JE,A = J−FV ,

B-twist: SO(2)E ×U(1)A→U(1)E,B JE,B = J+FA ,
(B.6)

where JE,_ is the generator of U(1)E,_. Since we are twisting the worldsheet Euclidean group by a
chiral symmetry, we shift the spins of the fields of the model by their charge under FV ,FA so that
the fields are all bosonic (although they may be Grassmann fields). The theories resulting from
these topological twists are referred to as the A- and B- models respectively.

Topologically twisting, in addition to making fields bosonic, changes the spin of the super-
charge operators. This allows us to define a pair of scalar supercharges for each model called the
topological supercharge

A-twist: Q = Q+,++Q−,− , B-twist: Q = Q+,−+Q−,− . (B.7)

Now since there are no bosonic symmetry currents, the supercharges must be nilpotent

{Q,Q}= 0 . (B.8)

In the case of the topological A-model we can write the action as

SA =
∫

Σ

d2z
√

g
{

Gi j̄
(
gµν

∂µφ
i
∂νφ

j̄ +
iεµν

√
g

∂µφ
i
∂νφ

j̄−gµν
ρ

i
µDν χ

j̄

−gµν
ρ

j̄
µDν χ

i− 1
2

gµνF i
µF j̄

ν

)
+

1
2

Rī jk̄`ρ
ī
µρ

j
ν χ

k̄
χ
`
}
,

(B.9)

where have made the identification

χ
i = ψ

i
+,+ , χ

ī = ψ
ī
−,− ,

ρ
i
z̄ = ψ

i
−,+ , ρ

ī
z = ψ

ī
+,− .

(B.10)

Now the supersymmetry transformations take the form of

[Q,φ i] = χ
i , {Q,χ i}= 0 ,

{Q,ρ i
z̄}= 2∂z̄φ

i−F i
z̄ −Γ

i
jkχ

j
ρ

k
z̄ ,

[Q,F i
z̄ ] = 2Dz̄χ

i−Γ
i
jkχ

jFk
z̄ +Ri

k j̄`χ
k
χ

j̄
ρ
`
z̄ .

(B.11)

Note that since the χ i variables are of zero spin, but are grassmann variables, they can be identified
with differential forms – and their products with general wedge product of 1-forms on the target
space X . This is related to the fact that since CY 3-folds have a trivial canonical bundle, we can
identify the chiral spin bundle with the bundle of holomorphic differential forms and hence the
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non-chiral spin bundle with the cotangent bundle. In this way, we can identify Q with the de Rahm
differential operator d.

Similarly the B-model can be written as

SB =
∫

Σ

d2z
{

Gi j̄
(
∂zφ

i
∂z̄φ

j̄ +∂z̄φ
i
∂zφ

j̄)−ρ
i
z(Gi j̄Dz̄η

j̄ +Dz̄θi)

−ρ
i
z̄(Gi j̄Dzη

j̄−Dzθi)−Ri
j ¯̀kη

¯̀
ρ

j
z ρ

k
z̄ θi−Gi j̄F

iF j̄
}
,

(B.12)

where we have again defined the fields as in B.10 with the additional identification

η
ī = χ

ī + χ̄
ī , θi = Gi j̄(χ

j̄− χ̄
j̄) . (B.13)

Using the B-twisted supercharge, these fields satisfy the supersymmetry relations

[Q,φ i] = 0 , [Q,φ ī] = η
ī ,

{Q,η ī}= 0 , {Q,θi}= Gi j̄F
j̄ ,

{Q,ρ i
z}= ∂zφ

i , {Q,ρ i
z̄}= ∂z̄φ

i

{Q,F i}= Dzρ
i
z̄−Dz̄ρ

i
z +Ri

j ¯̀kη
¯̀
ρ

j
z ρ

k
z̄

{Q,F ī}=−Γ
ī
j̄k̄η

j̄F k̄ ,

(B.14)

Again since we have that χ i (and hence η i,θ i) can be identified with 1-forms on the target space X .
Therefore from the supersymmetry relations relating φ i and η i, we can associate the supercharge
operator QB = ∂̄ .

This general analysis uses what is called the Mathai-Quillen formulation of a topological non-
linear sigma model [131]. The above analysis tells us that the A-model deals with the de Rahm
cohomology of the Calabi-Yau manifold whereas the B-model deals with Dolbeault cohomology
and hence the A-model is invariant under complex structure deformations while the B-model is
invariant under Kähler deformations. Since mirror symmetry exchanges complex structure and
Kähler moduli, one would (correctly) expect that the A- and B- models are mirror dual. For more
details see [31, 101, 132].

Thus far we have described some of the general features of these twisted quantum field theo-
ries. In order to show that these theories are topological we need to show that the expectation value
of supersymmetric operators is invariant under a deformation of the metric.

Note that the action of these topologically twisted theories can be written as

ST FT = {Q,V} , (B.15)

where

VA =
1
2

∫
Σ

d2z
√

ggµνGi j̄

[
1
2

ρ
i
µF j̄

ν +
1
2

ρ
j̄
µF i

ν +(ρ i
µ∂νφ

j̄ +ρ
j̄
µ∂νφ

i)

]
,

VB =
∫

Σ

d2z
√

g
[
Gi j̄g

µν
ρ

i
µ∂νφ

j̄−F i
θi

]
,

(B.16)

for the A- and B-model respectively. Since the stress energy tensor is defined by

Tµν =
δS

δgµν
, (B.17)
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we have that in these cases

Tµν = {Q,Gµν} , (B.18)

for some tensor Gµν .
Now consider the expectation value of a collection of operators {Oi} such that

{Q,Oi}= 0 ∀ i . (B.19)

By use of the Ward identities, we have that the variation of their expectation value with respect to
the worldsheet metric

δ

δgµν
〈O1...On〉= 〈O1...OnδGµν〉= 〈δ (O1...OnGµν)〉= 0 (B.20)

Now since the action is δ -exact, we have that this expectation value vanishes order by order by
integrating by parts in field space25. Therefore, since the expectation value of a product of any (su-
persymmetric) operators is invariant under variations of the metric, these theories are topological.

Note that this similar, but distinct to the idea of localization. In the case of localization, we
again have that

S =
∫

M
ddx {Q,V} , (B.21)

for some potential function V and Q a supercharge and we want to compute the expectation value of
some collection of supersymmetric operators {Oi} where δOi = 0 ∀i. In this case we can integrate
by parts in field space so that Q acts on the operators Oi. In this case the expectation value reduces
to the path integral integral over the zero-locus of V in field space – hence localizing to the zeros
of V . See [133] for more details on localization.

B.1 Correlation Functions in Topological Field Theory

So far, we have only introduced topological field theories since we have not yet implemented
a sum over worldsheet topologies. However, even the topological field theory expectation values
give insight into understanding the associated topological string theory since they represent the tree
level contribution. As in quantum field theory, understanding the anomalies and ghost structure of
the theory is crucial to our understanding of these theories. In these topologically twisted theories
we can interpret bosonic, Grassmann supercharge Q as the BRST charge. This means that we can
associate the ghost number of a given operator with the level of the operator as a differential form.

A-model: Recall that in the A-model the different fields can be associated with p-forms in H p(X).
From the supersymmetry transformations B.11, we can see that the χ i should be associated with
primitive 1-forms (ghost charge +1) and the ρ i

z should be associated with primitive tangent vectors
(ghost charge −1). Therefore, we should identify generic Q-closed operators of the form

Oα = αi1,...,ip χ
i1 ...χ ip , (B.22)

25We are ignoring the subtleties coming from boundary contributions in field space. See [105, 106, 107] for more
details.
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where α = αi1,...,ipdxi1 ∧ ...∧dxip is a closed p-form on X . This theory has a U(1) chiral symme-
try which rotates the χ i and ρ i

z according to their ghost charge. However, this symmetry can be
anomalous because of the non-trivial topology of X and Σ . These fields couple differently to the
worldsheet topology because ρ i

µ is a vector and χ i is a scalar on the worldsheet.
The calculation of the anomaly leads to the selection rule that 〈Oα1 ...Oαk〉 ≡ 0 unless

k

∑
i=1

deg Oαi = 2d(1−g)+2
∫

Σ

φ
∗(c1(X)) , (B.23)

where g is the genus of Σ and d =dimCX . In our case, X is a CY 3-fold so that the superselection
rule becomes

k

∑
i=1

deg Oαi = 6−6g . (B.24)

This tells us that only the case of Σ = S2 has non-trivial expectation values.
Let us consider the expectation value of three rank 2 operators 〈Oα1Oα2Oα3〉 in the A-model

with Σ = S2. Since we have that the action is Q-exact, we have that the expectation value will
localize to zeros of VA, each of which represents a different instanton sector26. Because the zeros
of VA are given exactly by the holomorphic maps

φ
i : Σ → X , ∂̄ φ

i = 0 . (B.25)

the different instanton sectors are classified by holomorphic 2-cycles in σ ∈ H2(X ;Z) which are
the image of the genus 0 worldsheet. Because of the selection rules above, this means that the com-
putation of the partition function will essentially reduce to the triple intersection of the associated
2-cycles. To be explicit, if we pick a basis of 2-cycles [Si] ∈ H2(X ;Z), where i = 1, ...,b2(X), then
we have that

〈Oα1Oα2Oα3〉{ti} = #(α1∩α2∩α3)+ ∑
β∈H2(X ;Z)

Iβ (αi)Qβ ,

Iβ (αi) = N0,β

∫
β

α1

∫
β

α2

∫
β

α3 , αi ∈ H2(X ;Z) ,
(B.26)

and

Qβ =
b2(X)

∏
i=1

eniti , β =
b2(X)

∑
i=1

ni[Si] , ti =
∫

Si

ω , (B.27)

where ω is the (complexified) Kähler class27. These N0,β are an example of Gromov-Witten invari-
ants. In fact, these are what determine the prepotential (that is the free action from the genus zero
worldsheet)

F0(t) = ∑
β

N0,β Qβ . (B.28)

26We can see this more explicitly by using the Fubini-study metric of the 2-sphere ds2 = dzdz̄
(1+|z|2)2 .

27The complexified Kähler class is a shift of the “normal” Käher class by an additional B ∈ H2(X ;Z) which repre-
sents coupling the theory to a non-trivial B-field.
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B-model: Now consider the B-model. Now instead of de Rahm cohomology, the B-model relies
on Doubeault cohomology. So Q-closed operators are generically of the form

Oα = α
j1,..., jq

ī1,...,īp
η

ī1 ...η īpθ j1 ...θ jq , (B.29)

where

α = α
j1,..., jq

ī1,...,īp
dxī1 ∧ ...∧dxīp

∂

∂x j1
∧ ...∧ ∂

∂x jq
∈ H p

∂̄
(X ,Λ qT X) , (B.30)

or alternatively which is canonically isomorphic to

α → α̂ = α
j1,..., jq

ī1,...,īp
dz̄ī1 ∧ ...∧dz̄īp ∧dz j1 ∧ ...∧dz jq ∈ H(p,q)(X ;Z) . (B.31)

Again we have an anomalous chiral symmetry which rotates the η i,θi fields according to their
ghost charge. However, this time since they have the same worldsheet and spacetime properties,
we have a selection rule that only couples to the topology of Σ which constrains the expectation
value of 〈Oα1 ...Oαn〉 to vanish identically unless

∑
i

pαi = ∑
i

qαi = d(1−g) , (B.32)

where (pα ,qα) are the holomorphic and anti-holomorphic components of α , g is the genus of Σ ,
and d =dimCX .

Now let us consider the expectation value of three Q-exact rank (1,1) operators 〈Oα1Oα2Oα3〉
in the B-model. Again we have that the expectation value localizes to the zeros of VB. The instanton
sectors are described by the constant maps

φ
i : Σ → X , dφ

i = 0 , ∀ i . (B.33)

This means that there are no non-trivial instanton sectors in the topological B-model.
Since we are on a CY 3-fold, there is a unique (3,0)-form Ω which induces an isomorphism

between
Ω : Hd

∂̄
(X ,Λ qX)→ H(d−q,p)(X ,Z) , (B.34)

by contracting with the free indices of Ω . This means that we can write the expectation value

〈Oα1Oα2Oα3〉=
∫

X
α1∧α2∧α3 =

∫
X
(α1)

i1
j̄1
(α2)

i2
j̄2
(α3)

i3
j̄3

Ωi1i2i3dz̄ j̄1 ∧dz̄ j̄2 ∧dz̄ j̄3 ∧Ω . (B.35)

This rewriting allows us to encode the data purely in terms of the topological data encoded by the
unique holomorphic 3-form Ω .

Fix a complex structure J ∈Mc.s. for X and choose a local symplectic basis for H3(X) in a
local patch in Mc.s. containing J which we will denote by (Aa,Bb) with a,b = 0, ...,h2,1 such that

Aa∩Bb = δ
b

a , Aa∩Ab = Ba∩Bb = 0 . (B.36)

Now define the periods of the CY manifold

za =
∫

Aa

Ω , Fa =
∫

Ba
Ω . (B.37)
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Since H(2,1)(X ,Z) parametrizes the complex moduli Mc.s. of the theory, without loss of gen-
erality, we can take the za as projective coordinates parametrizing Mc.s.. This means that the vector
space of Fa form a fiber of a vector bundle over Mc.s.. Therefore, they can individually be thought
as functions of the za.

Using this we can define the generating function which is called the prepotential

F0 =
1
2 ∑

a
zaFa . (B.38)

Since za are projective coordinates and the function F0, which is the genus zero contribution to the
free energy, is a homogeneous polynomial in terms of these coordinates (a rescaling of the za is
associated with the rescaling of Ω ), the physical data is encoded in the scale invariant projection of
F0. Now the expectation value 〈Oα1Oα2Oα3〉 where deg Oαi = (1,1), which is given by the triple
intersection of the associated 2-cycles #(α̂1∩ α̂2∩ α̂3). We can write this as

〈Oα1Oα2Oα3〉= ∑
a,b,c,

namb`c
∂ 3F0

∂ za∂ zb∂ zc
,

α̂1 = ∑
a

na[Aa] , α̂2 =∑
b

mb[Ab] , α̂3 = ∑
c
`c[Ac] .

(B.39)

In the literature we often use the coordinates ta instead of the za to denote the special pro-
jective coordinates which have removed the scaling dependence of the za. These are only defined
patchwise on Mc.s..

B.2 Topological Strings and Mirror Symmetry

In order to construct topological string theory we have to couple our theory to 2D topological
gravity. This means that in the path integral we have to include a sum over the different world-
sheet topologies Σg weighted by g−χ(Σg)

s = g2g−2
s . Now we see that the free action F = logZ will

generically have the form

F(t) =
∞

∑
g=0

g2g−2
s Fg(t) . (B.40)

As it turns out here F0(t) is exactly the F0 prepotential computed above in the A- and B-twisted
topological field theories. These higher genus terms are generically very difficult to compute gen-
erally relying on mirror symmetry and the holomorphic anomaly equations [108, 109]. The com-
putation of these terms is still an active field of research.

A salient difference between the A- and B- topological strings is that the A-model depends
only on Kähler structure whereas the B-model depends on the complex structure. Since we have
that mirror symmetry exchanges complex and Kähler geometry, mirror symmetry exchanges the
A- and B-models. This turns out to be a direct consequence of the mirror symmetry between Type
IIA and Type IIB.

B.3 Relation to 4D N = 2 Theories

It is well known that compactifying Type IIA or Type IIB string theory on a CY 3-fold produces
a four-dimensional N = 2 theory. In the limit that the volume of the CY 3 manifold becomes
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infinitely large (or is non-compact) and gs, `s→ 0 while keeping gY M constant, we decouple from
gravity producing a N = 2 SUSY QFT. Many SUSY operators in the 4D N = 2 theory can
be computed in the associated topological string theory given by taking topological string theory
on the associated CY 3 manifold as suggested in the previous section. For example, the partition
function of the topological string computes exactly that of the 4D N = 2 SUSY QFT. Many of
the SUSY operators in these theories can be realized as BPS branes in the full string theory which
can be interpreted clearly in the topological string picture, giving us the ability to calculate their
expectation value using the techniques of topological string theory.

Recall that in the B-model the prepotential is given in terms of the periods of the holomorphic
3-form Ω over the 3-cycles in H3(Y,Z)

F0 =
1
2

ziF i , zi =
∫

Ai
Ω , F i =

∫
Bi

Ω . (B.41)

This is of course reminiscent (and is in fact exactly the generalization of) the relation between
Sieberg-Witten theory and the instanton partition function calculation of Nekrasov.

In fact, the topological string computes exactly the low energy effective action of the vector
multiplet for the 4D N = 2 theory from compactifying Type II string theory on the CY 3 manifold
Y. Specifically we find that if Fg(t) are the terms in the topological string free energy, then the low
energy effective theory will go as

SEFT ∼
∫

d4xd4
θ W 2gFg(ai)∼

∫
d4Fg(ai)(R2

+F2g−2
+ ) , (B.42)

for the case where g 6= 0, ai are the vector multiplet fields, W is the N = 2 Weyl multiplet28 R2
+

is the self-contraction of the self-dual part of the Riemann tensor and F+ is the self-dual part of the
field strength of the graviphoton. See [31] for more details.

For the case g = 0, we find that the effective action is given by:∫
d4x(∂i∂ jF0)F+

i ∧F+
j =

∫
d4x τi j F+

i ∧F+
j , (B.43)

which is exactly the same form as the Seiberg-Witten low energy effective action [95, 96]. Hence
the genus-0 term gives us exactly the prepotential for the 4D N = 2 gauge theory [113].

If we consider the topological string theory on a CY-3fold of the form [39, 112, 113, 114]

{ f (u,v,y,x) = uv+ y2 +W ′(x)2 = 0} ⊂ C4 , (B.44)

then the holomorphic 3-form is of the form

Ω =
du∧dy∧dx

∂v f
=

du
u
∧dy∧dx . (B.45)

In this case, the period integrals reduce to integrals localized at u = 0 by the nature of the residue
theorem. That is to say, the period integrals reduce to integrals over a disc whose boundary is a
1-cycle γ ⊂ Σ where

Σ = {y2 +W ′(x)2 = 0} , (B.46)

28That is the multiplet with highest component given by the field strength of the gravitational multiplet: R+.
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such that the period integral becomes∫
σ⊂X

Ω =
∫

D
dy∧dx =

∫
γ⊂Σ

ydx . (B.47)

Here we can clearly identify the pair of Seiberg-Witten data (ydx,Σ) = (λSW ,ΣSW ) from first prin-
ciples [134]. There is also a way to use this picture and more advanced topics in the topological
B-model to derive the work of [135] which relates theories of class S to integrable models.
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