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1. Introduction

Hadronic form factors (FF) play an important role in multiple and different scenarios in particle
physics. An accurate description in both space-like (SL) and time-like (TL) regions is an important
task with large benefits starting from the direct study of experimental data up to complicated cal-
culations at the frontier of the Standard Model. A complete model-independent description of both
SL and TL would demand a full knowledge of QCD in both its perturbative and non-perturbative
regimes, knowledge not yet aquired. An alternative to such enterprise would pursuit a synergy
between theory and experiment, between the formal calculation and the experimental data. In this
respect, one would direct oneself towards a model-independent and data-driven phenomenological
description of FF.

This synergy should develop a method as simple as possible, maximally transparent, fully
satisfying the analyticity and unitarity of the FF. If possible, the method should not use any as-
sumption, only approaches, improvable without ad hoc statements. It shall provide a systematic
method as well, and in two different senses: easy to update whenever new experimental data or
new theoretical calculations are available; capable of providing a purely theoretical error from the
approaches performed. Finally, should be predictive and checkable.

This catalogue of wishes can be addressed within the Theory of Padé approximants (PA). The
connexion with the mathematical problem is given by the well defined general rational Hermite
interpolation problem. This problem corresponds with the situation where a function should be
approximated but previous information about it is scarce and spread over certain information on a
given set of points together with a set of derivatives.

Analyticity and unitary of FF imply them to be Stieltjes1 functions [1, 2, 3]. As such, any
diagonal or subdiagonal PA sequence, on top of converging, must have all its poles lying on the
real axis, an extremely useful feature when analyzing experimental data. In this case, PAs act as the
guarantor of unitary through its pole position after the fit to experimental data. In case complex-
conjugate poles or defects (a pole with a close-by zero almost canceling each other) appear [4],
since they are not allowed by the convergence theorems [2], they are a clear indication experimental
data are not satisfying unitary of the FF. Thus, a bootstrap method will allow to pinpoint the cause of
the violation of unitary and via neglecting the identified experimental datum, the fit is immediately
improved. This method has been successfully used already to study pseudsocalar transition form
factors (TFF) and explore their role in extracting low-energy parameters, the η−η ′ mixing angle,
and parameterizations of the doubly virtual TFF, as well as for the pseudoscalar contribution to the
HLBL of the muon (g−2) (for a recent review, see Ref. [5, 6]).

In this letter, the method is presented to discuss the role of experimental data in: i) the pseu-
doscalar TFF entering the description of the π0,η and η ′ Dalitz decays from SL and TL regions;
ii) the time-like B→ π semileptonic FF interesting to extract the |Vub| CKM parameter.

First, some boring maths to show how unitary constraints arise for PA sequences. Let us
consider the power series expansion of a function f (z) around the origin on the complex plane
(z→ 0) as f (z) = ∑

∞
n=0 cnzn with a certain radius of convergence. Strictly speaking a PA to f (z) is

1A function f (z) is called Stieltjes if obeys a dispersion relation given in terms of a positive definite spectral function.
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a polynomial of order N over a polynomial of order M

PN
M(z) =

∑
N
j=0 a j(z) j

∑
M
k=0 bk(z)k

=
a0 +a1z+ · · ·+aN(z)N

1+b1z+ · · ·+bM(z)M , (1.1)

constructed such that2 its coefficients satisfy the accuracy-through-order conditions, this is the
Taylor expansion of PN

M(z) matches the series f (z) up to the highest possible order

f (z)−PN
M(z) = O(z)M+N+1 . (1.2)

For example, let us consider

f (z) =
1
z

ln(1+ z) = ∑
n=0

(−z)n

n+1
= 1− z

2
+

z2

3
− z3

4
+

z4

5
− z5

6
+O(z6) , (1.3)

which converges for |z| < 1 and diverges elsewhere. To determine the P0
1 (z) we expand it in a

Taylor series
P0

1 (z) =
a0

1+b1z
= a0−a0b1z+O(z2) , (1.4)

and compare with f (z) = 1− z/2 +O(z) to get a0 and b1, and so on for higher PN
N and PN

N+1
approximants. If they converge, their poles must lie in the real axes since f (z) is a Stieltjes function.
As a matter of example, in Fig. 1 (left panel) we provide a graphical account of the PAs

P0
1 (z) =

1
1+ z

2
,P1

1 (z) =
1+ z

6

1+ 2z
3

,P1
2 (z) =

1+ z
2

1+ z+ z2

6

,P2
2 (z) =

1+ 7z
10 +

z2

30

1+ 6z
5 + 3z2

10

, (1.5)

to the function Eq. (1.3).
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Example: f(z) =
1

z
log(1 � z)
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Hadron 2017, Salamanca, Sept. 28th
Figure 1: Poles (dotes) and zeros (empty
squares) of the PN

N approximants from the
1
z ln(1+ z) function for N up to 4.

The sequence converges rapidly even beyond
the convergence’s radius |z| < 1. However, if
those poles lie outside of the physical cut, this im-
mediately imply the coefficients cn to have an er-
ror which is detected by the PAs!

2. Pseudoscalar transition form factor

The TFF describes the effect of the strong in-
teraction on the γ∗γ∗− P transition (where P =

π0,η ,η ′ · · ·) and is represented by a function
FPγ∗γ∗(q2

1,q
2
2) of the photon virtualities q2

1, and
q2

2. The singly virtual TFF, which depends on the
transferred momentum to the virtual photon, has

a well defined unitary cut in the TL region starting at the 2m2
π threshold and no singularities in

the SL region since is a Stieltjes function [3]. The nature of the production threshold is of vector
type, which guarantees a very smooth off-set of the imaginary part of the threshold discontinuity
in the TL. The experimental information on the TFFs together with the theoretical knowledge on
their kinematic limits yield the opportunity for a nice synergy between experiment and theory in a
simple, easy, systematic, and user-friendly way.

2With any loss of generality, we take b0 = 1 for definiteness.
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Figure 2: π0 (upper panel), η (middle panel),
and η ′ (lower panel) TFFs. Our best PL

1 (Q
2) and

PN
N (Q2) fits are shown. Dashed lines display the

extrapolation of the PN
N (Q2) at Q2 = 0 and Q2→

∞. Data from CELLO, CLEO, BABAR, BELLE,
and L3 [7] for SL, and NA60, A2, BESIII [8] for
TL. Figures form Refs. [3].

We proposed in Refs. [3] to use a sequence
of PA to fit together SL [7] and TL [8] data. Since
PAs are constructed from the Taylor expansion
of the FPγ∗γ(Q2), from the fits we can obtain the
derivatives of the FPγ∗γ(Q2) defined as [3]:

FPγ∗γ(Q2) = aP
0

(
1+bP

Q2

m2
P
+ cP

Q4

m4
P
+ . . .

)
,

(2.1)
where aP

0 is related to P→ γγ , bP and cP are the
slope and curvature resp., fundamental quantities
for constraining models to evaluate hadronic con-
tributions. Our results are collected in Table 1.

In case complex-conjugated poles in our ap-
proximants would appear, that would be a clear
indication of an underestimation of experimen-
tal errors as we discuss in the next section.

FF are not interesting by themselves as repre-
sent the knowledge of QCD in a nutshell, but also
for their important role on precision calculations
of low-energy Standard Model observables such
as the anomalous magnetic moment of the muon.
With this method, we updated in [5, 6] the HLBL
to (gµ − 2) to be aHLBL

µ = (12.1± 1.5)× 10−10.
FF are important for P→ `` [9] as well. Both
showing deviations between theory and experi-
ment point towards a search of New Physics.

3. Study of B→ π`ν` and B+→ η(′)`+ν`

decays and determination of |Vub|

Table 1: π0,η , and η ′ slope bP, curvature cP, and asymptotic
limit (Q2→ ∞) from Ref. [3].

bP cP limQ2→∞ Q2FPγ∗γ(Q2)

π0 0.0324(22) 1.06(27) ·10−3 2 fπ

η 0.576(11) 0.339(15) 0.177(20)GeV
η ′ 1.31(4) 1.74(9) 0.254(3)GeV

|Vub| is one of the least known
entries of the CKM matrix. It
is typically determined from in-
clusive and exclusive semileptonic
decays through B → Xu`ν` and
B→ π`ν`, respectively. The 2016
PDG[11] reported values showed a
2.4σ deviation between the inclu-

sive, |Vub| = (4.49± 0.15+0.16
−0.17± 0.17) · 10−3, and the exclusive, |Vub| = (3.70± 0.10± 12) · 10−3

[10] determinations.
The origin of this discrepancy is still unclear and any combined average must be borrowed

3
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with caution [11]. The exclusive decay yields the most precise value and is given by (m`→ 0)

dΓ(B→ π`ν`)

dq2 =
G2

F |Vub|2
192π3m3

B
λ

3/2|F+(q2)|2 , (3.1)

with λ = (m2
B +m2

π − q2)2− 4m2
Bm2

π and q2 the invariant mass of the dilepton pair. F+(q2) is the
vector FF encoding the B→ π transition and the main source of uncertainty in the extraction of
|Vub|.

The leptonic differential branching ratio distribution have been measured by BABAR [12] and
BELLE [13]. This allows us [14] to extract the |Vub| from a simultaneous fit to the measured q2

spectra and lattice simulations on the FF shape at large q2 obtained by the HPQCD Coll. in 2006
[15] and by the MILC Coll. in 2008 and 2015 [16].
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Figure 3: Left: Deviation, in σ , of each experimental datum
with respect to our combined and individual fits. Right: Simul-
taneous fit to BABAR, BELLE and CLEO data on the B→ π`ν`
from a χ2 minimization with a P2

1 (q
2) (black solid line).

For the B → π`ν` decay, the
lowest threshold appears at q2 =

sth = (mB +mπ)
2, above the avail-

able kinematical energy range, 0 <

q2 < (mB−mπ)
2, of the decay. This

explains why, as a first approxima-
tion, it has been a common use to
consider a VMD model. VMD and
di-polar extensions are elements of
the general PA sequence, Eq. (1.1).
Since F+(q2) is a Stieltjes function
higher-order terms in the PA se-
quence are important to get insights
on the analytical structure of the FF
and to explore unitary of experi-
mental data.

We fit with PN
1,2,3(q

2) reaching
N = 3 (see example of P2

1 in Fig. 3,
lower panel). Beyond that, a de-
tailed scrutiny of pole positions in
combination with residues of the χ2

allows us to determine whether a
datum satisfies or not unitary con-
strain (cf. Fig. 3, upper panel). This
improves both the quality of the fit
and the determination of |Vub| [14].

4. Conclusions and Outlook

Hadronic form factors are a good laboratory to study the properties of mesons. Their interest
goes, however, much beyond the mesons themselves as they play a key role on precision calcula-
tions of Standard Model observables at low energies where hadronic contributions are the corner-
stone of the error evaluation. We propose the method of Padé approximants as a toolkit to analyze
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them. The method is easy, systematic, user-friendly, and can be improved upon by including new
data. Provides, as well, information about the underlying structure of the FF and can be used to
extrapolate experimental information to extract the low-energy parameters of the FF together with
their asymptotic limits.

The most relevant feature of the method here described is their excellent performance as an
interpolation tool thanks to its ability to impose unitary requirements. As such, it is a most com-
pelling method to provide an accurate parameterization for the FF in the whole SL region. Since the
approximants can as well penetrate into the TL region below the first resonance, precise experimen-
tal data can be easily incorporated. In this regard, our method provides an accurate data-driven and
model-independent result consistent with the well-known QCD features at high and low energies.

References

[1] G. A. Baker and P. Graves-Morris, Encyclopedia of Mathematics and Its Applications (Cambridge
University Press, Cambridge, England, 1996).

[2] P. Masjuan and S. Peris, Phys. Lett. B 686 (2010) 307.

[3] P. Masjuan, Phys. Rev. D 86, 094021 (2012); R. Escribano, P. Masjuan and P. Sanchez-Puertas, Phys.
Rev. D 89, 034014 (2014); R. Escribano, P. Masjuan and P. Sanchez-Puertas, Eur. Phys. J. C 75, no. 9,
414 (2015); R. Escribano, S. Gonzàlez-Solís, P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 94,
054033 (2016); R. Escribano and S. Gonzàlez-Solís, arXiv:1511.04916 [hep-ph].

[4] P. Masjuan and S. Peris, JHEP 0705 (2007) 040; Phys. Lett. B 663 (2008) 61

[5] P. Masjuan and P. Sanchez-Puertas, PoS FPCP 2017 (2017) 028 [arXiv:1711.02551 [hep-ph]].

[6] P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95 (2017) no.5, 054026.

[7] H. J. Behrend et al. [CELLO Coll.], Z. Phys. C 49, 401 (1991); J. Gronberg et al. [CLEO Coll.], Phys.
Rev. D 57, 33 (1998); B. Aubert et al. [BaBar Coll.], Phys. Rev. D 80, 052002 (2009); P. del Amo
Sanchez et al. [BaBar Coll.], Phys. Rev. D 84, 052001 (2011)’ S. Uehara et al. [Belle Coll.], Phys. Rev.
D 86, 092007 (2012); M. Acciarri et al. [L3 Coll.], Phys. Lett. B 418, 399 (1998).

[8] R. Arnaldi et al. [NA60 Coll.], Phys. Lett. B 677, 260 (2009); P. Aguar-Bartolome et al. [A2 Coll.],
Phys. Rev. C 89, 044608 (2014); M. Ablikim et al. [BESIII], Phys. Rev. D 92, no. 1, 012001 (2015).

[9] P. Masjuan, P. Sanchez-Puertas, arXiv:1504.07001 [hep-ph]; JHEP 08 (2016) 108.

[10] Y. Amhis et al. [Heavy Flavor Averaging Group Collaboration], arXiv:1207.1158 [hep-ex]; up-dated
results as of Summer 2014 on the website http://www.slac.stanford.edu/xorg/hfag/

[11] C. Patrignani et al. [Particle Data Group Coll.], Chin. Phys. C 40, 100001 (2016).

[12] P. del Amo Sanchez et al. [BABAR Coll.], Phys. Rev. D 83, 032007 (2011); J. P. Lees et al. [BABAR
Coll.], Phys. Rev. D 86, 092004 (2012).

[13] H. Ha et al. [BELLE Coll.], Phys. Rev. D 83, 071101 (2011); A. Sibidanov et al. [BELLE Coll.],
Phys. Rev. D 88, no. 3, 032005 (2013).

[14] S. Gonzàlez-Solís and P. Masjuan, In preparation.

[15] E. Dalgic, A. Gray, M. Wingate, C. T. H. Davies, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 73,
074502 (2006) [Phys. Rev. D 75, 119906 (2007)].

[16] J. A. Bailey et al., Phys. Rev. D 79, 054507 (2009). J. A. Bailey et al. [Fermilab Lattice and MILC
Coll.], Phys. Rev. D 92, no. 1, 014024 (2015);

5


