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The sheer number of new γ-ray pulsar discoveries by the Fermi Large Area Telescope since 2008,

combined with the quality of new multi-frequency data, has caused a revolution in the field of

high-energy rotation-powered pulsars. These rapidly rotating neutron stars exhibit rich spectral

and temporal phenomenology, indicating that there are still many unsolved mysteries regarding

the magnetospheric conditions in these stars – even after 50 years of research! Indeed, 2017 marks

the golden anniversary of the discovery of the first radio pulsar, and theorists and observers alike

are looking forward to another half-century of discovery, with many new experiments coming

online in the next decades. In this review paper, we will briefly summarise recent HE pulsar ob-

servations, mention some theoretical models that provide a basic framework within which to make

sense of the varied measurements, and finally review some of the latest theoretical developments

in pulsar emission modelling.
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1. Introduction – High-Energy Pulsars

Pulsars are seen across the electromagnetic spectrum. Their light curves vary with energy and

time, but radio light curves1 averaged over pulsation period are usually quite stable. Their spectra

span a very wide range in energy, making these rotating neutron stars true multi-frequency objects.

The era before the launch of the Fermi Large Area Telescope (LAT) was characterised by a mere

7 γ-ray pulsars that were detected at high confidence [126]. However, after nearly ten years in

orbit, scanning the full sky in the high-energy (HE) band from ∼ 20 MeV to over 300 GeV [22],

the Fermi LAT has now detected over 2002 γ-ray pulsars3. The sheer increase in pulsar number

enables us to perform population studies, as well as scrutinise temporal and spectral properties of

individual objects at an ever increasing level of detail. In this review, we summarise the status of HE

observations (Section 2), describe the basic theoretical framework of HE pulsar physics (Section 3

and 4), and then focus on some new theoretical developments in the field (Section 5) before we

provide a future outlook (Section 6). For more comprehensive recent reviews on HE pulsars, see

Venter [134], Cerutti and Beloborodov [42], and references therein.

2. HE Observational Breakthroughs – What Do We See?

It was clear since the days of the Compton Gamma-Ray Observatory (CGRO) that [126]:

1. Multi-frequency pulsar light curves are energy-dependent.

2. γ-ray pulsar light curves typically exhibit a double-peaked morphology.

3. The leading pulse typically fades in brightness relative to the trailing pulse as energy is

increased.

4. HE pulsars seem to be relatively young (compared with the full radio population) and to

possess large spin-down power Ėrot = IΩΩ̇ = −4π2IṖ/P3 (or open-field-line4 voltage V ∝

Ė
1/2
rot or particle current IPC ∝ Ė

1/2
rot from the polar cap (PC)), with I the moment of inertia, Ω

the angular frequency, Ω̇ the time derivative thereof, P the period, and Ṗ its time derivative.

5. The inferred γ-ray luminosities of young HE pulsars follow the trend Lγ ∝ Ė
1/2
rot .

6. The radiative power in the GeV γ-ray band (or sometimes soft γ-ray band, 100 keV – 1 MeV)

dominates the multi-frequency spectrum.

7. The HE spectra are typically quite hard and typically exhibit spectral cutoffs Ecut around a

few GeV. Furthermore, in the CGRO era, the GeV spectrum of the Vela pulsar was consistent

with expectations of both the near-surface PC and high-altitude outer gap (OG) models (See

Section 4).

1The γ-ray fluxes are so low that single pulses are not available, only stacked / phase-averaged ones are feasible.
2At the time of writing, there are 209 public Fermi pulsars, including 102 millisecond pulsars (MSPs), 76 binaries,

24 black widows, 7 redbacks, 63 young radio-quiet, and 51 young radio-loud pulsars.
3https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars
4Open and closed-field-line regions are separated by the last open B-field lines (separatrix) that touch the light

cylinder at radius RLC = c/Ω, where the corotation speed is equal to the speed of light.
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Figure 1: Panel (a): Multi-frequency and subband evolution of the light curves of the Crab pulsar [2].

Panel (b): Disappearance of the Vela pulsar’s first peak with energy as seen by Fermi [3] and H.E.S.S. [51].

Panel (c): Updated plot of Lγ vs. Ėrot for old and young pulsars, exibiting two distinct trends: Lγ ∝ Ė
1/2
rot for

young pulsars (orange and red dots), while Lγ ∝ Ėrot for MSPs (green dots) [62]. Panel (d): Broad spectral

energy distribution of the Crab pulsar (black) and nebula (blue), with the GeV pulsar component showing

the typical flat spectrum and exponential cutoff [35].

8. No pulsed TeV emission from pulsars could be detected [116].

9. The Fermi (formerly GLAST) Mission was expected to find tens to hundreds [58, 59, 136] of

HE pulsars, both radio-loud and radio-quiet, aided by its potential for blind period searches

using γ-ray data only. Only very few MSPs were expected to be seen in γ rays.

The Fermi LAT has confirmed all these basic observational trends (as for number 7, Fermi

has shown that the emission must originate in the outer magnetosphere, from OGs, SGs or the

current sheet), and also confirmed the detection of the 7 high-confidence CGRO pulsars (Crab, Vela,

B1509−58, B1706−44, B1951+32, Geminga, and B1055−52) as well as the 3 pulsars detected at

lower significance (B1046−58, B0656+14, and J0218+4232), in addition to more than 200 new

HE pulsar detections. Indeed, and additionally, Fermi showed that (cf. [6], Figure 1):

1. Pulsar light curves are energy-dependent, with the pulse shapes not only changing for differ-

ent energy domains, but also for different subbands within the γ-ray band (e.g., [3]).
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2. HE pulsar light curves often exhibit double-peaked morphology (which generally differ in

morphological details, e.g., rapidity of rise and fall of inner / outer peak structures), although

there are more complex profiles (e.g., triple peaks and broad or sharp single peaks) as well;

furthermore, the radio pulse may be either leading the γ-ray pulse in phase, be aligned with

the γ-ray peaks, or trailing the γ-ray pulse [74]. There is an inverse trend between the γ-ray

peak separation ∆ and the radio-to-γ phase lag δ [6], as first noted [112] in the context of

outer-magnetosphere models with caustic pulses, but which is also predicted in later models

involving the current sheet or the beginning of the striped wind [78, 97] (Section 4).

3. For most pulsars, the first peak fades in brightness relative to the second peak with increasing

energy, with the Vela and Crab pulsars providing prime examples [3, 13]. However, some

pulsar light curves (about one third) show the reverse behaviour [33, 110]. In addition, the

main peak positions seem to remain more or less the same as the energy increases (but not

the third peak of Vela, which migrates in phase with an increase in energy [3]), while the

pulse widths become narrower [13, 51].

4. HE pulsars represent the most energetic subpopulation of pulsars in terms of Ėrot, with a

possible empirical “death line”5 occurring at Ėrot ∼ 1033 erg s−1 [64], set by the much older

population of MSPs that has now been detected. At the highest spin-down powers (e.g., PSR

B1509−58), the spectrum may cut off in the 1−100 MeV range [83].

5. The inferred γ-ray luminosity Lγ of young HE pulsars follow the trend Lγ ∝ Ė
1/2
rot , while

MSPs seem to follow the trend Lγ ∝ Ėrot (see Figure 1; [6]), although there is large scatter in

the latter case, which may be partly explained by uncertain distances, variations in equation

of state (since Ėrot ∝ I), or different beam and pulsar geometries6 [63, 64, 80]. Thus pulsars

become increasingly more efficient γ-ray emitters as they age (converting a larger fraction of

Ėrot into Lγ [6]; cf. Figure 1) even though they have smaller Ėrot.

6. GeV power is typically still the dominant component of the multi-frequency spectrum (for

all but the youngest Crab-like pulsars).

7. The HE spectra are quite hard (with an average photon spectral index Γ ∼ 1.4) and exhibit

spectral cutoff energies7 Ecut in a very narrow band around a few GeV [6] (the soft-γ-ray pul-

sars are exceptions, with spectral cutoffs and dominant radiative power occurring in the MeV

band [83]). Moreover, this power-law plus sub-exponential spectral shape is characteristic

of pulsars and is used to aid in candidate selection for follow-up observations of unidenti-

fied Fermi sources, in addition to a low variability index that distinguishes them from active

5This means a line in PṖ-space below which no pulsar has been detected to date.
6Guillemot & Tauris [63] find marginal evidence that MSPs that are undetected in γ rays may have relatively small

viewing angles ζ with respect to their spin axes, such that their emission beams do not cross Earth’s line of sight, or the

modulation of the γ-ray emission may be very weak. In caustic models (Section 4), most of the bright emission occurs

near the spin equator, requiring large viewing angles to observe bright, sharp peaks.
7The spectral cutoff energy Ecut seems to scale with some positive power of the B-field at the light cylinder BLC ∝

P−5/2Ṗ1/2, which may be explained by the fact that the accelerating electric field E|| (which is parallel to the local

B-field) generically scales with BLC in outer-magnetospheric models and in the case of curvature radiation (CR) reaction

where the acceleration rate balances this radiative loss rate, one expects Ecut ∝ E
3/4

|| [6].
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galactic nuclei [9]. A key result from the Fermi Mission was favouring a sub-exponential

spectral cutoff over a super-exponential one in the case of the Vela pulsar at a significance of

16σ , indicating that HE emission must come from the outer magnetosphere in order to es-

cape pair production or photon splitting in the intense B-field near the stellar surface to reach

the observer (e.g., [120]). Such sub-exponential spectra have now also been seen in other

pulsars, possibly indicating a blend of single-particle spectra as the line of sight crosses the

pulsar beam [3, 37]. The bulk of pulsars in the Second Fermi Pulsar Catalog (2PC), however,

favour a simple exponential cutoff while some require a sub-exponential roll-over, but none

requires a super-exponential cutoff.

8. TeV emission from pulsars may be uncommon or intrinsically faint, and therefore rather

hard to detect given the current and near-future telescope capabilities: while pulsed photons

in the 25 GeV − 1 TeV band have now been detected for the Crab pulsar [14, 12, 13, 16],

and photons in the 10 GeV − 110 GeV band for the Vela pulsar [86, 51], McCann’s stacked

analysis of Fermi pulsars [90] using ∼ 4.2 years of data per pulsar indicates that emission

above 50 GeV must be rare for most pulsars, since the average emission per pulsar from a

sample of 150 pulsars (excluding the Crab) was limited to lie below ∼ 7% of that of the Crab

pulsar in the 56− 100 GeV band and below ∼ 30% in the 100− 177 GeV band. Burtovoi

et al. [36] reanalysed 5 years of Fermi LAT data for the 12 pulsars seen to pulse above

25 GeV in the First Fermi LAT Catalog of Sources above 10 GeV (1FHL), fitting a power-

law spectrum for energies > 10 GeV and extrapolating this spectrum to energies > 100 GeV.

They predict that the Cherenkov Telescope Array (CTA) may significantly detect up to 8 of

these 12 pulsars in 50 h. The Third Fermi Catalogue of Hard Sources (3FHL) firmly identifies

53 pulsars above 10 GeV and additionally finds associations with 6 pulsars known at lower

energies [11]. Interestingly, there are 10 sources in the High Altitude Water Cherenkov

(HAWC) Observatory Gamma-Ray Catalog (2HWC) associated with pulsar wind nebulae

or supernova remnants [7] in the energy range between hundreds GeV and tens of TeV;

one should therefore distinguish between the ubiquitous TeV pulsar wind nebula emission

(e.g., [1]) powered by energetic embedded pulsars (some seen to be pulsing at GeV energies),

and the seemingly rare pulsed TeV emission from pulsars8 (e.g., [16, 51]).

9. The Fermi crop of > 200 pulsar discoveries is diverse9: there are radio-loud vs. radio-faint10

ones, young pulsars vs. MSPs, and pulsars in evolving binary systems (redback and black

widow systems [111]) vs. isolated ones [118]. Surprisingly, MSPs turn out to be a substantial

sub-class of HE pulsars, being energetic emitters of GeV emission [38, 62]. Furthermore,

blind period searches directly in the γ-ray data [115, 108], also using distributed volunteer

(crowd) computing [47], have made an enormous impact.

8See also the very recent result on the detection of multi-TeV pulsed photons from the Vela pulsar:

https://fskbhe1.puk.ac.za/people/mboett/Texas2017/Djannati.pdf
9This is in addition to the detection of modulated emission that originates in a high-mass pulsar binary due to

interaction of the pulsar wind with the massive companion’s wind and photon field (e.g., [5, 137]; see also Lyne et

al. [88] for another plausible system of this type).
10The term “radio-faint” is nowadays preferred over “radio-quiet”, since pulsars might not be absolutely (intrinsi-

cally) radio-quiet, but just difficult to detect with current telescopes.
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10. Young pulsars occur near the Galactic Plane, while old MSPs are detected at all latitudes,

because of the closer distance of these fainter objects and also because old MSPs have had

time to evolve to larger scale heights above the Galactic Plane due to their large velocities [6].

11. The photon spectral index Γ softens with larger Ėrot values [6], possibly indicating an in-

crease in pair production or the onset of a synchrotron radiation (SR) component in more

energetic pulsars.

12. Radio-quiet γ-ray MSPs seem to be extremely rare (only two candiates are noted so far [8, 82]

out of a population of > 100 known ones), which may be attributed to MSPs having very wide

γ-ray and radio beams owing to their relatively compact magnetospheres (since RLC ∼ P).

13. Surprising variability was detected in the wind of Crab pulsar [124, 4] (i.e., “Crab flares”),

while the pulsed emission remained stable. Another type of variability was found in PSR

J2021+4026 [15], which exhibited changes in HE flux, light curve morphology, and spectrum

coincident with an abrupt step change in spin-down power.

3. Basic Theoretical Framework

3.1 The Unipolar Inductor – A Conductor Rotating in a Magnetic Field

A number of authors have pointed out the similarity between the physics of a unipolar induc-

tor11 and a pulsar that is an aligned rotator (having aligned magnetic and spin axes). Consider a

conducting disc spinning in a static B-field [93]. Electrons in the disc move with a net velocity

~v = ~Ω×~r and experience a Lorentz force ~F = −e~v×~B/c in the surrounding B-field. Electrons

move toward the axis, leading to a steady configuration in which the total Lorentz force on the

electrons vanishes. Similarly, for the aligned rotator in the force-free (FF) limit (plasma-filled,

co-rotating magnetosphere and neglecting particle inertia), one finds [57]

~E +
~Ω×~r×~B

c
= 0, (3.1)

implying ~E ·~B = 0. This sets up a potential difference between the axis and rim (or for a pulsar,

on the stellar surface between the pole and edge of the PC, which delineates the open B-field line

region of the magnetosphere, for a pulsar):

∆V =−

∫ a

0

~E ·d~s =
ΩΦB

2π
=−

B0Ωa2

2c
, (3.2)

with ΦB the magnetic flux, B0 the B-field, and a the disc radius. There is a component E|| of the

electric field parallel to the local B-field (nearly a radial electric field) associated with this potential

drop, which pulls primary charges from the stellar surface and eventually fills the magnetosphere

with plasma via ensuing HE emission and a cascade of secondary e+/e− pair production (Sec-

tion 4), creating an FF magnetosphere. Using Gauss’ law as well as the electric field that occurs

11Alternative terms include homopolar generator, unipolar generator, acyclic generator, disk dynamo, or Faraday

disc (e.g., [128]).
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in such an FF magnetosphere where ~E ·~B = 0, we find the so-called Goldreich-Julian charge den-

sity [57]

ρGJ =
~∇ ·~E

4π
≈

~Ω ·~B

2πc
. (3.3)

The radius where the corotation speed |~vrot|= |~Ω×~r|= c, is

RLC =
c

Ω
∝ P. (3.4)

This is the so-called “light cylinder radius” that sets the typical spatial scale for the pulsar magne-

tosphere. The last open field line tangent to the light cylinder defines the PC, the rim of which lies

at a polar angle (in the aligned case)

ΘPC =

[

sin−1

(

ΩR

c

)]1/2

≈

(

ΩR

c

)1/2

, (3.5)

with R the stellar radius.

3.2 The Braking Model – Inference of Fundamental Quantities

Pulsars are born as remnants of supernova explosions following the gravitational collapse of a

massive star [23]. For a stellar core that rotates more or less rigidly and assuming that the angular

momentum is conserved during collapse, the final angular velocity will be

Ω f ∼ Ωi

(

Ri

R f

)2

, (3.6)

with R and Ω = 2π/P the radius and angular velocity, and “i” and “f” indicating the initial and final

values. Inserting typical values of Ri ∼ 1011 cm and R f ∼ 106 cm into the above equation yields

an increase in angular velocity by a factor of ∼ 1010 and rotational periods in the millisecond to

second range. If the stellar interior is fully conductive, magnetic flux (ΦB ≡
∮

~B · d~a ∼ BiR
2
i ) will

also be conserved during collapse, implying

B f ∼ Bi

(

Ri

R f

)2

. (3.7)

This relation yields typical surface B-fields of B0 ∼ 1012 G.

Rotational energy is the reservoir that is tapped and converted into electromagnetic (fields,

pulsed emission) and particle (pulsar wind) energy. An isolated neutron star will thus “spin down”

and rotate slower (i.e., Ṗ > 0). An estimate for the surface polar B-field strength may be obtained

by equating the rate of slowing down and the magnetic dipole radiation loss rate12 for a star in

12Beskin et al. [28] argued that longitudinal magnetospheric currents determine the pulsar spin-down. Recently,

Beskin et al. [29] argued that pulsar slow-down or braking is (additionally and possibly predominantly in the case of an

orthogonal rotator) due to the separatrix currents that circulate within the pulsar magnetosphere and do not flow out as

part of the pulsar wind. Spitkovsky [119] noted that the spin-down due to Poynting flux leaving an FF (plasma-filled)

magnetosphere is similar to the vacuum case of magneto-dipole losses, but with the sin2 α term replaced by 1+ sin2 α .

In reality, pulsed emission also taps energy from the pulsar’s rotational energy (i.e., Lγ must be some fraction of Ėrot),

while a pulsar wind beyond the termination shock blows a pulsar wind nebula, following the conversion of much of the

electromagnetic energy to particle acceleration. This expression for loss rate also neglects losses due to gravitational

waves, since the neutron star is expected to be close to spherical in shape, although some have taken distortions or

precession that may produce gravitational wave emission into account (e.g., [95, 32, 138]).
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vacuum [94]:

Ėrot ≡
d

dt

(

1

2
IΩ2

)

= IΩΩ̇ =−
4π2IṖ

P3
= Lmd =−

2

3c3
µ2 sin2 α Ω4, (3.8)

with Lmd the loss rate due to magneto-dipole radiation, I ∼MR2, µ ≡B0R3/2 the magnetic moment,

B0 the B-field at the pole, α the angle between the magnetic and spin axes, and c the speed of light.

Thus, if one assumes that µ sinα ≈ const., the general “braking” or “spin-down” law may be

written as

Ω̇ ∝ −Ωn, (3.9)

with n the braking index that may be obtained by differentiating the above equation with respect to

time (for constant n 6= 1):

n =
Ω̈Ω

Ω̇2
= 2−

PP̈

Ṗ2
, (3.10)

with Ω̈ and P̈ the second derivate of the angular speed and period, and13 n = 3 for a dipolar B-field.

By inserting typical values of I ∼ 1045 g cm2, R ∼ 106 cm and α ∼ 90◦ into Eq. (3.8) one obtains

an estimate for the surface B-field at the pole:

B0 ∼ 6×1019P1/2Ṗ1/2 G. (3.11)

By assuming that the B-field does not decay over the Myr timescales for young HE pulsars14, and

a constant inclination angle α , one finds that [129]

ṖPn−2 = K, (3.12)

with K a constant. Integration of the above leads to (e.g., [133])

Pn−1 = Pn−1
0 (n−1)K, (3.13)

with P0 the birth period. Assuming the B-field is dipolar, one may adopt an r−3 dependence and

calculate the poloidal field at the light cylinder15 (the toroidal field starts to dominate beyond RLC

and has an r−1 dependence):

BLC = B0

(

R

RLC

)3

∝ P−5/2Ṗ1/2. (3.14)

By assuming that µ⊥ ≡ µ sinα remains roughly constant, and so does16 n, the characteristic or

“rotational” age τc can be derived upon integration of Equation (3.9) and substitution of Ωn−1 =

Ω̇/(kΩ), with k a constant:

τc =−
Ω

(n−1)Ω̇

[

1−

(

Ω

Ω0

)n−1
]

≈−
Ω

(n−1)Ω̇
≡

P

(n−1)Ṗ
, (3.15)

when Ω0 ≫ Ω. The PC voltage may be written as (by substituting a = RsinΘPC into Eq. [3.2])

13It is clear that setting n = 3 is a simplification: a recent accumulation [17] of measured values for n ranges from

0.9 to 3.15; possible explanations for the deviation of n from 3 may include angular momentum loss due to the pulsar

wind, effects of a quadrupole moment of the B-field on the braking evolution, and glitches.
14Some population synthesis models do include B-field decay, however; cf. [65, 73, 123].
15Interestingly, Michel [91] notes that Lmd (Eq. 3.8) may be estimated by multiplying the energy density contained

in BLC by the area 4πR2
LC and c.

16Some authors have investigated scenarios in which this is not the case [75, 123].
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Figure 2: Updated plot [62] of pulsar period (P) vs. period time derivative (Ṗ) of γ-ray and radio pulsars,

with 53 radio-loud and γ-loud young pulsars (orange upward triangles), 37 radio-faint and γ-loud young pul-

sars (red downward triangles), 71 radio-loud and γ-loud MSPs (green filled circles, circled in black and red

when in black-widow and redback systems, respectively), and 2 256 other radio pulsars (light blue crosses).

Lines of constant spin-down power (brown; (Eq. [3.8])) and polar B-field strength (green; Eq. [3.11]) are

given for a magnetic dipole in vacuum and a stellar moment of inertia of 1.4× 1045 g cm−2 applicable to

a 1.4 solar mass neutron star with a 12 km radius. Lines of constant B-field strength at the light cylinder

(Eq. [3.14]) radius are shown in grey. The bluish-grey line marks the spin-up rate expected from mass

transfer at the Eddington rate from a stellar companion in a binary system.

−∆VPC =
B0Ω2R3

2c2
∼ |Lmd|

1/2. (3.16)

The Goldreich-Julian current is (Eq. [3.3])

IGJ ∼ 2ρGJcA ∼ |Lmd|
1/2, (3.17)

with A = πR2 sin2 ΘPC the area of one PC. The total electromagnetic power is thus

L = ∆VPCIGJ ∼ |Lmd|. (3.18)

If one accepts a constant ∆V as a threshold condition17 for pair production in young pulsars [66],

one expects the γ-ray luminosity to behave as (assuming Ėrot ∼ Lmd; Eq. [3.8])

Lγ ∼ ∆V0IGJ ∼ Ė
1/2
rot , (3.19)

17The ∆V threshold is a direct consequence of the self-controlled feedback between E|| and the acceleration length

required for the primary particles to reach γ-ray emitting energies, and the subsequent screening of E|| by the secondary

pairs. Thus, ∆V remains nearly constant for different intial conditions for E||.
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since ∆V = ∆V0 = constant in this case. On the other hand, if older pulsars have pair-starved

magnetospheres, their γ-ray luminosity may behave as

Lγ ∼ ∆VPCIGJ ∼ Ėrot. (3.20)

Using the above expressions for Ėrot, BLC, B0, and τc, a ṖP-diagram may be constructed to cate-

gorise the various pulsar species we observe (Figure 2). Although many basic properties may be

succinctly summarised in this plot, there are surely a number of simplified assumptions that need

to be revisited to obtain a more realistic summary plot for the population of pulsars (e.g., effects of

considering Ḃ, α̇ , equation of state, pulsar winds, distribution of birth periods and B-fields, etc.).

4. Standard Emission Models – Explaining Spectra and Light Curves

The aligned-rotator model of Goldreich and Julian [57] provided an “existence proof” for a

plasma-filled magnetosphere: the rotationally-induced electric field vastly dominates gravity (and

particle inertia) near the stellar surface, ripping charges from the crust and accelerating these pri-

mary charges along the nearby B-field lines. In PC [49] and slot gap (SG) [19] models, the primary

particles emit CR as they are constrained to move along curved field lines. The HE photons un-

dergo magnetic (one-photon) pair creation and this leads to a cascade of electron-positron pairs that

fill the surrounding magnetosphere and screen the electric field E||. However, there remain regions

(just above the stellar surface in PC models, before the pair formation front develops at a fraction

of R in altitude; and along the last closed field lines in SG models where E|| vanishes and the pair

formation mean free path becomes infinite) where the plasma is not dense enough to shield E||,

and particle acceleration can take place. In OG models [46, 113], particle outflow above the null-

charge surface (where ~Ω ⊥ ~B and ρGJ = 0) creates gaps where acceleration and two-photon pair

production may take place. Pair-starved polar cap (PSPC) models have been studied in the context

of suppressed pair production in older pulsars [67]. Annular and core gap models [109, 53] invoke

gaps between critical field lines (lines that intersect the null-charge surface at the light cylinder)

and last-closed field lines.

Early on, fundamental electrodynamical questions emerged: How and where is the current

closed so that the outflow of particles is sustainable (i.e., what is the global current flow pattern)?

What is the role of pair formation? What is the injection rate of plasma from the stellar surface?

Where do acceleration gaps develop (where E|| is not fully screened) and how are they sustained?

Where does acceleration of particles to relativistic energies take place? What is the emission mech-

anism for each of the multi-frequency components we observe?

In the interum period leading up to the development of global emission models, geometric

two-pole caustic (TPC) [24, 54, 55] and OG [130, 135] light curve models were used to constrain

emission gap and pulsar geometries (inclination and observer angles α and ζ ). Such geometric

models do not contain any knowledge of the E|| distribution18 , but rather assume a constant emis-

sivity per unit length in the corotating frame along certain B-field lines, with photons being emitted

tangentially to the local field lines in the corotating frame. Aberration plus time-of-flight delays are

included, leading to photons bunching in phase to form so-called caustics of bright emission. These

18Thus one can not calculate a spectrum or energy-dependent light curves from such models.
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caustics result in sharp peaks as the asymmetric beam sweeps past the observer. Although these

models had reasonable success in reproducing HE light curves [74, 107, 130, 131], they pointed

to the fact that a more general model is needed of which the various geometric models may be

particular incarnations [132].

In addition to the local gap models interior to the light cylinder, work has also been done on

“striped-wind” models, where dissipation takes place in the current sheet that forms near the equa-

tor beyond the light cylinder (e.g., [97, 98]). The notion of the current sheet emerges in the context

of FF B-field models. In contrast to the rotating vacuum dipole solution obtained by Deutsch [52],

which has been used in several pulsar light curve models as a first approximation (e.g., [55, 130]),

the FF solution assumes that there is dense enough plasma everywhere so that E|| may be screened

throughout the magnetosphere. This leads to the “pulsar equation” that has been solved for the

aligned-rotator case [48]. The FF field has also been obtained for the oblique [119] case, and

additionally using full MHD [81, 125].

However, both vacuum or plasma-filled (FF) pulsar magnetospheres can only be extreme ap-

proximations to reality, since the first possesses no charges to radiate the pulsed emission we ob-

serve, while the latter permits no electric fields E|| that may accelerate charges to high enough

energies to radiate HE emission. Dissipative magnetosphere MHD solutions [77, 78, 87] seek to

obtain more realistic solutions by including a macroscopic conductivity σ as a free parameter, and

therefore allowing charges, currents, and acceleration to occur in the pulsar magnetosphere. The

question of how σ comes about must be closely linked to how injection and pair formation rates

differ in different regions in the magnetosphere. Particle-in-cell (PIC) codes study such micro-

physical questions, but are subject to computational limits as well as particular assumptions on

initial magnetospheric configuration. See Venter [134] and references therein for a more detailed

overview of the above models.

5. New Theoretical Developments – How Do We Refine Our Models?

5.1 Dissipative Magnetic Fields

Dissipative models have been developed [77, 78, 87] allowing solutions that transition from the

vacuum to FF case (from zero to formally infinite σ ). Kalapotharakos et al. [78] attempted to model

the observed inverse correlation between the γ-ray peak separation in phase, ∆, and the radio-to-γ

phase lag, δ , as this would potentially constrain the σ -distribution. They found that this so-called

∆ − δ trend could only be reproduced for a spatially-dependent macroscopic σ : FF conditions

should exist interior to the light cylinder, and a large but finite σ outside. These models are referred

to as FIDO models – FF inside, Dissipative Outside. Brambilla et al. [33] next calculated phase-

averaged and phase-resolved spectra predicted by the FIDO model for a few very luminous pulsars

assuming CR. They found that the γ-ray flux and spectral cutoff energy Ecut generally increased

for larger observer angles ζ , and decreased for an increase in σ (for a fixed obliquity α). These

quantities also increased with decreasing period P and increasing surface B-field B0. The FIDO

model furthermore predicted that Ecut of phase-resolved spectra may typically increase near the

phase of the second light curve peak (in the case of ∼ 75% of the predicted light curves), but

opposite behaviour was also noted. Importantly, they found a tentative correlation between σ and
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Figure 3: Panel (a): The optimal σ values found by Kalapotharakos et al. [79] for young pulsars, for a gap

width of w = 0.1, that reproduce the spectral cutoffs measured by Fermi LAT. The values of σ below the

grey lines were derived by extrapolation, and require larger w-values. The cumulative fraction (distribution

with Ėrot) of the corresponding Fermi pulsars is indicated by a dashed line, as noted on the right vertical axis.

Panel (b): The same as Panel (a), but for MSPs. Panel (c): The predicted spectral cutoffs corresponding to

the parameter values indicated in the legend, for both young pulsars and MSPs (labelled YP and MP).

Ėrot as well as an anti-correlation between σ and age τc. These trends are expected if one identifies

higher σ with more efficient screening of E|| by pairs (which possibly happens in younger, more

energetic pulsars).

The work of Kalapotharakos et al. [78] indicated that uniform, high-σ models lead to dissipa-

tion happening predominantly near the current sheet. This motivated Kalapotharakos et al. [79] to

refine the FIDO model by applying a low σ only in a narrow region near the current sheet outside

the light cylinder, near the open-field-line boundary (PC rim), while still keeping a high σ inside

the light cylinder. This preserved the FF structure, especially for low α . They demonstrated the

inverse trend between the measured HE cutoff energy Ecut and model σ at different Ėrot (e.g., for

high σ , E|| ∝ σ−1, and in turn Ecut ∼ E
3/4

|| in the CR radiation-reaction limit). Invoking CR and

assuming that the radiation-reaction limit is reached, they inferred E|| implied by the measured

value of Ecut by Fermi for a population of pulsars. They could show that this E|| decreases with

Ėrot but saturates at low Ėrot. They next constructed spectra for typical values of σ , α , and Ėrot

and fit these to data, thereby inferring the optimal σopt for each Ėrot (Figure 3). The optimal σopt

decreased with α for a fixed Ėrot. From this followed the trends σopt ∝ Ėrot for young pulsars and

σopt ∝ Ė
1/3
rot for MSPs. This implies higher pair creation rates (and σ ) for more energetic pulsars.

For lower values of Ėrot, a wider gap was needed to fit the data. Thus, a larger dissipation region

was needed to increase E|| (decrease σ ) and thus increase the predicted Ecut. Lastly, by comparing

model predictions to an obervationally-inferred Lγ vs. Ėrot plot, they found that their model did not

yield large enough particle multiplicities19 to account for the measured Lγ at very high Ėrot and α

values. This model thus provides a tantalising macroscopic description of pulsars that may guide

kinetic codes attempting to uncover the microphysics that support the required macroscopic charge

19The number of secondaries spawned via pair production of radiation produced by primary particles; high multi-

plicities imply large currents.
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Figure 4: The electron and positron components of the current density for magnetospheres close to being

FF, as predicted by the PIC model of Brambilla et al. [34]. One can see that the electrons and positrons both

flowed out in the PC regions. The labels distinguish the cases where pair injection took place only at the

surface vs. everywhere in the magnetosphere.

and current densities.

The conductivity in the macroscopic dissipative models is supplied by the electron-positron

pair plasma at a microscopic level. Where and how this pair plasma originates is currently not

completely understood. Important constraints on the location of pair plasma production in the pul-

sar magnetosphere as well as its spectrum will come from observations in the 100 keV to 10 MeV

band. Radiation models suggest that non-thermal emission in this band comes from SR of electron-

positron pairs, produced either at the PCs [70] or the OGs [122]. The shape of the spectral energy

distribution reflects the pair spectrum and its peak can determine where the pairs are produced

[50, 71]. Observations of pulsars whose non-thermal emission peaks in the MeV band with pro-

posed telescopes with superior sensitivity such as AMEGO [92] and e-ASTROGAM [50] are an-

ticipated in the next fifteen years.

5.2 PIC Codes

The application of kinetic PIC codes to pulsar magnetospheres marks a mini-revolution in

theoretical studies of neutron stars. This technique can model the magnetosphere from first prin-

ciples, in contrast to the approaches described above. It is important to resolve both the tem-
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poral and spatial scales of the problem (plasma frequency and skin depth) to avoid numerical

instability and numerical plasma heating [34]. Correcting for the effect of too low a B-field20

on the radiative properties is also important to fully capture the emission physics [80]. Previous

works [26, 27, 45, 39, 40, 41, 43, 103, 104, 105, 80] focused on dealing self-consistently with the

pulsar electrodynamics including global current closure, the contribution of charges of different

sign to the current, dissipative processes, electromagnetic emission, and the effects of pair pro-

duction and general relativity (see Venter [134] for a more detailed summary). Several aspects,

including the importance of (spatial) particle injection properties (which was found to critically

depend on general relativity), as well as a renewed focus on the current sheet and Y-point21 as im-

portant dissipative regions (including the study of plasma instabilities and magnetic reconnection)

came to the fore. Here, we will only describe two studies that represent some of the most recent

work in this area.

Brambilla et al. [34] studied current composition and flow using a new PIC code [80], focus-

ing on the dependence of magnetospheric properties on particle injection rate. This study is more

realistic than some previous works given the larger particle injection rates that could be attained.

As in prior studies (e.g., [27, 39]), they obtained a transition of the magnetospheric solutions from

vacuum to FF (as seen in MHD models), invoking two scenarios: particle injection from the stellar

surface and injection everywhere in the magnetosphere. They found the highest dissipation (larger

than in the FF case) for intermediate injection rates. As the injection rate was increased (i.e., equiv-

alent to a macroscopic σ being increased), E|| was gradually (but never completely) screened and

the FF current structure was attained. Although these two injection scenarios provide similar field

structure and current density distributions, they differ in particle density distribution in the sense

that higher multiplicities were reached at the neutron star surface in the surface-injection scenario.

Furthermore, charges in this case rearranged themselves in such a way that charges of one sign may

contribute significantly to the current density in regions of opposite charge density, with electron

and positron currents almost cancelling each other when E|| is nearly screened. Availability of pairs

(or not) thus significantly impacts current flow. By studying particle trajectories, they could probe

some details of the current composition, e.g., they found that electrons and positrons both flowed

out in the PC regions (which may inhibit two-photon pair production; cf. Figure 4), lower-energy

electrons returned to the stellar surface by crossing B-field lines close to the return current sheet

inside the light cylinder (making them ideal candidates for emitting SR in the MeV range), some

electrons were semi-trapped near the Y-point before returning to the star, and positrons flowed out

on the separatrix where they were accelerated close to the Y-point and collected at the current sheet

outside the light cylinder. Such energetic particles flowing out along the current sheet correspond

well to the FIDO model assumption [79] that invokes dissipation regions only near the current

sheet beyond the light cylinder. This model generally provides a good description of the Fermi pul-

sar phenomenology. Thus, the latest PIC simulations are now elucidating and justifying the FIDO

macroscopic assumptions and electrodynamical (or spatial accelerator) constraints derived from the

HE data when assuming CR from positrons in the current sheet [80]. Future studies should keep

reaching for higher particle energies to simulate the radiative physics more realistically. Alternative

20A low B-field and low voltage are required to resolve the skin depth for the highest-energy particles.
21This is a region of merging field lines close to the light cylinder, where the inner magnetospheric lines transition to

a equatorial current sheet [127].
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Figure 5: Panel (a): Current distribution in a slice through the µµµ −ΩΩΩ plane for a rotator with α = 60◦.

The black lines indicate poloidal B-field lines while the colour shows the current component parallel to the

B-field, normalised by ΩB/2π . The white dashed lines indicate boundaries to regions with qualitatively

different current flow (and thus pair formation) properties. Panel (b): region with outflowing super-GJ

current, j||/ jGJ > 1; Panel (c): return current, j||/ jGJ < 0; Panel (d): outflowing sub-GJ current, where

0 < j||/ jGJ < 1. Ions, electrons, and positrons are indicated by green, blue, and red dots. Particle momentum

is normalised by mec (with me the electron mass) and the distance from the star, r is measured along the B-

field lines and normalised by R. One can see that electrons are accelerating outward and positrons inward

above the PC in Panel (b).

assumptions of pair production should lead to distinct observational characteristics, which may be

probed by future X-ray missions.

Philippov et al. [106] performed HE emission modelling in their PIC simulations of oblique

rotators, including one-photon and two-photon pair production, frame-dragging effects (which sub-

stantially increase the number of open field lines that can sustain pair production), electron and ion

extraction from the stellar surface (with the ions carrying a significant part of the energy in the

outflowing energy flux), and HE photon emission assuming SR. The resulting particle density and

particle energy flux of the pulsar wind varied significantly with latitude. Non-stationary pair cre-

ation thus occurred above the PC and also in the return current layer and current sheet. These
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detailed simulations are also providing important hints as to how the different species of particles

make up the global current flow patterns (Figure 5). Above nearly the whole PC, electrons were

accelerated outwards and positrons inward22, while pair cascades screen E|| and the newly-formed

pair cloud escaped from this region. The electrons orbited the current sheet where they contributed

to the HE photon flux. Some escaped from the pulsar magnetosphere while others returned to the

star. Conversely, in the return current layer, E|| extracted ions from the surface and both ions and

positrons accelerated outward, while there were electrons returning from the Y-point, initiating

further pair discharges. Ions and charge-separated plasma, which formed from photons emitted

towards the star, dominated the closed-field-line region. The density gap outside the current sheet

found in previous studies remained present as a region of suppressed particle density. Philippov et

al. [106] found that SR, produced by particles (mostly positrons) that are accelerated by relativistic

magnetic reconnection in the current sheet and close to the Y-point, dominated the γ-ray waveband

emission. Since the B-field approaches zero in the current sheet, SR losses were significantly in-

hibited and the positrons could thus attain very high energies there. The preliminary light curves

predictions exhibited the double-peaked structure seen in many Fermi pulsars. The caustics in the

sky maps traced the current sheet, the projection of which was sinusoidal for low α , but the caustics

became disconnected for larger α and the contribution from the separatrix layer decreased in this

case. The Poynting flux was strongly concentrated near the equator, and the plasma energy flux and

density distribution were very non-uniform. These calculations thus yielded the pulsar wind struc-

ture at its base and may be useful in solving the “σ -problem”23. Particle acceleration, emission

spectral cutoff Ecut (which depends on BLC), and conversion efficiency of Ėrot to HE emission were

found to strongly depend both on obliquity α and the level of pair production in the current sheet

(the radiative efficiency decreasing with increasing α and increasing efficiency of pair production

in the current sheet). This may help explain the scatter in the Lγ vs. Ėrot plot.

From these two recent papers, we can see that PIC codes are starting to address very inter-

esting, detailed questions about current flow and emission properties of pulsars, while also raising

new questions pertaining to the specific properties of pair production. The latter is fundamentally

linked to the particle energetics and radiative output of a pulsar.

5.3 Other ideas: Multipolar Fields and Polarisation

A number of authors have pointed out the need for offset-dipole or multipolar B-fields be-

yond the usual assumption of a dipolar rotator (e.g., [18, 21, 44, 114]), as also motivated by ob-

servations [30, 31, 56, 85]. Harding & Muslimov [68, 69] found that introduction of a modest

azimuthally asymmetric distortion in the B-field (the “offset-PC model”, cf. [25]), which may be

due to B-field-line sweepback near the light cylinder or non-symmetric currents within the star, can

significantly increase E|| on one side of the PC. This, combined with a smaller B- field line radius

of curvature, leads to larger pair multiplicity and a significant extension of pair spectra to lower

22This is different from what Brambilla et al. [34] found, given the different respective injection assumptions: surface

pair injection vs. pair formation over the full magnetosphere here (Philippov et al. [106] assume pair production wherever

the particles reach a threshold energy).
23This is the problem of how electromagnetic energy density is converted into particle energy density on short spatial

scales at the termination shock. This σ (ratio of electromagnetic to particle energy density) is not to be confused with

the macroscopic conductivity used elsewhere.
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energies, thus providing a mechanism for pair creation even in (old) pulsars that have previously

been thought to be pair-starved.

Pétri studied offset-dipole B-fields in vacuum in a series of papers. He presented analytical

solutions in closed form in flat vaccum spacetime for the retarded point quadrupole, hexapole, and

octopole as generalisations of the retarded point dipole, emphasising the effect of B-field topology

on emitted Poynting flux, braking index, PC geometry, and caustic beam structure. He cautioned

that the polar B-field strength inferred from observations assuming a dipolar field may be in er-

ror in the presence of significant multipolar components [99]. He next provided analytical solu-

tions for a displaced dipolar field, and computed the Ėrot and the torque exerted on the pulsar’s

crust, pointing out that HE light curve and polarisation modelling may help constrain the magnetic

topology [100] (see also Kundu & Pétri [84]). In a dedicated paper, polarisation properties in an

off-centre dipole field were studied by extending the well-known rotating vector model to a form

appropriate for this topology, called the decentred rotating vector model (DRVM) [101]. Finally,

Pétri [102] generalised multipolar field expressions to include the effect of strong gravity by com-

puting general-relativistic extensions of the Deutsch solution [52], including spacetime curvature

and frame-dragging effects (both numerically and analytically, but approximately in the latter case).

Gralla et al. [60] implemented a general analytical procedure for studying an arbitrary ax-

isymmetric FF B-field of a slowly rotating star (aligned rotator) including general-relativistic ef-

fects, with the dipolar B-field component dominating far from the star. They could confirm that

conditions conducive to pair production exist above the PC (compatible with recent PIC simula-

tions [105]), even for such non-dipolar fields, and showed that the dipolar component is ∼ 60%

larger than the canonical value. The location and shape of the PCs are, however, modified dramat-

ically upon inclusion of multipolar field components (becoming offset and even filling an annular

region). This may have implications for MSP radio beams as well as phase lags between radio and

γ-ray beams. Gralla et al. [61] next studied oblique rotators, with the B-field being symmetric about

an axis other than the rotation axis, including general-relativistic effects and multipole components

and focusing on the near-field charge and current flow. Using the method of matched asymptotic

expansions24 , they derived a general analytic formula for the PC shape and charge-current distri-

bution as a function of the stellar mass, radius, rotation rate, moment of inertia, and B-field. For

combined dipole and quadrupole components, thin annular PCs were again obtained. These results

may be important for PC heating and resulting X-ray thermal emission calculations, as well as neu-

tron star mass and radius measurements by, e.g., the NICER Mission [20], and for pair production

physics.

In addition to explaining spectral, light curve, and population features, models should also

be able to describe the polarisation signatures that have been or may be seen in pulsars (e.g.,

[76, 96, 121]). Thus, polarisation studies provide an additional constraint on B-field structure,

obliquity and viewing angle, and magnetospheric emission physics while also aiding in model

scrutiny and discrimination25 . Dyks et al. [55] studied the effect of Special Relativity on HE pul-

24Solving and matching expressions that are valid near and far from the stellar surface: near the star the equations

describe a static vacuum B-field in the Schwarzschild spacetime, while far away the FF magnetosphere of a rotating

point dipole in flat spacetime is solved numerically.
25For example, authors have invoked SR [96], CR [78] or inverse Compton upscattering [10, 89] from beyond the

light cylinder to explain the observed γ-ray signatures. Polarisation properties of these models should be qualitatively

16



P
o
S
(
M
U
L
T
I
F
2
0
1
7
)
0
3
8

High-energy Emission Properties of Pulsars Christo Venter

Figure 6: Predictions of light curves (top panels), position angle (middle panels), and polarisation fraction

(bottom panels) vs. rotation phase for α = 60◦, ζ = 70◦, and four frequency bands: optical (1−10 eV), soft

X-ray (2− 10 keV), hard X-ray (0.1− 10 MeV), and γ-ray (0.1− 100 GeV). Two emission radius ranges

were assumed (r = 0.7− 1.3RLC and r = 1.3− 2.0RLC) as well as two constant particle SR pitch angles,

ψ = 0.01 and ψ = 0.1 [72].

sar light curves and polarisation in the TPC, OG, and PC models using a retarded vacuum B-field

geometry [52]. They found that the TPC could qualitatively reproduce the optical polarisation

measurements of the Crab pulsar [117]. In particular, they found fast swings of the position an-

gle and dips in linear polarisation degree at the phases of the HE light curve peaks. This effect

arises from the caustic nature of the HE beam: there is a bunching of photons from different emis-

sion altitudes (where local B-field vector orientations may differ) in a small observer phase range,

leading to a depolarisation as well as rapid position angle changes over this small range in phase.

Additionally, there is also a depolarisation due to the superposition of radiation patterns originating

from opposite magnetic poles. Cerutti et al. [41] calculated Stokes parameters using their 3D PIC

code. They studied HE SR emission originating in the current sheet and found that this emission is

mildly polarised (they found an average degree of linear polarisation of ∼ 15% in the on-pulse and

∼ 30% in the off-pulse intervals), also showing a clear anti-correlation between flux and degree of

linear polarisation as a signature of caustic emission (but this time in the current sheet as opposed

to interior to the light cylinder), similar to the findings of Dyks et al. [55]. Cerutti et al. [41] as-

different.
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sociated the rapid swings in the polarisation angle near the peak phases with the change of B-field

orientation (polarity) as the observer’s line of sight passes through the current sheet. Harding &

Kalapotharakos [72] calculated multi-frequency polarisation characteristics of pulsar emission in-

voking emission from the outer FF magnetosphere and current sheet. They assumed that optical

to hard X-ray emission is produced by SR from electron-positron pairs and γ-ray emission is due

to either CR or SR from primary electrons. Large swings in position angle coupled with strong

depolarisation dips occurred near the light curve peak phases in all energy bands. The SR polari-

sation characteristics were found to be very sensitive to the photon emission radius: larger position

angle swings occurred for emission outside the light cylinder as the line of sight crossed the cur-

rent sheet. The phase-averaged SR polarisation degree climbed from 10% to ∼20% for emission

inside vs. outside the light cylinder. On the other hand, the polarisation degree for CR was up to

40%−60%, with the dips being wider and deeper for emission outside the light cylinder (Figure 6).

A sharp increase in polarisation degree together with a change in position angle at the transition

between X-ray and γ-ray spectral components would confirm CR as the γ-ray emission mechanism.

6. Conclusion

In this paper, we reviewed general observed properties of HE pulsars, indicating the major

impact of the Fermi LAT, which has confirmed and broadened many important conclusions by its

predecessor, CGRO. We have also described the standard theoretical framework plus new devel-

opments to explain these properties. We summarised new directions that are being pursued, such

as including the effect of general relativity on pair production and PC shapes, studying multipolar

fields, and making predictions for polarisation signatures expected for different emission mecha-

nisms. Continued development of our technological capabilities, theoretical model development,

computational advances, and better data acquisition should aid us in pushing the boundaries of our

understanding of the pulsar phenomenon.
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[76] C. Kalapotharakos & I. Contopoulos 2010, The Pulsar Synchrotron in 3D: Curvature Radiation,

MNRAS, 404, 767

[77] C. Kalapotharakos, D. Kazanas, A. K. Harding, & I. Contopoulos 2012, Toward a Realistic Pulsar

Magnetosphere, ApJ, 749, 2

[78] C. Kalapotharakos, A. K. Harding, & D. Kazanas 2014, Gamma-Ray Emission in Dissipative Pulsar

Magnetospheres: From Theory to Fermi Observations, ApJ, 793, 97

[79] C. Kalapotharakos, A. K. Harding, D. Kazanas, & G. Brambilla 2017, Fermi Gamma-Ray Pulsars:

Understanding the High-energy Emission from Dissipative Magnetospheres, ApJ, 842, 80

[80] C. Kalapotharakos, G. Brambilla, A. Timokhin, A. K. Harding, & D. Kazanas 2018, 3D Kinetic

Pulsar Magnetosphere Models: Exploring Self Consistency, submitted to ApJ (arXiv:1710.03170)

[81] S. S. Komissarov 2007, Multidimensional Numerical Scheme for Resistive Relativistic

Magnetohydrodynamics, MNRAS, 382, 995

[82] A. Kong 2014, X-ray Observations of Radio-quiet Black Widow-type Millisecond Pulsars, in: The

X-ray Universe 2014, ed. J.-U. Ness, 106

[83] L. Kuiper & W. Hermsen 2015, The Soft γ-ray Pulsar Population: a High-energy Overview, MNRAS,

449, 3827

[84] A. Kundu & J. Pétri 2017, Pulsed Emission from a Rotating Off-centred Magnetic Dipole in Vacuum,

MNRAS, 471, 3359

[85] A. D. Kuzmin, V. M. Malofeev, V. A. Izvekova, W. Sieber, & R. Wielebinski 1986, A comparison of

high-frequency and low-frequency characteristics of pulsars, A&A 161, 183

[86] G. C. K. Leung, J. Takata, C. W. Ng, A. K. H. Kong, P. H. T. Tam, C. Y. Hui, & K. S. Cheng 2014,

Fermi-LAT Detection of Pulsed Gamma-Rays above 50 GeV from the Vela Pulsar, ApJL, 797, L13

[87] J. Li, A. Spitkovsky, & A. Tchekhovskoy 2012, Resistive Solutions for Pulsar Magnetospheres, ApJ,

746, 60

[88] A. G. Lyne, B. W. Stappers, M. J. Keith, P. S. Ray, M. Kerr, F. Camilo, & T. J. Johnson 2015, The

Binary Nature of PSR J2032+4127, MNRAS, 451, 581

[89] M. Lyutikov 2013, Inverse Compton Model of Pulsar High-energy Emission, MNRAS, 431, 2580

[90] A. McCann 2015, A Stacked Analysis of 115 Pulsars Observed by the FERMI LAT, ApJ, 804, 86

[91] F. C. Michel 1991, Theory of Neutron Star Magnetospheres, University of Chicago Press

[92] A. Moiseev et al., All-Sky Medium Energy Gamma-ray Observatory (AMEGO), ICRC2017, PoS, 301,

798

22



P
o
S
(
M
U
L
T
I
F
2
0
1
7
)
0
3
8

High-energy Emission Properties of Pulsars Christo Venter

[93] H. Montgomery 1999, Unipolar Induction: a Neglected Topic in the Teaching of Electromagnetism,

Eur. J. Phys., 20, 271

[94] J. P. Ostriker & J. E. Gunn 1969, On the Nature of Pulsars. I. Theory, ApJ, 157, 1395

[95] V. R. Pandharipande, D. Pines, & R. A. Smith 1976, Neutron Star Structure: Theory, Observation,

and Speculation, ApJ, 208, 550

[96] J. Pétri, & J. G. Kirk 2005, The Polarization of High-Energy Pulsar Radiation in the Striped Wind

Model, ApJL, 627, L37

[97] J. Pétri 2011, A Unified Polar Cap/Striped Wind Model for Pulsed Radio and Gamma-ray Emission in

Pulsars, MNRAS, 412, 1870

[98] J. Pétri 2012, High-energy Emission from the Pulsar Striped Wind: a Synchrotron Model for

Gamma-ray Pulsars, MNRAS, 424, 2023

[99] J. Pétri 2015, Multipolar Electromagnetic Fields around Neutron Stars: Exact Vacuum Solutions and

Related Properties, MNRAS, 450, 714

[100] J. Pétri 2016, Radiation from an Off-centred Rotating Dipole in Vacuum, MNRAS, 463, 1240

[101] J. Pétri 2017a, Polarized emission from an off-centred dipole, MNRAS, 466, L73

[102] J. Pétri 2017b, Multipolar Electromagnetic Fields around Neutron Stars: General-relativistic

Vacuum Solutions, MNRAS, 472, 3304

[103] A. A. Philippov & A. Spitkovsky 2014, Ab Initio Pulsar Magnetosphere: Three-dimensional

Particle-in-cell Simulations of Axisymmetric Pulsars, ApJL, 785, L33

[104] A. A. Philippov, A. Spitkovsky, & B. Cerutti 2015a, Ab Initio Pulsar Magnetosphere:

Three-dimensional Particle-in-cell Simulations of Oblique Pulsars, ApJL, 801, L19

[105] A. A. Philippov, B. Cerutti, A. Tchekhovskoy, & A. Spitkovsky 2015b, Ab Initio Pulsar

Magnetosphere: The Role of General Relativity, ApJL, 815, L19

[106] A. A. Philippov & A. Spitkovsky 2018, Ab-Initio Pulsar Magnetosphere: Particle Acceleration in

Oblique Rotators and High-energy Emission Modeling, submitted to ApJ (arXiv:1707.04323)

[107] M. Pierbattista, A. K. Harding, I. A. Grenier, T. J. Johnson, P. A. Caraveo, M. Kerr, & P. L. Gonthier

2015, Light-curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi

Pulsars, A&A, 575, A3

[108] H. J. Pletsch et al. 2012, Discovery of Nine Gamma-Ray Pulsars in Fermi Large Area Telescope

Data Using a New Blind Search Method, ApJ, 744, 105

[109] G. J. Qiao, K. J. Lee, H. G. Wang, R. X. Xu J. L. Han 2004, The Inner Annular Gap for Pulsar

Radiation: γ-Ray and Radio Emission, ApJ, 606, L49

[110] N. Renault-Tinacci, I. Grenier, & A. K. Harding 2015, Phase-Resolved Spectral Analysis of 25

Millisecond Gamma-ray Pulsars, 34th International Cosmic Ray Conference (ICRC2015), 34, 843

[111] M. S. E. Roberts 2011, New Black Widows and Redbacks in the Galactic Field, AIP Conf. Ser., ed.

M. Burgay, N. D’Amico, P. Esposito, A. Pellizzoni, & A. Possenti, 1357, 127

[112] R. Romani & I.-A. Yadigaroglu 1995, Gamma-ray Pulsars: Emission Zones and Viewing

Geometries, ApJ, 438, 314

[113] R. Romani 1996, Gamma-Ray Pulsars: Radiation Processes in the Outer Magnetosphere, ApJ, 470,

469

23



P
o
S
(
M
U
L
T
I
F
2
0
1
7
)
0
3
8

High-energy Emission Properties of Pulsars Christo Venter

[114] M. A. Ruderman & P. G. Sutherland 1975, Theory of Pulsars - Polar Caps, Sparks, and Coherent

Microwave Radiation, ApJ, 196, 51

[115] P. M. Saz Parkinson et al. 2010, Eight γ-ray Pulsars Discovered in Blind Frequency Searches of

Fermi LAT Data, ApJ, 725, 571

[116] P. Schmidt et al. 2005, Search for Pulsed TeV Gamma-Ray Emission from Young Pulsars with

H.E.S.S., AIP Conf. Ser., ed. F. A. Aharonian, H. J. Völk, & D. Horns, 377

[117] A. Słowikowska, G. Kanbach, M. Kramer, & A. Stefanescu 2009, Optical Polarization of the Crab

Pulsar: Precision Measurements and Comparison to the Radio Emission, MNRAS, 397, 103

[118] D. A. Smith, L. Guillemot, M. Kerr, C. Ng, & E. Barr 2017, Gamma-ray Pulsars with Fermi,

arXiv:1706.03592

[119] A. Spitkovsky 2006, Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique

Rotators, ApJL, 648, L51

[120] S. A. Story & M G. Baring 2014, Magnetic Pair Creation Transparency in Gamma-Ray Pulsars,

ApJ, 790, 61

[121] J. Takata, & H.-K. Chang 2007, Pulse Profiles, Spectra, and Polarization Characteristics of

Nonthermal Emissions from the Crab-like Pulsars, ApJ, 670, 677

[122] J. Takata, H. K. Chang, & S. Shibata 2008, Particle Acceleration and Non-thermal Emission in the

Pulsar Outer Magnetospheric Gap, MNRAS, 386, 748

[123] T. M. Tauris & S. Konar 2001, Torque Decay in the Pulsar (P,Ṗ) Diagram. Effects of Crustal Ohmic
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