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A phenomenological analysis gf andn’ photoproduction on the protons and the neutrons with
EtaMAID model is presented. The model includes 23 nuclesamances parameterized by Breit-
Wigner functions with energy dependent widths. At high giess,W > 3 GeV, Regge cut phe-
nomenology was applied with vector and axial-vector mesaha&nges in thé channel. In the
resonance region, low partial waves with L up to 4 were sabtchfrom thet-channel contribu-
tion. Parameters of the resonances were obtained from aditatitable experimental data. The
nature of the most interesting observations in the datassisudsed.
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Photoproduction ofy andp’ mesons is a selective probe to study the nucleon resonances.
Several single- and double-spin observables and also differenissd sections with high statis-
tical accuracy have recently been measurednfand n’ photoproduction on both protons and
neutrons. We present results of the phenomenological analysis offieeragntal data with Eta-
MAID model.
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Figure 1. The total cross section forp — np reaction. Data: A2MAMI-17 [6], CBELSA/TAPS-09 [8].
CLAS-09 data were obtained with Legendre fit to differenti@ss sections from Ref. [9]. The black line is
the full Regge contribution. The red, green, blue, magetd,cyan lines are results of the subtraction from
the full Regge contribution of the partial waves withax =0, 1, 2, 3, and 4 consequently.

The isobar model EtaMAID [1, 2] was developed in 2002rfjcandn’ photo- and electropro-
duction on nucleons. The model includes a non-resonant backgrotnnh wonsists of nucleon
Born terms in thes andu channels and the vector meson exchange in tennel, and-channel
resonance excitations, parameterized by Breit-Wigner functions with emkeggndent widths.
The EtaMAID-2003 version describes the experimental data availablé®r2asonably well, but
fails to reproduce the newer polarization data obtained in Mainz [3]. Duriadgst two years the
EtaMAID model was updated [4, 5, 6] to describe the new datagfandn’ photoproduction on
the proton. The new updated EtaMAID version includes asandn’ photoproduction on the
neutron.

At high energiesW > 3 GeV, Regge cut phenomenology was applied. The model includes
exchanges of vectoip(and w) and axial vectorlf; andh;) mesons in thé-channel as Regge
trajectories. In addition to the Regge trajectories, also Regge cuts froatterggpP, p f, and
wP, wf, were added, wher® is the Pomeron with quantum numbers of the vacudrf00*) and
f, is a tensor meson with quantum numbet$®' ). The obtained solution describes the data up
to E, = 8 GeV very well. For more details see Ref. [7].

EtaMAID is a Regge-plus-Resonance model and has a disadvantageté dounting in the
overlapping region, energies bel& = 2.5 GeV, where both s-channel resonance contributions
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and t-channel Regge background are of similar order. To avoid thislel@ounting, low partial
waves with L up to 4 were subtracted from thkehannel contribution in the resonance region.
The result of a such subtraction is illustrated in Fig. 1. The Regge contributithre ttotal cross
section foryp — n p reaction is shown by the black line. The red, green, blue, and magenta lines
correspond to the subtraction of the partial waves Wijthx = 0, 1, 2, and 3 consequently. Finally,

the Regge background after the subtraction Wwjthx = 4 is shown by the cyan line. All resonances
with L up to 4 and PD&? overall status of two stars and more were included in the fit.
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Figure 2: Total cross section of thgp — n p reaction with partial contributions of the main nucleonores
nances. Red line: New EtaMAID solution. Vertical lines empond to thresholds &f~ andn’N photopro-
duction. Data: A2MAMI-17 [6].

The most interesting fit results are presented in Figs. 2-6 together with pondiag experi-
mental data.

In Fig. 2, the totalyp — np cross section is shown. A key role in the description of the
investigated reactions is played by thregvave resonances N(15357 , N(1650)%/2, and
N(1895)1/2~, see partial contributions of these resonances in Fig. 2. The first tveatfggvmain
contribution to the total cross section and are known very well. An interferehthese two res-
onances is mainly responsible for the dip/t= 1.68 GeV. However, the narrowness of this dip
we explain as a threshold effect due to the opening of thel&cay channel of th(16501/2~
resonance. The third one, N(189%2t, has only a 2-star overall status according to the PDG
review [10]. But we have found that namely this resonance is resgerfsibthe cusp effect at
W = 1.96 GeV (see magenta line in Fig. 2) and provides a fast increase of the rogal sec-
tion in theyp — n’p reaction near threshold (see black line in Fig. 3). A good agreement with
the experimental data was obtained for the cross sections ofithe n’p reaction, Fig. 3. The
main contributions to this reaction come fra4{18951/2~, N(19003/2", andN(21303/2~
resonances.

Very interesting results were obtained during the last few years fopthe nn reaction.
The excitation function for this reaction shows an unexpected narrow steuat\f ~ 1.68 GeV,
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Figure 3: Total cross section of thgp — n’p reaction with partial contributions of the main nucleon
resonances. Red line: new EtaMAID solution. Data: A2MAMI1{6], CBELSA/TAPS-09 [8], and CLAS-
09 [9].
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Figure 4: Total cross section of thgn — nn reaction with partial contributions of the main nucleonores
nances. Red line: new EtaMAID solution. Data: A2ZMAMI-14 11

which is not observed igp — np. As an example, the total cross section measured with highest
statistics in Mainz [11] is shown in Fig. 4. The nature of the narrow stru¢tasebeen explained by
different authors as a new exotic nucleon resonance, or a contribdtioteonediate strangeness
loops, or interference effects of known nucleon resonances, esed1R]. In our analysis, the
narrow structure is explained as the interferencs, @ andd waves, see partial contributions of
the resonances in Fig. 4. Our full solution, red line in Fig. 4, describes taaigaoW ~ 1.85 GeV
reasonably well and shows a cusp-like structurgVat 1.896 GeV similar as in Fig. 3 for the
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yp — np reaction. However, the data demonstrate a cusp-like effect at the energp@MeV
below. This remains an open question for our analysis as well as for thesfataleffects in the
data analysis.
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Figure 5. Beam asymmetry for the yp — np reaction. Red line: new EtaMAID solution. Results of the
refit to the data withoulN(2120/3/2~ are shown by the black lines and withduit20605/2 - blue lines.
Data: CLAS-17 [13],

Recently, the CLAS collaboration reported a measurement of the beam asyranh@tboth
yp — np andyp — n’p reactions [13]. At high energiesy > 2 GeV, theyp — np data have
maximal Z asymmetry at forward and backward directions, see Fig. 5. We havel filxavh an
interference ofN(2120)3/2~ andN(20605/2~ resonances is responsible for such an angular de-
pendence. The data was refitted excluding the resonances with masd &r@eV. The most
significant effect we have found by refitting withdi{21203/2~ (black line) and\(20605/2~
(blue line). The red line is our full solution.
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Figure 6: Beam asymmetr¥ for theyp — n’preaction. Red line: new EtaMAID solution. Data: GRAAL-
15 [14] (black), CLAS-17 [13] (red).

The beam asymmetr for yp — n’p reaction is presented in Fig. 6 with the GRAAL data
[14] having a nodal structure near threshold. Such a shape of théaartependence could be
explained by interference sfand f or p andd waves. However, the energy dependence is inverted
in all models. The EtaMAID-2016 solution [5] describes the shape of the GRégla forZ, but
not the magnitude. The new CLAS data [13] can not solve this problem beadypoor statistics
at near threshold region. Our new solution describe& tiata well alVv > 1.95 GeV.

In summary, we have presented results of the phenomenological andlysasnain’ photo-
production on the protons and the neutrons with updated version of Etavtiidel. The model
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describes well all currently available data. The cusp inrlpetotal cross section, in connection
with the steep rise of thg’p total cross section from its threshold, is explained by a strong coupling
of theN(18951/2" to both channels. The narrow bumprm and the dip im p channels have a
different origin: the first is a result of an interference of a few resmes, and the second is a thresh-
old effect due to the opening of thesKlecay channel of thd(16501/2" resonance. The angular
dependence df for yp — np atW > 2 GeV is explained by an interferenced{21203/2~ and
N(20605/2~ resonances. The near threshold behavid fufr yp — n’p, as seen in the GRAAL
data, is still an open question. A further improvement of our analysis will lssiple with addi-
tional polarization observables which soon should come from the A2MAMEICBA/TAPS, and
CLAS collaborations.

This work was supported by the Deutsche ForschungsgemeinschBftl(Bl4).

References

[1] W.-T. Chiang, S. N. Yang, L. Tiator, and D. Drechsel, Nughys.A700, 429 (2002).

[2] W.-T. Chiang, S. N. Yang, L. Tiator, M. Vanderhaeghend & Drechsel, Phys. Rev. €3, 045202
(2003).

[3] J. Akondiet al. (A2 Collaboration at MAMI), Phys. Rev. Let113, 102001 (2014).
[4] V. L. Kashevarov, M. Ostrick, L. Tiator, Bled Workshops Physics, Voll6, No.1, 9 (2015).
[5] V. L. Kashevarov, M. Ostrick, L. Tiator, JPS Conf. Prdg, 020029, (2017).
[6] V.L.Kashevarowet al. (A2 Collaboration at MAMI), Phys. Rev. Let118, 212001 (2017).
[7] V. L. Kashevarov, M. Ostrick, L. Tiator, Phys. Rev.96 035207 (2017).
[8] V. Credeet al.(CBELSA/TAPS Collaboration), Phys. Rev.8D, 055202 (2009).
[9] M. Williams et al. (CLAS Collaboration), Phys. Rev. 8), 045213 (2009).
[10] C. Patrignankt al.(Particle Data Group), Chin. Phys.40, 100001 (2016).
[11] (A2 Collaboration at MAMI), D. Werthmilleet al., Phys. Rev. ®0, 015205 (2014).
[12] (A2 Collaboration at MAMI), L. Witthaueet al., Phys. Rev. ®5, 055201 (2017).
[13] P. Collinset al,, (CLAS Collaboration), Phys. Lett. B71, 213 (2017).
[14] P. Levi Sandret al. (GRAAL Collaboration), Eur. Phys. J. B1, 77 (2015).



