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Gluon TMD evolution Ian Balitsky

1. Introduction

The TMDs [1, 2, 3] (also called unintegrated parton distributions) are widely used in the anal-
ysis various scattering processes in JLab and elsewhere on low-energy accelerators. However,
since at the future EIC accelerator the majority of the produced particles will be gluons (turning
to hadrons due to confinement) one needs to study also the evolution of gluon TMDs. The TMD
generalizes the usual concept of parton density by allowing PDFs to depend on intrinsic transverse
momenta in addition to the usual longitudinal momentum fraction variable. The unintegrated gluon
distribution is defined as [4]

D(xB,k⊥,η) =
∫

d2z⊥ ei(k,z)⊥D(xB,z⊥,η), (1.1)

αsD(xB,z⊥,η) =
−x−1

B
8π2(p ·n)

∫
du e−ixBu(pn)〈p|F a

ξ
(z⊥+un)[z⊥+∞n,∞n]abF bξ (0)|p〉

where |p〉 is an unpolarized target with momentum p (typically proton) and ∞ can be plus or minus
infinity. Hereafter we use the notation

F a
ξ
(z⊥+un) ≡ [∞n+ z⊥,un+ z⊥]amnµgFm

µξ
(un+ z⊥) (1.2)

where [x,y] denotes straight-line gauge link connecting points x and y:

[x,y] ≡ Peig
∫

du (x−y)µ Aµ (ux+(1−u)y) (1.3)

There are more involved definitions with Eq. (1.1) multiplied by some Wilson-line factors [3, 5]
following from CSS factorization [6] but we will discuss the “primordial” TMD (1.1).

2. Rapidity factorization and evolution

In the spirit of high-energy OPE, the rapidity of the gluons in the operator (1.2) is restricted
from above by the “rapidity divide” η separating the impact factor and the matrix element

Aη
µ(x) =

∫ d4k
16π4 θ(eη −|α|)e−ik·xAµ(k) (2.1)

where the Sudakov variable α is defined as usual, k = α p1 +β p2 + k⊥. We define the light-like
vectors p1 and p2 such that p1 = n and p2 = p− m2

s n, where p is the momentum of the target particle
of mass m. We use metric gµν = (1,−1,−1,−1) so p ·q = (αpβq +αqβp)

s
2 − (p,q)⊥. For the

coordinates we use the notations x• ≡ xµ pµ

1 and x∗ ≡ xµ pµ

2 related to the light-cone coordinates by
x∗ =

√ s
2 x+ and x• =

√ s
2 x−. Also, hereafter we use the notation [∞,z∗]z ≡ [∞∗p1+ z⊥, 2

s z∗p1+ z⊥]
where [x,y] stands for the straight-line gauge link connecting points x and y as defined in Eq. (1.3).
Our convention is that the Latin Lorentz indices always correspond to transverse coordinates while
Greek Lorentz indices are four-dimensional.

Similarly, we define

F̃ aη

i (xB,z⊥) ≡
2
s

∫
dz∗ e−ixBz∗g

(
F̃m
•i (z∗,z⊥)[z∗,∞]ma

z
)η (2.2)
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in the complex-conjugate part of the amplitude.
In this notations the unintegrated gluon TMD (1.1) can be represented as

〈p|F̃ aη

i (xB,z⊥)F aiη(xB,0⊥)|p+ξ p2〉 ≡∑
X
〈p|F̃ aη

i (xB,z⊥)|X〉〈X |F aiη(xB,0⊥)|p+ξ p2〉

= −4π
2
δ (ξ )xBg2D(xB,z⊥,η) (2.3)

Hereafter we use a short-hand notation

〈p|Õ1...ÕmO1...On|p′〉 ≡ ∑
X
〈p|T̃{Õ1...Õm}|X〉〈X |T{O1...On}|p′〉 (2.4)

where tilde on the operators in the l.h.s. of this formula stands as a reminder that they should be
inverse time ordered as indicated by inverse-time ordering T̃ in the r.h.s. of the above equation.

As discussed e.g. in Ref. [7], such martix element can be represented by a double functional
integral

〈Õ1...ÕmO1...On〉

=
∫

DÃD ˜̄ψDψ̃ e−iSQCD(Ã,ψ̃)
∫

DADψ̄Dψ eiSQCD(A,ψ)Õ1...ÕmO1...On (2.5)

with the boundary condition Ã(~x, t = ∞) = A(~x, t = ∞) (and similarly for quark fields) reflecting
the sum over all intermediate states X . Due to this condition, the matrix element (2.3) can be made
gauge-invariant by connecting the endpoints of Wilson lines at infinity with the gauge link

〈p|F̃ a
i (xB,x⊥)F ai(x′B,y⊥)|p′〉 → 〈p|F̃ a

i (xB,x⊥)[x⊥+∞p1,y⊥+∞p1]F
ai(β ′B,y⊥)|p′〉(2.6)

This gauge link is important if we use the light-like gauge pµ

1 Aµ = 0 for calculations but in all other
gauges it can be neglected. We will not write it down explicitly but will always assume it in our
formulas.

2.1 Evolution kernel in the leading order

We will study the rapidity evolution of the operator

F̃ aη

i (xB,x⊥)F
aη

j (xB,y⊥) (2.7)

Our aim is to construct an evolution of the TMD operator with η = lnσ , where σ is a corre-
sponding cutoff in α . Tofindthe evolution kernel, we introduce a new cutoff η ′ and integrate over
"slow" fields with rapidity η ′< y< η , where y= lnα . We suppose that the "fast" fields with y< η ′

are fixed and serve as a background field. The typical diagrams are given in Fig. 1.
We aim to obtain evolution at the one loop order so there is only one "quantum" (blue) line of

the "slow" fields propagating in the "classical" (red) background of the "fast" fields. In calculation
of this diagrams we distinguish between two limits: k2

⊥ ∼ l2
⊥ and k2

⊥� l2
⊥, where k⊥ is a transverse

momentum of the "quantum" fields, while l⊥ is the characteristic transverse scale of the external
fields.

It is easy to understand that the typical longitudinal distance traveled by the "slow" fields is
αs/k2

⊥ ∼ σs/k2
⊥. At the same time the longitudinal scale of the "fast" fields is σ∗ ∼ σ ′s/l2

⊥. We

2



P
o
S
(
Q
C
D
E
V
2
0
1
7
)
0
2
3

Gluon TMD evolution Ian Balitsky

(a) (b)

Figure 1: Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel. The
dashed lines denote gauge links.

suppose that σ � σ ′, so in the limit k2
⊥ ∼ l2

⊥ the "quantum" fields effectively propagate through
a thin area of the "fast" fields of the background. This is the shock-wave approximation: the red
(external) fields in Fig. 1 are concentrated within a segment (−σ∗,σ). Of course this segment is
very short, but in our calculation it is nevertheless finite. We consider propagation of the "quantum"
(blue) fields through this segment and expand the corresponding propagator in powers of k2

⊥
αs σ∗ ∼

σ ′

σ
� 1.

However, in the limit k⊥ � l⊥ this scheme is not valid: there is no separation in distance
between the "slow" and "fast" fields. Insteed of the shock-wave approximation, in this case we
apply the light-cone expansion approach [8]. We take a ration l⊥/k⊥� 1 as an expansion parameter
and expand the gluon propagator in Fig. 1 around the light ray y⊥+ 2

s y∗p1, which is the direction
of the Wilson line in definition (1.1).

2.2 The Lipatov vertex

As usual, there are two contributions into the evolution kernel: the real gluon emission (Fig.
1a) and the virtual diagrams (Fig. 1b). The "real" correction to the TMD operator (2.7) is

〈F̃ a
i (x⊥,xB)F

a
j (y⊥,xB)〉lnσ = −

∫
σ

σ ′

d−α

2α
d−2k⊥

(
L̃ba;µ

i (k,x⊥,xB)Lab
µ j(k,y⊥,xB)

)lnσ ′
, (2.8)

where the Lipatov vertex Lab
µi(k,y⊥,xB) = i limk2→0 k2〈Aa

µ(k)F
b
i (y⊥,xB)〉 is an amplitude of the

single-gluon production by the operator F b
i . There are several possible types of emission. The

corresponding diagrams can be found in Fig. 2. We start with the calculation of the Lipatov vertex

k k k

(a) (b) (c)

Figure 2: Diagrams contributing to Lipatov vertex

in the light-cone approach. We expand the gluon propagator around direction of the Wilson line and
neglect terms suppressed by l⊥/k⊥� 1. One can show that the leading contribution comes from

3
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the terms linear in the gluon strength tensor F•i. The external (red) field has no specific longitudinal
properties and we take into account all possible emissions from the Wilson line and the strength
tensor in the definition (1.2) as well. The details of the calculation can be found in [9]. Here we
show only final result:

Lab
µi(k,y⊥,xB) = i lim

k2→0
k2〈Aaq

µ (k)(F b
i (xB,y⊥)

)1st〉 = 2ge−i(k,y)⊥

αxBs+ k2
⊥

(2.9)

×
[

αxBs
k2
⊥

(k2
⊥

αs
p2µ −α p1µ

)
δ

l
i −δ

l
µki +

αxBsgµikl

k2
⊥+αxBs

+
2αkikl

k2
⊥+αxBs

p1µ

]
F ab

l (xB +
k2
⊥

αs
,y⊥).

On the other hand, in the limit k⊥ ∼ l⊥ we apply the shock-wave approximation. In this case
the external field in Fig. 2 shrinks to fill a small area from −σ∗ to σ∗ in longitudinal direction.
Effectively the diagrams in Fig. 2 are the diagrams in the shock-wave background, see Fig. 3. Now

(a) (b) (c)

Figure 3: Lipatov vertex in the shock-wave approximation

we take into account not only different types of emission, but the position of the emission point as
well: we separate the emission from the left, right sides and from inside of the shock-wave. The
sum of all diagrams in Fig. 3 is

Lab
µi(k,y⊥,xB) = 2ge−i(k,y)⊥

( p2µ

αs
−

α p1µ

k2
⊥

)
[Fi(xB,y⊥)−Ui(y⊥)]ab (2.10)

+ g(k⊥|gµi
( αxBs

αxBs+ p2
⊥
−U

αxBs
αxBs+ p2

⊥
U†)+2α p1µ

( pi

αxBs+ p2
⊥
−U

pi

αxBs+ p2
⊥

U†)
+
[
2ixB p2µ∂iU−2i∂⊥µ U pi +

2p2µ

αs
∂

2
⊥U pi

] 1
αxBs+ p2

⊥
U†−

2α p1µ

p2
⊥

Ui|y⊥)ab.

In this calculation we expand the "slow" gluon propagator in powers of the size of the shock-wave
and neglect terms suppressed by p2

⊥
αs σ∗� 1.

Next, we combine the two results (2.9 and (2.10) in an interpolation formula:

Lab
µi(k,y⊥,xB)

= g(k⊥|
αxBsgµi +2α p1µki

αxBs+ k2
⊥

(2ik j
∂ jU−∂

2
⊥U)

1
αxBs+ p2

⊥
U† +2iα p1µ∂iU

1
αxBs+ p2

⊥
U†

+
2i
αs

p2µ∂iU
αxBs

αxBs+ p2
⊥

U†−
[
2i∂µU−

2p2µ

αs
∂

2
⊥U
] pi

αxBs+ p2
⊥

U†−
2α p1µ

p2
⊥

i(∂iU)U†|y⊥)ab

+
2ge−i(k,y)⊥

αxBs+ k2
⊥

[
−δ

j
µki +

2αkik j p1µ

αxBs+ k2
⊥
+

αxBsgµik j

αxBs+ k2
⊥
+ xB p2µδ

j
i −α p1µ

αxBs
k2
⊥

δ
j

i

]
×
[
F j
(
xB +

k2
⊥

αs
,y⊥
)
−U j(y⊥)

]ab
. (2.11)
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In Ref. [9] we prove that it is correct in the whole region of values of xB. It is also important
that (2.11) doesn’t break the gauge invariance: kµLab

µi(k,y⊥,xB) = 0. Finally, we use the Lipatov
vertex (2.11) to calculate the "real" part of the evolution kernel according to (2.8).

2.3 The virtual emission

The second part of the evolution kernel is the virtual correction, see Fig. 1b. For calculation of
this diagrams we apply the same strategy we used in derivation of the Lipatov vertex. In the limit
k⊥� l⊥ we expand the gluon propagator around y⊥+ 2

s y∗p1 direction and neglect terms suppressed
by l⊥/k⊥� 1. What is left is used in the explicit calculation of the diagrams if Fig. 1b. (There are
actually several of them, see [9]). In the limit k⊥ ∼ l⊥ we use the shock-wave approximation so the

(a) (b) (c) (d)

Figure 4: The virtual correction in the shock-wave approximation

virtual emission diagrams take a form given in Fig. 4. We show that the sum of this diagrams can
be combined with the result obtained at k⊥� l⊥ and one can write an expression which describes
both limits and is valid for all values of xB:

〈F n
i (y⊥,xB)〉virt = (2.12)

= − ig2 f nkl
∫

σ

σ ′

d−α

α
(y⊥|

p j

p2
⊥
(2∂i∂ jU +gi j∂

2
⊥U)

1
αxBs+ p2

⊥
U† +

αxBsp−2
⊥

αxBs+ p2
⊥

Fi(xB)|y⊥)kl.

3. Evolution equation for gluon TMD

Now we can write the one-loop correction to the operator (1.1). It is a sum of the product of
two Lipatov vertexes (2.11) and the virtual contribution (2.12):

〈F̃ a
i (x⊥,xB)F

a
j (y⊥,xB)〉lnσ

one−loop = −
∫

σ

σ ′

d−α

2α
d−2k⊥

(
L̃ba;µ

i (k,x⊥,xB)Lab
µ j(k,y⊥,xB)

)lnσ ′

+F̃ a
i (x⊥,xB)〈F a

j (y⊥,xB)〉virt + 〈F̃ a
i (x⊥,xB)〉virtF a

j (y⊥,xB). (3.1)

To get the evolution equation we differentiate this expression over σ . Combining all results
together we get

d
d logσ

〈p|F̃ a
i (x⊥,xB)F

a
j (y⊥,xB)|p〉 (3.2)

= −αs〈p|Tr
{∫

d−2k⊥θ
(
1− xB−

k2
⊥

σs

)[
(x⊥|

(
Ũ

1
σxBs+ p2

⊥
(Ũ†kk + pkŨ†)

×
σxBsgµi−2k⊥µ ki

σxBs+ k2
⊥

− 2k⊥µ gikŨ
1

σxBs+ p2
⊥

Ũ†−2gµkŨ
pi

σxBs+ p2
⊥

Ũ†
)
F̃ k(xB +

k2
⊥

σs

)
|k⊥)

5



P
o
S
(
Q
C
D
E
V
2
0
1
7
)
0
2
3

Gluon TMD evolution Ian Balitsky

× (k⊥|F l(xB +
k2
⊥

σs

)(σxBsδ
µ

j −2kµ

⊥k j

σxBs+ k2
⊥

(klU +U pl)
1

σxBs+ p2
⊥

U†

−2kµ

⊥g jlU
1

σxBs+ p2
⊥

U†− 2δ
µ

l U
p j

σxBs+ p2
⊥

U†
)
|y⊥)

+ 2(x⊥|F̃i
(
xB +

k2
⊥

σs

)
|k⊥)(k⊥|F l(xB +

k2
⊥

σs

)( k j

k2
⊥

σxBs+2k2
⊥

σxBs+ k2
⊥
(klU +U pl)

1
σxBs+ p2

⊥
U†

+ 2U
g jl

σxBs+ p2
⊥

U†−2
kl

k2
⊥

U
p j

σxBs+ p2
⊥

U†
)
|y⊥)

+ 2(x⊥|
(

Ũ
1

σxBs+ p2
⊥
(Ũ†kk + pkŨ†)

ki

k2
⊥

σxBs+2k2
⊥

σxBs+ k2
⊥

+2Ũ
gik

σxBs+ p2
⊥

Ũ†

− 2Ũ
pi

σxBs+ p2
⊥

Ũ† kk

k2
⊥

)
F̃ k(xB +

k2
⊥

σs

)
|k⊥)(k⊥|F j

(
xB +

k2
⊥

σs

)
|y⊥)

]
+ 2F̃i(x⊥,xB)(y⊥|−

pm

p2
⊥

Fk(xB)(i
←
∂ l +Ul)(2δ

k
mδ

l
j −g jmgkl)U

1
σxBs+ p2

⊥
U†|y⊥)

+ 2(x⊥|Ũ
1

σxBs+ p2
⊥

Ũ†(2δ
k
i δ

l
m−gimgkl)(i∂k−Ũk)F̃l(xB)

pm

p2
⊥
|x⊥)F j(y⊥,xB)

− 4
∫ d−2k⊥

k2
⊥

[
θ
(
1− xB−

k2
⊥

σs

)
F̃i
(
x⊥,xB +

k2
⊥

σs

)
F j
(
y⊥,xB +

k2
⊥

σs

)
ei(k,x−y)⊥

− σxBs
σxBs+ k2

⊥
F̃i(x⊥,xB)F j(y⊥,xB)

]}
|p〉 + O(α2

s ).

The kinematical constraint k2
⊥ ≤ α(1−βB)s in the production part of the amplitude reflects the fact

that so the sum of the fraction βB p2 and the fraction k2
⊥

αs p2 carried by the emitted gluon should be
smaller than the initial hadron’s momentum is p' p2.

The formula (3.2) is the main result of our study. It is an evolution equation of the gluon
TMD operator (1.1) and is valid for all (except too small) values of transverse momentum k⊥ ∼
(x⊥− y⊥)−1 and longitudinal momentum fraction variable xB.

Let us discuss the gauge invariance of this equation. The l.h.s. is gauge invariant after taking
into account gauge link at +∞ as shown in Eq. (2.6). As to the right side, it was obtained by
calculation in the background field and promoting the background fields to operators in a usual
way. However, we performed our calculations in a specific background field A•(x∗,x⊥) with a
finite support in x⊥ and we need to address the question how can we restore the r.h.s. of Eq. (3.2)
in a generic field Aµ . It is easy to see how one can restore the gauge-invariant form: just add
gauge link at +∞p1 or −∞p1 appropriately. For example, the terms Uz(z| 1

σβ s+p2
⊥
|z′)U†

z′ in r.h.s. of

should be replaced by Uz[z⊥−∞p1,z′⊥−∞p1](z| 1
σβ s+p2

⊥
|z′)U†

z′ . After performing these insertions
we will have the result which is (i) gauge invariant and (ii) coincides with Eq. (3.2) for our choice
of background field. At this step, the background fields in the r.h.s. of Eq. (3.2) can be promoted
to operators. However, the explicit display of these gauge links at ±∞ will make the evolution
equation much less readable so we assume they are always in place rather than written explicitly.

It is demonstrated in Ref. [9] that the equation (3.2) has three correct limits: at x ∼ 1 and
large transverse momentum it yields the linear DGLAP equation, at x ∼ 1 and small k⊥ it gives
the Sudakov double logarithm evolution, and at small x it reduces to the non-linear equation of the

6
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Balitsky-Kovchegov (BK) type.

4. Conclusions

I have described the rapidity evolution of gluon TMD (1.1) in the whole range of Bjorken xB

and the whole range of transverse momentum k⊥. It should be emphasized that with our definition
of rapidity cutoff (2.1) the leading-order matrix elements of TMD operators are UV-finite so the
rapidity evolution is the only evolution and it describes all the dynamics of gluon TMDs (1.1) in
the leading-log approximation.

As an outlook, it would be very interesting to obtain the NLO correction to the evolution
equation (3.2). The NLO corrections to the BFKL and BK equation are available but they suffer
from the well-known problem that they lead to negative cross sections. This difficulty can be
overcome by the “collinear resummation” of double-logarithmic contributions for the BFKL [10]
and BK [11] equations and we hope that our Eq. (3.2) and especially its future NLO version will
help to solve the problem of negative cross sections of NLO amplitudes at high energies.

This work on TMD evolution was done in collaboration with A. Tarasov. In addition, the
author is grateful G.A. Chirilli and A.V. Radyushkin for valuable discussions. The work was sup-
ported by contract DE-AC05-06OR23177 under which the Jefferson Science Associates, LLC op-
erates the Thomas Jefferson National Accelerator Facility, and by the grant DE-FG02-97ER41028.
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