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We demonstrate testing QCD factorization theorems using a simple quantum field theory. Specif-
ically we test standard collinear factorization in order to better explore deeply inelastic scattering
(DIS) at lower Q and larger Bjorken x.
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Factorization at low-Q and large-x E. Moffat

1. Introduction

It is of interest to explore the physics of DIS at lower values of momentum transfer (Q) and
larger values of momentum fraction (xbj). At lower ranges of Q, αs may still be small, but effects
from beyond the usual kinematical collinear approximations become important. These include such
effects as target mass, higher twist corrections, parton transverse momentum, and parton virtuality.
It is difficult to ascertain the relative importance of these effects in QCD due to confinement and
asymptotic freedom. However, by applying QCD factorization to a simple quantum field theory
whose calculations require no approximations, we can test the relative size of the contributions of
these effects. What follows is a summary of how that can be done. For the complete analysis, see
[1].

2. Simple Field Theory

We use a simple theory describing the interaction between a spin-1/2 “nucleon” with mass M
represented by the field ΨN , a spin-1/2 “quark” field ψq with mass mq, and a scalar “diquark” state
φ with mass ms that does not couple to the photon but remains a spectator to the hard scattering from
the quark. The interaction Lagrangian density for this theory is given by a Yukawa-like interaction,

Lint =−λ ΨN ψq φ + H.c., (2.1)

where the coupling λ gives the strength of the nucleon–quark–diquark interaction.
In this model, we calculate a kT-unintegrated structure function F1 defined as

F1
(
xbj,Q2)= ∫ d2kT

(2π)2 F1(xbj,Q2,k2
T), (2.2)

where xbj is Bjorken-x. We first calculate F1 without making any approximations. The contributing
diagrams are shown in Fig. 1. We then calculate the same function after applying the appropriate
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Figure 1: Contributions to the hadronic tensor from diagrams allowed by the interaction Lagrangian (2.1)
to O

(
αλ 2

)
in the couplings. Graph (A) is a manifestation of the familiar handbag diagram and represents

the topology of the leading region. Graphs (B) and (C) are suppressed by powers of 1/Q when kT is small,
but are needed for gauge invariance. The Hermitian conjugate for (C) is not shown. The momenta on the
various legs are as indicated.[1]

approximations of standard collinear factorization. For details of the calculations, see [1]

3. Results

Fig. 2 is a set of plots showing the exact and approximated structure functions vs. kT evaluated
at Q of 2 and 20 GeV with various values of the quark and spectator masses. See [1] for explanation
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of the specific choices of masses. From these results, it is clear that at lower Q, the agreement
between the exact and approximate structure functions is not only dependent on the transverse
momentum but also the mass and virtuality of the struck parton.
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Figure 2: The unintegrated structure function kTF1 for xbj = 0.6 and Q = 2 GeV (top row) and Q = 20 GeV
(bottom row), for different values of mq and ms calculated using both the exact expressions (solid red curves)
and the canonical collinear factorization approximation (dashed blue curves). The choices of ms are to fix
k2 at the values discussed in [1]. At the higher Q value the collinear calculation is almost indistinguishable
from the exact, while at the lower Q value the exact calculation diverges as it approaches the kinematical
upper limit of kT.[1]

4. Conclusion

Analysis using the simple QFT demonstrates that the most accurate QCD factorization the-
orem for low-Q and large-xbj would need to account for corrections due to parton mass, parton
transverse momentum, and parton virtuality as well as the target mass.
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