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To study transverse momentum distribution of particles produced in hadron-hadron collision one
can use transverse momentum dependent (TMD) factorization approach. The TMD factorization
is valid in the limit of infinitely small transverse momentum, i.e. when the transverse momentum
of a produced particle is much smaller than its invariant mass. To apply the TMD factorization
in the region of moderate transverse momentum one has to include power corrections. We will
discuss how one can calculate power corrections to TMD factorization through the solution of the
equations of motion in background fields of the colliding hadrons.
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Figure 1: Particle production by gluon-gluon fusion

1. Introduction

To discuss a general scheme of calculation of higher-twist corrections to TMD factorization,
let us consider a relatively simple case of scalar particle Φ production (e.g. Higgs particle) in
hadron-hadron collision through the gluon-gluon fusion, which is defined by interaction vertex

LΦ = gΦ

∫
d4x Φ(x)g2Fa

µν(x)F
aµν(x) (1.1)

where Fµν(x) is the gluon field strength tensor.
A typical diagram for particle Φ production with momentum q is presented in Fig.1. It is

straightforward to calculate the corresponding differential cross section:

dσ =
d3q

2Eq(2π)3
g2

Φ

2s
W (pA, pB,q) (1.2)

where pA and pB are momenta of incoming hadrons, s = (pA + pB)
2 and the hadronic tensor

W (pA, pB,q) is defined as

W (pA, pB,q)
def
=

∫
d4x e−iqx〈pA, pB|g4F2(x)F2(0)|pA, pB〉 (1.3)

where we use a shorthand notation F2(x) ≡ Fa
µν(x)F

aµν(x).
The goal of this paper is to calculate the hadronic tensor (1.3) in the leading order (tree level

diagrams) and show that it is a convolution of two TMD operators describing non-perturbative
distribution of gluons in colliding hadrons [1, 2, 3, 4].

2. Rapidity factorization approach

Factorization principle implies that one can separate different types of emission contributing to
an experimental observable, in our case the hadronic tensor (1.3), and consider them independently.
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Figure 2: Three types of the fields

As a result, before derivation of the factorization theorem one should define those types of emission
in a rigorous way. In this paper we will use the rapidity factorization scheme [5] which separates
the fields based on the values of the Sudakov variables α and β , which define the standard decom-
position of an arbitrary momentum vector p = α p1 +β p2 + p⊥, where pµ

1 = pµ

A − (p2
A/s)pµ

B and
pµ

2 = pµ

B − (p2
B/s)pµ

A are light-like vectors. We will also use notations x• ≡ xµ pµ

1 and x∗ ≡ xµ pµ

2
for the dimensionless light-cone coordinates.

To separate different types of emission we introduce two cut-off parameters, σa and σb, and
define three types of fields. The fields Aµ , ψa with β < σa describe emission which is collinear
to momentum vector pA and can be associated with dynamics of the “projectile” hadron A. In
a similar manner, the fields Bµ , ψB with α < σb correspond to emission collinear to momentum
pB and describe the structure of the “target” hadron B. Finally the “cental” region of emision is
constructed from fields Cµ , ψC with α > σb and β > σa. It is obvious that fields of C sector can
be created through interaction of A and B fields only. A schematic representation of separation of
fields into three sectors is presented in Fig. 2.

In terms of fields A, B and C the process of particle production in hadron-hadron collision can
be quite involved, see Fig. 3. To prove factorization, one should show that complicated interaction
between sectors can be disentangled and presented as a convolution of independent pieces each
constructed from fields of only one sector.

To separate contributions of different sectors to hadronic tensor (1.3) we will use its functional
integral representation:

W (pA, pB,q) = ∑
X

∫
d4x e−iqx〈pA, pB|g2F2(x)|X〉〈X |g2F2(0)|pA, pB〉 (2.1)
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Figure 3: Particle production by gluon-gluon fusion

=
t f→∞

lim
ti→−∞

g4
∫

d4x e−iqx
∫ Ã(t f )=A(t f )

DÃµDAµ

∫
ψ̃(t f )=ψ(t f )

D ˜̄ψDψ̃Dψ̄Dψ Ψ
∗
pA
(~̃A(ti), ψ̃(ti))

× Ψ
∗
pB
(~̃A(ti), ψ̃(ti))e−iSQCD(Ã,ψ̃)eiSQCD(A,ψ)F̃2(x)F2(0)ΨpA(~A(ti),ψ(ti))ΨpB(~A(ti),ψ(ti))

where functional integral over fields A, ψ represent amplitude 〈X |F2(0)|pA, pB〉, while integration
over fields Ã, ψ̃ corresponds to complex conjugate amplitude 〈pA, pB|F2(x)|X〉. The hadrons’ wave
functions at initial time ti are ΨpA(~A(ti),ψ(ti)) and ΨpB(~A(ti),ψ(ti)). The boundary conditions for
the functional integral Ã(t f ) = A(t f ) and ψ̃(t f ) = ψ(t f ) represent sum over complete set of final
states ∑X , cf. Refs. [10, 11].

Indeed, in terms of the functional integral separation of fields into three sectors is straightfor-
ward:

W (pA, pB,q) = g4
∫

d4xe−iqx
∫ Ã(t f )=A(t f )

DÃµDAµ

∫
ψ̃a(t f )=ψa(t f )

Dψ̄aDψaD ˜̄ψaDψ̃a

× e−iSQCD(Ã,ψ̃a)eiSQCD(A,ψa)Ψ
∗
pA
(~̃A(ti), ψ̃a(ti))ΨpA(~A(ti),ψ(ti))

×
∫ B̃(t f )=B(t f )

DB̃µDBµ

∫
ψ̃b(t f )=ψb(t f )

Dψ̄bDψbD ˜̄ψbDψ̃b

× e−iSQCD(B̃,ψ̃b)eiSQCD(B,ψb)Ψ
∗
pB
(~̃B(ti), ψ̃b(ti))ΨpB(~B(ti),ψb(ti)) (2.2)

×
∫

DCµ

∫ C̃(t f )=C(t f )

DC̃µ

∫
Dψ̄CDψC

∫
ψ̃c(t f )=ψc(t f )

D ˜̄ψCDψ̃C F̃2
C (x)F

2
C (0) e−iS̃C+iSC

where action SC = SQCD(A+B+C)−SQCD(A)−SQCD(B) describes dynamics of fields Cµ , ψC in
the background of external fields Aµ , ψa and Bµ , ψb.

From the form of this action it is obvious that in general functional integrals over A and B
fields depend on each other through interaction with C fields. To prove factorization we need to
show that integral over C fields can be reduced to a product of two operators each constructed from
A or B fields only. As a result the hadronic tensor W can be written as a product of independent
functional integrals over A and B fields representing target and projectile TMD operator.

The functional integral over fields of the “central” sector has a general form∫
DCµ

∫ C̃(t f )=C(t f )

DC̃µ

∫
Dψ̄CDψC

∫
ψ̃c(t f )=ψc(t f )

D ˜̄ψCDψ̃C g4F̃2
C (x)F

2
C (0) e−iS̃C+iSC
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= eSeff(A,B,Ã,B̃)O(q,x;A, Ã,ψaψ̃a;B, B̃,ψb, ψ̃b) (2.3)

where operator O is constructed from diagrams of fields C connected to F̃2
C (x)F

2
C (0) in the back-

ground of A and B and action Se f f represents exponentiation of direct interaction between specta-
tors. This interaction is mediated by quark-gluon exchanges with q2 '−q2

⊥ and provides Glauber
contribution to hadronic tensor W (pA, pB,q).

The resummation of Glauber exchanges is an open problem. The form of the effective ac-
tion Se f f is known only in first few orders orders of perturbation theory, see [5, 6, 7, 8, 9]. The
remarkable property of the known result is that

eSeff(A,B,Ã,B̃)
∣∣∣
A=Ã;B=B̃

= 1 (2.4)

In our problem, the fields at different sides of the cut are equivalent to each other, i.e. A = Ã
and B = B̃, due to boundary conditions in the functional integral (2.2) and the form of background
fields dependence on coordinates.

Indeed, in the tree level approximation we don’t have large logarithms of the cut-off parameters
σa and σb. As a result one can assume σa, σb = 0. In other words, in any integral over momentum
the contour of integration can be deformed away from the region of small α and β where the values
of the cut-off parameters are important.

The choice of σa, σb = 0 means that the background fields A don’t cary any β component
of the transverse momenta. On the other hand fields of the B sector don’t bring any fraction α of
the momentum p1. This corresponds to the following choice of the dependence of the background
fields on coordinates:

A(x) = A(x•,x⊥), ψa(x) = ψa(x•,x⊥)

B(x) = B(x∗,x⊥), ψb(x) = ψb(x∗,x⊥) (2.5)

Now let us take into account the boundary conditions in the functional integral (2.2):

Ã(t f ) = A(t f ), ψ̃a(t f ) = ψa(t f ) and B̃(t f ) = B(t f ), ψ̃b(t f ) = ψb(t f ) (2.6)

The fields A,ψa and Ã, ψ̃a do not depend on x∗, so if they coincide at x∗→ ∞ they have to be
the same. The same logic can be applied to B,ψb and B̃, ψ̃b fields which do not depend on x•. As a
result we have

A(x•,x⊥) = Ã(x•,x⊥), ψa(x•,x⊥) = ψ̃a(x•,x⊥)

B(x∗,x⊥) = B̃(x∗,x⊥), ψb(x∗,x⊥) = ψ̃b(x∗,x⊥) (2.7)

which leads to cancellation of the Glauber contribution, see eq. (2.4).
Now we see that with our choice of the background fields we need to calculate diagrams

connected to F̃2
C (x)F

2
C (0), i.e.∫

DCµ

∫ C̃(t f )=C(t f )

DC̃µ

∫
Dψ̄CDψC

∫
ψ̃c(t f )=ψc(t f )

D ˜̄ψCDψ̃C g4F̃2
C (x)F

2
C (0) e−iS̃C+iSC

= O(q,x;A,ψa;B,ψb) (2.8)

In next sections we will see that calculation of the functional integral (2.8) is equivalent to
solution of the Yang-Mills equation of motion with retarded Green functions. We will see how one
can construct this solution using parametrization of the background fields.
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3. Classical equations of motion

In this paper we discuss calculation of the functional integral O at the tree level and do not
consider diagrams with loops which generate evolution of projectile and target TMD operators.

It is well known that resummation of Feynman diagrams at the tree level is equivalent to
solution of equations of motion

DνFa
µν(Ā+ B̄+C) = g∑

f
(ψ̄ f

a + ψ̄
f

b + ψ̄
f

c )γµta(ψ f
a +ψ

f
b +ψ

f
c )

(i 6∂ +g 6 Ā+g 6 B̄+g 6C)(ψ f
a +ψ

f
b +ψ

f
c ) = m(ψ f

a +ψ
f

b +ψ
f

c ) (3.1)

In general, the perturbative solution of eq. (3.1) should be constructed with Feynman propa-
gators. However, calculation of the double functional integral (2.8) is equivalent to calculation of
amplitudes with retarded Green functions. This can be shown explicitly by calculation of Feynman
diagrams with the cut at the tree level and resummation of diagrams with different position of the
cut.

Solution of equations of motion (3.1) for fields C, ψc in background fields A, ψa and B, ψb

with retarded Green functions leads to solution with vanishing fields, i.e. Cµ → 0 and ψc→ ∞, at
t→−∞, which is equivalent to solution of (3.1) with boundary conditions

Aµ(x)
x∗→−∞
= Āµ(x•,x⊥), ψ(x) x∗→−∞

= ψa(x•,x⊥)

Aµ(x)
x•→−∞
= B̄µ(x∗,x⊥), ψ(x) x•→−∞

= ψb(x∗,x⊥) (3.2)

where we use a shorthand notation A = Ā+ B̄+C and ψ = ψa+ψb+ψc. The physical meaning of
this boundary conditions is absence of “centra” fields Cµ , ψc before collision of hadrons.

Unfortunately, we can not solve equations of motion (3.1) in general case. However, in case
of large center of mass energy of the scattering reaction we can construct an approximate solution.

Indeed, at s→ ∞ components of the background fields are not equivalent to each other. Let us
introduce the following parametrization for gluon background fields

Ā∗(x•,x⊥) ∼ s, Ā•(x•,x⊥) ∼ m2
⊥, Āi(x•,x⊥) ∼ m⊥

B̄∗(x∗,x⊥) ∼ m2
⊥, B̄•(x∗,x⊥) ∼ s, B̄i(x∗,x⊥) ∼ m⊥ (3.3)

where m⊥ is a typical small hadronic mass, and analogous parametrization for quark fields as well

6 p1ψa(x•,x⊥) ∼ m5/2
⊥ , γiψa(x•,x⊥) ∼ m3/2

⊥ , 6 p2ψa(x•,x⊥) ∼ s
√

m⊥

6 p1ψb(x∗,x⊥) ∼ s
√

m⊥, γiψb(x∗,x⊥) ∼ m3/2
⊥ , 6 p2ψb(x∗,x⊥) ∼ m5/2

⊥ (3.4)

It is obvious that this parametrization introduces a small parameter m2
⊥/s which we will use to

construct an approximate solution of the equations of motion at s→ ∞.
Indeed, let us look at perturbative solution of the equations of motion (3.1):

A[1]a
µ (x) =

∫
d4z (x| 1

P2gµν +2igF [0]µν
|z)abLbν(z) (3.5)

A[2]a
µ (x) = g

∫
d4z

[
− i(x| 1

P2gµη +2igF [0]µη
Pξ |z)aa′ f a′bcA[1]b

ξ
A[1]cη

+ (x| 1
P2gµη +2igF [0]µη

|z)aa′ f a′bcA[1]bξ (Dξ A[1]cη −DηA[1]c
ξ

)
]

5
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Ψ
[1]
f (x) = −

∫
d4z (x| 1

6P |z)Lψ(z), Ψ
[2]
f (x) = −g

∫
d4z (x| 1

6P |z) 6A
[1](z)Ψ[0]

f (z)

(3.6)

where zero-order approximation is a sum of background fields

gA
[0]

µ (x) = Āµ(x•,x⊥)+ B̄µ(x∗,x⊥)

Ψ
[0](x) = ψa(x•,x⊥)+ψb(x∗,x⊥) (3.7)

and the linear term

La
i ≡ DµF

[0]a
µi +gΨ̄

[0]
γita

Ψ
[0]

Lψ ≡ 6PΨ
[0] (3.8)

defines creation of “central” sector fields C, ψc through interaction of background fields A
[0]

µ , Ψ[0].
The perturbative solutions (3.5) and (3.6) contains retarded Green functions which one can

understand as expansion

(x| 1
P̄2gµν +2igF̄µν + iε p0

|y) ≡ (x| 1
p2 + iε p0

|y)−g(x| 1
p2 + iε p0

Oµν

1
p2 + iε p0

|y)

+ g2(x| 1
p2 + iε p0

Oµξ

1
p2 + iε p0

Oξ

ν

1
p2 + iε p0

|y)+ ... (3.9)

where

P̄µ ≡ i∂µ +gĀµ +gB̄µ , F̄µν = ∂µ(Ā+ B̄)ν −µ ↔ ν− ig[Āµ + B̄µ , Āν + B̄ν ]

Oµν ≡
(
{pξ , Āξ + B̄ξ}+g(Ā+ B̄)2)gµν +2iF̄µν (3.10)

It is easy to see that in perturbative solutions (3.5), (3.6) any operator is constructed from
background fields and has certain power counting (m2

⊥/s)n, which can be used to separate leading
contribution.

In the next section we will see results of this separation with the specific choice of the gauge
of the background fields. Yet the final result of calculation of the hadronic tensor W (pA, pB,q) will
be gauge invariant.

4. Parametrization of the perturbative solution

Before we perform parametrization of the perturbative solution and separation of the leading
contribution let us rotate background field A, ψa and B, ψb to a new set of fields U , Σa and V , Σb

correspondingly using gauge matrix Ω.
It is convenient to work in a gauge with

U∗ = 0, V• = 0 (4.1)

where we don’t have large components of the fields.

6
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The existence of such gauge rotation has been explicitly shown in [12]. In this case the gauge
matrix has a remarkable property

Ω(x∗,x•,x⊥)
x∗→−∞→ [x•,−∞•]Ā∗x , Ω(x∗,x•,x⊥)

x•→−∞→ [x∗,−∞∗]B̄•x (4.2)

The rotated background fields satisfy equations of motion

Dν
UUa

µν = g2
∑

f
Σ̄

f
aγµta

Σ
f
a , i 6DU Σa = 0

Dν
VV a

µν = g2
∑

f
Σ̄

f
bγµta

Σ
f
b , i 6DV Σb = 0 (4.3)

and have the following parametrization

U• ∼ V∗ ∼ m2
⊥, Ui ∼ Vi ∼ m⊥ (4.4)

We see that rotated fields don’t have large components proportional to s.
In terms of new background fields we need to solve equations of motion (3.1) with boundary

conditions

gAµ(x)
x∗→−∞
= Uµ(x•,x⊥), ψ(x) x∗→−∞

= Σa(x•,x⊥)

gAµ(x)
x•→−∞
= Vµ(x∗,x⊥), ψ(x) x•→−∞

= Σb(x∗,x⊥) (4.5)

where

Uµ(x•,x⊥) ≡
2
s

p2µU•(x•,x⊥)+Uµ⊥(x•,x⊥) (4.6)

Vµ(x∗,x⊥) ≡
2
s

p1µV∗(x∗,x⊥)+Vµ⊥(x∗,x⊥)

Ui(x•,x⊥) ≡
2
s

∫ x•

−∞

dx′• U∗i(x′•,x⊥), Vi(x∗,x⊥) ≡
2
s

∫ x∗

−∞

dx′∗ V•i(x′∗,x⊥)

U•(x•,x⊥) ≡
2
s

∫ x•

−∞

dx′• U∗•(x′•,x⊥), V∗(x∗,x⊥) ≡ −
2
s

∫ x∗

−∞

dx′∗ V∗•(x′∗,x⊥)

and Σa,Σb are defined as

Σa(z•,z⊥) ≡ [−∞•,z•]zψa(z•,z⊥), Σb(z∗,z⊥) ≡ [−∞∗,z∗]zψb(z∗,z⊥) (4.7)

and Uµν (Vµν ) is a shorthand notation of the strength tensor of fields U(V ).
The perturbative solution has the same form (3.5) and (3.6), but zero-order approximation for

fields is now defined as

gA
[0]

µ (x) = Uµ(x•,x⊥)+Vµ(x∗,x⊥)

Ψ
[0](x) = Σa(x•,x⊥)+Σb(x∗,x⊥) (4.8)

The corresponding expressions for strength tensors in the zero-order approximation are

gF
[0]
•i = U•i +V•i− i[U•,Vi], gF

[0]
∗i = U∗i +V∗i− i[V∗,Ui] (4.9)

gF
[0]
∗• = U∗•+V∗•+ i[U•,V∗], gF

[0]
i j = Ui j +Vi j− i[Ui,Vj]+ i[U j,Vi]

7
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Using parametrization of the background fields (4.4) it is possible to separate operators in per-
turbative solution of the equations of motion (3.5) and (3.6) based on power counting of parameter
m2
⊥/s. Let us start with the linear term. In terms of background fields it has the following form:

La
i ≡ DµF

[0]a
µi +gΨ̄

[0]
γita

Ψ
[0] = L(0)a

i +L(1)a
i

L(0)a
i = − i

g

[
U jabV b

ji +V jabUb
ji +Dab

j (U jbcV c
i +V jbcUc

i )
]

− 2i
gs

(
Uab
∗•V

b
i −V ab

∗•Ub
i
)
+gΣ̄ata

γiΣb +gΣ̄bta
γiΣa

L(1)a
i = − 2i

gs

[
Uab
• V b
∗i +V ab

∗ Ub
•i− i{U•,V∗}abUb

i − i{V∗,U•}abV b
i
]

La
• ≡ DµF

[0]a
µ• +gΨ̄

[0]
γ•ta

Ψ
[0] = L(−1)a

• +L(0)a
• +L(1)a

• , L(−1)a
• =

i
g

U jabV b
• j

L(0)a
• =

i
g

V jabUb
• j +

i
g
D jabUbc

• V c
j +gΣ̄ata

γ•Σb +gΣ̄bta
γ•Σa−

4i
gs

Uab
• V b
∗•

L(1)a
• =

2
gs
(U•U•)abV b

∗

La
∗ ≡ DµF

[0]a
µ∗ +gΨ̄

[0]
γ∗ta

Ψ
[0] = L(−1)a

∗ +L(0)a
∗ +L(1)a

∗ , L(−1)a
∗ =

i
g

V jabUb
∗ j

L(0)a
∗ =

i
g

U jabV b
∗ j +

i
g
D jabV bc

∗ Uc
j +gΣ̄ata

γ∗Σb +gΣ̄bta
γ∗Σa +

4i
gs

V ab
∗ Ub

∗•

L(1)a
∗ =

2
gs
(V∗V∗)abUb

•

Lψ ≡ 6PΨ
[0] = L(0)

ψ +L(1)
ψ

L(0)
ψ = γ

iUiΣb + γ
iViΣa, L(1)

ψ =
2
s
6 p2U•Σb +

2
s
6 p1V∗Σa (4.10)

Using parametrization of the background fields (4.4) it is straightforward to obtain the follow-
ing power counting for the linear term:

L(0)
i ∼ m3

⊥, L(1)
i ∼ m5

⊥
s

L(−1)
• ∼ L(−1)

∗ ∼ sm2
⊥, L(0)

• ∼ L(0)
∗ ∼ m4

⊥, L(1)
• ∼ L(1)

∗ ∼ m6
⊥
s

L(0)
ψ ∼ m5/2

⊥ , L(1)
ψ ∼ m9/2

s

(4.11)

Using this result and expansion of the propagator in the background field (3.9) one can obtain
the following decomposition of the perturbative solution (3.5) and power counting for different
components of the fields:

A[0]
• +A[1]

• = A(0)
• +A(1)

• +O
(m6
⊥

s2 )

A(0)a
• = A([1]0)a

• +
1
g

Ua
• =

1
p2
‖

L(−1)a
• +

1
g

Ua
• =

1
g

Ua
• +

1
2gα

Uab
j V jb ∼ m2

⊥

A(1)a
• =

1
p2
‖

L(0)a
• +

1
2gp2

‖

(
({α,U•}+{β ,V∗}−P2

⊥)V
j)ab 1

α
Ub

j − 2i
1
p2
‖
(V i
• )

abA(1)b
i

+
4i
s

1
p2
‖
(U∗•+V∗•)ab 1

p2
‖

L(−1)b
• − ig f abc

αs
A([1]0)b
∗ A([1]0)c

• − 1
p2
‖

A([1]0)ab
• Ubc

j V c j ∼ m4
⊥
s

(4.12)
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where

A([1]0)a
• ≡ 1

p2
‖

L(−1)a
• =

i
2αg

f abcUb
j V c j, A([1]0)a

∗ ≡ 1
p2
‖

L(−1)a
∗ = − i

2βg
f abcUb

j V c j

⇒ D∗A
([1]0)a
• −D•A

([1]0)a
∗ =

s
2g

f abcUb
j V c j + O(m2

⊥) (4.13)

A[0]
∗ +A[1]

∗ = A(0)
∗ +A(1)

∗ +O
(m6
⊥

s2 )

A(0)a
∗ = A([1]0)a

∗ +
1
g

V a
∗ =

1
p2
‖

L(−1)a
∗ +

1
g

V a
∗ =

1
g

V a
∗ −

1
2gβ

Uab
j V jb ∼ m2

⊥

A(1)a
∗ =

1
p2
‖

L(0)a
∗ +

1
2gp2

‖

(
({α,U•}+{β ,V∗}−P2

⊥)U
j)ab 1

β
V b

j − 2i
1
p2
‖
(U i
∗ )

abA(1)b
i

− 4i
s

1
p2
‖
(U∗•+V∗•)abA([1]0)b

∗ +
ig f abc

β s
A([1]0)b
∗ A([1]0)c

• − 1
p2
‖

A([1]0)ab
∗ V bc

j Uc j ∼ m4
⊥
s

(4.14)

A[0]
i = A(0)

i =
1
g
(Ui +Vi)∼ m⊥ (4.15)

A[1]
i +A[2]

i = A(1)
i +A(2)

i +O
(m7
⊥

s3 ), A(1)
i =

1
p2
‖

L̃(0)
i ∼ m3

⊥
s

A(2)a
i =

1
p2
‖

L̃(1)a
i +

1
p2
‖

(
P2
⊥−{α,U•}−{β ,V∗}

)abA(1)b
i −2i

1
p2
‖
(F

[0]k
i )abA(1)b

k + ...∼ m5
⊥

s2

where

L̃(0)
i = L(0)

i +
4i
s

(
V•i

1
p2
‖

L(−1)
∗ +U∗i

1
p2
‖

L(−1)
•
)

= L(0)
i −

2i
gs
(V•iU j)ab 1

β
V b

j −
2i
gs
(U∗iV j)ab 1

α
Ub

j

(4.16)
From this result it is straightforward to derive power counting for strength tensor. Here we

present first few leading terms which we need for calculation of the hadronic tensor (1.3):

gF(−1)a
•i (x) = V a

•i(x), gF(−1)a
∗i (x) = Ua

∗i(x)

gF(0)a
•i (x) = Ua

•i(x)− iUab
• (x)V b

i (x)−
ig
2α

L̃(0)a
i (x)+Dab

i V bc
j (x)

1
2α

Uc j(x)

gF(0)a
∗i (x) = V a

∗i(x)− iV ab
∗ (x)Ub

i (x)−
ig
2β

L̃(0)a
i (x)+Dab

i Ubc
j (x)

1
2β

V c j(x)

gF(−1)a
∗• (x) = Ua

∗•(x)+V a
∗•(x)−

is
2

Uab
j (x)V b j(x)

gF(0)a
ik (x) = Ua

ik(x)+V a
ik(x)− i

(
Uab

i (x)V b
k (x)− i↔ k

)
(4.17)

Next we substitute this operators into the product

F2(x) ≡ Fa
µν(x)F

aµν(x) =
8
s

Fa
•i(x)F

ai
∗ (x)+Fa

ik(x)F
aik(x)− 8

s2 Fa
∗•(x)F

a
∗•(x)

(4.18)
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which yields the following form of two leading terms

(F2(x))(−1) =
8

sg2Ua
∗iV

ai
•

(F2(x))(0) = F(0)a
ik (x)F(0)aik− 8

s2 F(−1)a
∗• (x)F(−1)a

∗• (x)

+
8
sg

V ai
• (x)F

(0)a
∗i (x)+

8
sg

Uai
∗ (x)F

(0)a
•i (x) (4.19)

It is easy to see that contribution to hadronic tensor proportional to (F2(x))(−1)(F2(0))(−1)

is constructed from a product of two TMD operator and represents a standard TMD factorization
result.

To calculate power correction to the leading TMD operator we should consider

(F2(x))(0)(F2(0))(−1) + (x↔ 0) =
[
F(0)a

ik (x)F(0)aik(x)− 8
s2 F(−1)a
∗• (x)F(−1)a

∗• (x)

+
8
sg

V ai
• (x)F

(0)a
∗i (x)+

8
sg

Uai
∗ (x)F

(0)a
•i (x)

] 8
sg2Ua

∗i(0)V
ai
• (0) + (x↔ 0)

(4.20)

There are several terms in this contribution. However, it is possible to show, see [12], that most
of them are suppressed as 1/s after Fourier transformation in hadronic tensor (1.3). The only term
which is suppressed as 1/Q2 comes from Uab

j (x)V b j(x) operator in F(−1)a
∗• (x). This term provides

a leading power correction to gluon TMD factorization at s� Q2� Q2
⊥� m2

⊥.
If we keep only this term in eq. (4.18) we get

g2F2(x) =
8
s

Uai
∗ (x)V

a
•i(x)+2 f mac f mbd

∆
i j,klUa

i (x)U
b
j (x)V

c
k (x)V

d
l (x) + ... (4.21)

where
∆

i j,kl ≡ gi jgkl−gikg jl−gilg jk (4.22)

As a result the hadronic tensor is proportional to

g4F2(x)F2(0) =
64
s2 Umi

∗ (x)V m
•i (x)U

n j
∗ (0)V n

• j(0)

+
16
s

f mac f mbd
∆

i j,kl[Ua
i (x)U

b
j (x)V

c
k (x)V

d
l (x)U

nr
∗ (0)V n

•r(0)

+ Unr
∗ (x)V n

•r(x)U
a
i (0)U

b
j (0)V

c
k (0)V

d
l (0)

]
(4.23)

Finally, to calculate hadronic tensor we substitute approximation (4.23) to Eq. (1.3). Fourier
transformation and separation of color singlets yields

W (pA, pB,q) =
64/s2

N2
c −1

∫
d2x⊥

2
s

∫
dx•dx∗ cos

(
αqx•+βqx∗− (q,x)⊥

)
×
{
〈pA|Ûmi

∗ (x•,x⊥)Ûm j
∗ (0)|pA〉〈pB|V̂ n

•i(x∗,x⊥)V̂
n
• j(0)|pB〉

− 4N2
c

N2
c −4

∆i j,kl

Q2
2
s

∫ x•

−∞

dx′• dabc〈pA|Ûa
∗i(x•,x⊥)Û

b
∗ j(x

′
•,x⊥)Û

c
∗r(0)|pA〉

× 2
s

∫ x∗

−∞

dx′∗ dmpq〈pB|V̂ m
•k(x∗,x⊥)V̂

p
•l(x

′
∗,x⊥)V̂

qr
• (0)|pB〉

}
(4.24)
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5. Conclusions

Using rapidity factorization approach we calculated hadronic tensor for scalar particle produc-
tion (e.g. Higgs) by gluon-gluon fusion in the hadron-hadron scattering. Eq. (4.24) is the main
result of this paper. It has two terms both of which have factorized form. The first term is a leading
TMD result, while the second one is the leading higher-twist correction.

The author is grateful to J.C. Collins, S. Dawson, A. Kovner, D. Neill, A. Prokudin, T. Rogers,
and R. Venugopalan for valuable discussions. This material is based upon work supported by
the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-
AC02-98CH10886 and DE-AC05-06OR23177.
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