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In heavy quarkonia, hadronic transitions serve as an enlightened probe for the structure and help
to establish the understanding of light quark coupling with a heavy degree of freedom. Moreover,
in recent years, hadronic transitions revealed remarkable discoveries to identify the new conven-
tional heavy quarkonia and extracting useful information about the so called “XYZ" exotic states.
In this contribution, we present our predictions for heavy quark spin symmetry (HQSS) breaking
hadronic transitions of higher S and D wave vector charmonia based on our recently proposed
model (inspired by Nambu-Jona-Lasinio (NJL) model) to create light meson(s) in heavy quarko-
nium transitions. We also suggest spectroscopic quantum numbers (2S+1LJ) for several observed
charmoniumlike states. Our analysis indicates that the Y (4360) is most likely to be a 3D dominant
state.
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1. HQSS Violation in Heavy Quarkonium Transitions

The strong interactions of heavy quarks with light degree of freedom (mesons and gluons)
can be described by an effective theory when the scale 1/mQ is much smaller than the typical
hadronic scale. The leading effective theory is called heavy quark effective theory (HQET), having
the feature of heavy quark symmetry (HQS), which is considered invariant under flavor change and
spin rotation of the heavy quark [1].

Hadronic transitions such as ψ(2S)→ J/ψη or ψ(4160)→ hcη must involve the flip of the
initial spin of heavy quark. Such transitions are significantly suppressed as compare to spin keeping
transitions such as ψ(2S)→ J/ψππ . One can estimate the relative sizes of these transitions from
the available experimental data, Table 1 summarizes the Particle Data Group (PDG) information
on these transitions. A better understanding of HQSS violation provides an elegant insight to the
dynamics of heavy quark. Since the amplitude of such transitions is M���HQSS ∝ 1/mQ, in heavy
quark limit (mQ → 0) this amplitudes vanishes and the spin of heavy quark is conserved. In the
actual world quarks are not infinitely heavy, for the finite mass of the heavy quark (mc = 1.5 GeV),
one can expect a small breaking of HQSS1.

B[ψ(3686)→ J/ψη ] B[ψ(4160)→ hc(1P)η ] B[ψ(3686)→ J/ψππ]

(3.36±0.05)% < 2×10−3 (34.49±0.30)% π+π−

Γψ(3686) = 296±8 keV Γψ(4160) = 70±10 MeV (18.17±0.31)% π0π0

Table 1: PDG data on selective HQSS violating and conserving hadronic transitions of ψ(2S) and ψ(4160).

2. Theoretical Developments for Hadronic Transitions

Soon after the observation of the first charmonium J/ψ and its radial excitation ψ ′≡ψ(3686),
several theoretical formalisms were developed to incorporate the transitions of excited to the lowest
charmonium with the emission of light meson(s). The underlying mechanism of such hidden-flavor
transitions must govern by strong interactions, and these decays are expected to be OZI allowed.
Hence, one can expect these transitions as dominant decay channels for the excited quarkonia below
the threshold of disassociation into two open-flavor mesons.

Here we intend to review some pioneer works to describe the hadronic transitions on the
footings of the leading theory of strong interactions known as Quantum Chromdynamcs (QCD).

2.1 QCD Multipole Expansion

In QCD, the well-established formalism for hadronic transitions is multipole expansion (ME)
[3], which assumes that the hadronic transitions take place due to the intermediate process of gluon
emission. These gluons are supposed to be soft, having wavelengths much larger than the size of a
heavy quarkonium. These soft gluons further hadronize to light hadron(s) to complete such kinds of
hadronic transitions. Due to the assumption that the intermediate gluons are soft, the emitted light

1The breaking of HQSS is expected to be enhanced in quarkoniumlike states near the thresholds due to the mixing
with heavy meson-antimeson pairs [2].

1



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
0
0

HQSS Violating Hadronic Transitions of Higher Charmonia Muhammad Naeem Anwar

hadron(s) are predominately of the lower momenta. It is very hard to incorporates the transitions
of much higher quarkonia in the formalism of QCDME, where we have large decay momenta. For
detail discussions and applications of QCDME, we refer the following comprehensive review [4].

2.2 Effective Theories

To put hadronic transitions on an effective filed theory (EFT) ground, efforts have been made.
The development of heavy meson chiral Lagrangians (HMCL) [5] is the foremost simplification to
QCDME. HMCL serve as an EFT to QCDME in a soft exchange where the gluonic exchanges are
predominantly of limited momenta. With the assumptions that (i) the heavy QQ̄ involved in the
process is well separated to consider it in a stringlike picture and (ii) the momentum of the emitted
light meson is not too large, the HMCL are successful at reproducing the hadronic transitions
among lower charmonia.

The transition between two S waves, S to P or D to S wave charmonia with the emission of
η (π) might occur through intermediate open-charm contributions. The formalism which incorpo-
rate intermediate heavy mesons within hadrons is referred to as coupled-channel effects (CCEs).
CCEs have been taken into account in the QCDME framework [6]. To investigate the intermediate
charmed meson loop effects on ψ ′→ J/ψη(π0) decay, a nonrelativistic effective field theory (N-
REFT) formalism was constructed [7]. It is noted that if we go to much higher waves e.g., ψ(nS)
or ψ((n−1)D) with n = 4,5,6, . . ., the decay momentum is not so small, as it lies in the relativistic
regime; hence, the NREFT formalisms are not very suitable for studying hadronic transitions of
higher charmonia.

The experimental status of the spectrum of higher vector charmonium(like) states is very rich
now and several precise measurements have been recorded for their hadronic transitions [8]. To de-
scribe the observed transitions of higher cc̄ systems there is a potential need for a theoretical model
which can predict the transitions in the high momentum regime and help to identify the missing
higher states through their hidden-flavor decays. We try to fulfill this need by modeling hadron-
ic transitions of higher vector charmonia. Our proposed model is away from all the assumptions
of HMCL [(i) and (ii)] and QCDME, and useful to predict the transitions involving much large
momenta.

3. Our Effective Model and Results

We model the coupling of the light scalar and pseudoscalar meson with the charm quark [9].
The effective Lagrangian of our model contains both the scalar and pseudoscalar interactions as
present in the NJL model. The effective Lagrangian of our proposed model can be written as

LI = g(ψ̄ψ < σ >+ψ̄iγ5
ψ < η >), (3.1)

where g is the overall coupling strength, ψ is the heavy quark field, and < σ > and < η > are
SU(3) singlet scalar and pseudoscalar meson, respectively. The Lagrangian LI allows the coupling
of the (anti)quark line only to a scalar or isospin singlet pseudoscalar. The possible Feynman
diagram for the process Ψ→ J/ψη is shown in Fig. 1. The decay width and transition amplitude
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Figure 1: Quark level description of higher vector charmonia decaying into J/ψη .

of Ψ→ J/ψη (where Ψ is S or D wave higher vector charmonia) is given as

ΓA→BC = 2πk
EBEC

mA
∑

mJB ,mJC

∫
dΩB|M mJA mJB mJC |2, (3.2)

M mJA mJB mJC = g
i

2mc

∫
d3 p1φA(~p1)φ

∗
B(~p1−

1
2
~PB)〈1′|~σ |1〉 · (~p1−~p′1) · 〈2|δss′ |2′〉. (3.3)

with EB =
√

m2
B + k2, EC =

√
m2

C + k2 and k =
√
[m2

A− (mB−mC)2][m2
A− (mB +mC)2]/2mA; mc

is the mass of charm quark. To evaluate the transition amplitude we use simple harmonic oscillator
(SHO) wavefunctions. The model parameters are given in Table 2.

We consider JPC = 1−− charmonia as admixture of S and D waves by adopting the well-
established formalism of S−D mixing based on reproducing the dielectric decay widths to deduce
the mixing angle [10]. For an idea of the parameter dependence of our model, we suggest interested
readers to see our parametric plots [9].

mc = 1.5 GeV β = 0.40 GeV g = 0.80 |θ |= 13◦

Table 2: The parameters used in our calculation.

3.1 Results and Predictions for Γ(Ψ→ J/ψη) and Γ(Ψ→ hcη)

A graphical presentation of our results for Γ(Ψ→ J/ψη) is shown in Fig. 2. We fit the over-
all coupling g from the process ψ ′→ J/ψη , and then allow it to reproduce the similar decays of
next excited charmonia. We get quite impressive agreement with the experimental data. Although
there exist only upper limits for the ψ(4160)→ J/ψη and ψ(4415)→ J/ψη decay processes,
our computed decay width for the former decay process lies within this limit, while for the latter
process our predicted width is slighter larger than the central value. It is worthy noting that the ex-
perimental value of Γ(ψ(4415)→ J/ψη) has large statistical errors. Considering this error range,
our prediction in this case still lies within the upper limit.

The threshold for the decay process Ψ→ hc(1P)η is 4073 MeV. The ψ(4160) is the first state
which can decay into this final state. The HQSS violating transition ψ→ hc(1P)η must requires the
spin flip and expected to be significantly suppressed. The observed ratio Γ(Ψ→ J/ψη)/Γ(Ψ→
J/ψππ) is fully consistent with the theoretical predictions [2]. It has been argued in [11] that the
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Figure 2: Decay width of different higher vector charmonium to J/ψη . Red filled circles with error bars
are the experimental values taken from PDG and the black triangles are our theoretical predictions. For the
case of ψ(2D) and ψ(4S) we only have the upper limits.

CCEs due to intermediate charmed mesons are quite small for this transition. Our predicted width
of ψ(4415)→ hc(1P)η is of the same order of magnitude as ψ(4160)→ hc(1P)η :

Γ(ψ(4160)→ hc(1P)η)

Γ(ψ(4160)→ J/ψη)
= 7.887×10−2,

Γ(ψ(4415)→ hc(1P)η)

Γ(ψ(4415)→ J/ψη)
= 6.736×10−2. (3.4)

We also give the initial mass dependent decay width of ψ(nS/(n−1)D)→ J/ψη and hc(1P)η
with (n = 3,4,5,6), both for the pure S and D wave and for the standard S−D mixing case [9].

3.2 Study of Y→ J/ψη and Y→ hcη

Despite the fact that charmoniumlike vector states do not decay into open-charm channels, it
would be interesting to study their hidden-charm strong decays. By assuming Y (4360) and Y (4660)
as ψ(33D1) and ψ(53S1) dominant states, respectively, we give our predictions for Y (4360)→
J/ψη and Y (4660)→ J/ψη . Because only experimental upper limits [8] exists for the product
of the branching fraction B(Y → J/ψη) and Γe+e−(Y ) for Y (4360) and Y (4660), we use average
values of the Γe+e−(Y ) of available theoretical predictions.

For Y (4360), we give our results in Table 3 for pure 3D, small, and large S−D mixing.
Our predictions are in agreement with the experimental measurements. We conclude that Y (4360)
could be considered as a potential candidate for dominant 33D1 charmonium state. For Y (4660),
our prediction for the pure 5S case is little above the experimental upper limit which indicates that
it might has sizeable 4D component. We also present our prediction for Y (4390) [12] by assigning
it ψ(33D1). To identify this state, measurements on its hadronic branching fraction are required.

The ratio Γ(Y (4360)→hcη)
Γ(Y (4360)→J/ψη) provides another test on the structure of Y (4360). To be a 33D1 state,

the order of this ratio should be the same as ψ(4160) [8]. We will address this in details elsewhere.
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Γth
Y→J/ψη

Γ
exp
Y→J/ψη

State n2S+1LJ Γtotal B(Y → J/ψη) θ = 0◦ θ = 13◦ θ = 34◦ θ = 0◦ θ = 34◦

Y (4360) 33D1 74±18 [8] 6.8
Γe+e−

[8] 0.047 0.016 1.0×10−3 < 0.963 < 0.799

Y (4390) 33D1 139.5±16.1 [12] − 0.083 0.028 1.6×10−3 − −

Y (4660) 53S1 48±15 [8] 0.94
Γe+e−

[8] 0.057 0.070 0.077 < 0.046 < 0.116

Table 3: Predictions for Γ(Y → J/ψη) for the Y (4360), Y (4390), and Y (4660) states. “− ” indicates that
the experimental data are not available. All the widths are in units of MeV.

4. Conclusions

Our study gives an idea of the branching fractions of missing higher vector charmonia into
J/ψη and hc(1P)η final states. We suggest that the ongoing (Belle and BESIII) and forthcoming
(P̄ANDA and BelleII) experiments should look for suggested unobserved decay channels to find
JPC = 1−− higher charmonia. Our estimate of η transition branching fractions for Y (4360) by
assuming it as 33D1 is consistent with experimental data. Hence, we argued that the Y (4360) can
be considered as a potential candidate for the 33D1 charmonium. Assuming Y (4660) to be 53S1,
the predictions are consistent within the experimental upper limit. We hope that our predictions
provide useful references to search and better understanding of higher charmonia.
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