
P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
3
4

Fitting and selecting scattering data

Enrique Ruiz Arriola∗†

Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de
Física Teórica y Computacional. Universidad de Granada, E-18071 Granada, Spain.
E-mail: rnavarrop@ugr.es

Jose Enrique Amaro
Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de
Física Teórica y Computacional. Universidad de Granada, E-18071 Granada, Spain.
E-mail: amaro@ugr.es

Rodrigo Navarro Pérez
Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy,
Ohio University, Athens, OH 45701, USA
E-mail: navarrop@ohio.edu

The main purpose of scattering experiments is to unveil the underlying structure of the colliding
particles and their interaction. Typically one measures scattering observables (cross sections and
polarizations) at discrete angles and energies and mutually consistent data may validate or falsify
proposed theories or models. However, the accumulation of data from different laboratories while
potentially improves the statistical significance it may sometimes generate mutually inconsistent
data as a side-effect. Thus, some decision has to be made on what are the maximal amount of data
which are mutually compatible. We show elastic πN and NN scattering as prominent examples
where this selection is called for. We discuss how it can be done in a self-consistent manner
invoking a principle of maximal consensus of the database and with the help of a sufficiently
flexible model involving a minimal number of theoretical assumptions. In the NN case this has
become possible with a combination of long distance field theoretical constraints at the hadronic
level such as pion exchanges and electromagnetic effects and a coarse graining of the unknown
interaction over the shortest de Broglie wavelength being probed in the scattering process.

XVII International Conference on Hadron Spectroscopy and Structure - Hadron2017
25-29 September, 2017
University of Salamanca, Salamanca, Spain

∗Speaker.
†This work is supported by the Spanish Ministerio de Economía y Competitividad and European FEDER funds

under contracts FIS2014-59386-P and FPA2015-64041-C2-1-P, Junta de Andalucía grant FQM-225

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:rnavarrop@ugr.es
mailto:amaro@ugr.es
mailto:navarrop@ohio.edu


P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
3
4

Fitting and selecting scattering data Enrique Ruiz Arriola

1. Introduction

Fitting and selecting scattering data are intertwined activities with a long tradition in Nuclear
and Particle Physics. In the absence of mutually inconsistent data, theories may be validated or
falsified by data, since only in such a case a satisfactory fit becomes possible. Thus, ensuring that
this is indeed the case allows one to answer important questions. We stress from the beginning that
the issues which we will be discussing were proposed many years ago 1. In this contribution we
revisit the subject at a comprehensive level as we feel that essential issues are too often forgotten.
More details and references within the NN context can be traced from [7, 8, 9, 10, 11, 12, 13, 14].

2. Scattering

Scattering experiments are designed after the original Rutherford experiment which lead to
the discovery of the atomic nucleus in 1908: Nin particles emitted from a source of surface S are
collimated forming a beam which is scattered at a given solid angle Ω ≡ (θ ,φ) and Nout particles
are counted on a detector at a far distance R. The differential cross section is defined as the ratio

σexp(θ ,φ) =
Nout(θ ,φ)/∆Ω

Nin/S
, (2.1)

over a given time interval and detector angular resolution ∆Ω = (∆θ ,∆φ). In general, there ex-
ists a normalization constant, which can be determined by comparing with a theoretically known
cross section or by checking the total cross section σT ≡

∫
dΩσ(Ω) with a forward transmission

experiment where the mean free path is determined l = 1/nσT and the density of scatterers per
unit volume, n, is known. We assume for simplicity non-relativistic elastic scattering for spinless
particles interacting by a central potential V (r).

At the classical level, one solves Newton’s equation µ~x′′(t) = −~∇V (~x) subjected to the con-
ditions ~x(t)→~b+~vt and ~x(t)→~b′+~v′t for t →∓∞ respectively, where~b ·~v = b′ ·~v′ = 0, v̂′ · v̂ =
b̂′ · b̂ = cosθ and σcl(θ ,φ) = d2b/dΩ = (b/sinθ)(db/dθ). Angular momentum conservation im-
plies |~L(t)| = |~x(t)∧~p(t)| = bp = bµv and for a finite range interaction, i.e. V (r) = 0 for r > a,
so that σcl(θ ,φ) = 0 for b > a. The meson exchange picture yields Yukawa-like forces among
hadrons V (r) ∼ e−(r/a)/r with the longest range corresponding to a ∼ h̄/mπc ∼ 1.4fm. For these
forces the total classical cross section diverges, σT ≡

∫
dΩσcl(Ω) =

∫
d2b = ∞.

Quantum mechanically one has σQM(θ ,φ) = | f (θ ,φ)|2 where the scattering amplitude reads

f (θ ,φ) =
∞

∑
l=0

(2l +1)
e2iδl(p)−1

2ip
Pl(cosθ) , E =

p2

2µ
. (2.2)

1To our knowledge the first time a fit using the least squares method was applied to analyze πN scattering data in
terms of phase-shifts was in 1952 by Fermi and Metropolis [1]. They proposed a derivative-free algorithm and used the
MANIAC (Mathematical Analyzer, Numerical Integrator, and Computer), the first computer at Los Alamos designed by
Metropolis. In the Rochester conference in 1952 (see [2] for a review) the value of χ2 was actually used to invalidate
incompatible phase-shifts determinations. Error determination of phase-shift was analyzed soon thereafter in 1955 by
means of the well-known error matrix [3] which used the improved AVIDAC (Argonne Version of the Institute’s Digital
Automatic Computer). This example was followed to undertake a similar analysis in the np and pp scattering case [4].
It is surprising that even to this day, 70 years later, presumably benchmarking analyses lack this simple error estimates.
The issue of scattering data selection was started triggered by the accumulation of data which at times were mutually
inconsistent [5]. This approach was followed by the Livermore fit (see e.g. for a review) [6].
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Here, Pl(z) are Legendre polynomials and δl(p) are the phase-shifts which are computed by solving
the reduced Schrödinger equation for the reduced wave function ul(r) (Ψ(~x) = (ul(r)/r)Yl,m(θ ,φ)),

−u′′l (r)+
[

l(l +1)
r2 +2µV (r)

]
ul(r) = p2ul(r) (2.3)

with the asymptotic conditions (we assume non-singular potentials r2V (r)→ 0)

ul(r) →︸︷︷︸
r→0

rl+1 , ul(r) →︸︷︷︸
r→∞

sin
(

pr− lπ
2
+δl

)
(2.4)

The no-scattering condition corresponds to take L2 = l(l + 1)2 ∼ (l + 1/2)2 so that V (r) ∼ 0 for
r & a corresponds to δl(p)∼ 0 for b& a or equivalently lmax+

1
2 ∼ pa∼ p/mπ . In this case the total

cross section is now convergent for Yukawa forces. The (truncated) partial wave analysis (PWA),
describes scattering data in terms of phase-shifts and known angular dependence of Pl(cosθ).
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Figure 1: Binomial (Histogram), Poisson (Points) and Gauss (Line) distributions for p = 0.1 and N = 50.

In general, the number of counts Nout is a random variable subjected to fluctuations. If for a
fixed solid angle (θ ,φ) we denote by p the scattering probability, the statistics of counting k events
out of N is given by the binomial distribution with mean k̄ and variance (∆k)2,

PN,k =

(
N
k

)
pk(1− p)N−k , k̄ = N p , (∆k)2 = (k− k)2 = k2− k

2
= N p(1− p) . (2.5)

In practice, p� 1� k� N one has the sequence of Binomial→ Poisson→ Gauss distributions

PN,k →︸︷︷︸
p�1

e−N p(N p)k

k! →︸︷︷︸
k�1

e−(k−N p)2/2
√

2π∆k
, (2.6)

where in Fig. 1 we illustrate the situation for the case p = 0.1 and N = 50. Thus, we may consider
that Nout (and hence σ(θ ,E)) is Gauss distributed. For a 68% confidence level we write as usual 2

Nout = N̄out±∆Nout , ∆Nout =
√

N̄out , (2.7)

2If ξ is a normally distributed variable, i.e. ξ ∈ N(0,1) the probability density is P(ξ ) = e−ξ 2/2/
√

2π with ξ̄ = 0
and ∆ξ = 1 and hence we may write Nout = N̄out +ξ ∆Nout.
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ν 10 100 1000 10000
χ2/ν (68%) 1±0.447 1±0.141 1±0.044 1±0.014.

Table 1: Values of acceptable fits for some sample sizes at the 1σ -level.

3. Fitting

Statistics. The general fitting problem corresponds to a situation where we have N data with
uncertainties Oi±∆Oi and a theory depending on M-parameters p = (p1, . . . , pM) predicting Oi(p).
The question: Does theory explain data ? can be answered statistically as follows. If all uncertain-
ties follow an independent Gaussian distribution for a choice of parameters p we write

Oexp
i = Oth

i +ξi∆Oi , ξi ∈ N(0,1) , (3.1)

we define the minimized least squares sum

χ
2
min ≡minpχ

2(p) = χ
2(p0) , χ

2(p) =
N

∑
i=1

[
Oi(p)−Oexp

i
∆Oi

]2

. (3.2)

This condition effectively eliminates M independent variables, so that for the remaining degrees of
freedom ν = N−M one has the following χ2 probability density distribution

Pν(χ
2) =

ν

∏
n=1

(∫
∞

−∞

dξi
e−ξ 2

i /2
√

2π

)
δ (χ2−

ν

∑
n=1

ξ
2
n ) =

e−χ2
χν−2

2ν/2Γ
(

ν

2

) , (3.3)

which is plotted in Fig. 2 as a function of χ2/ν , and shows the drastic narrowness for a large
number of data. The mean and variance are given by 〈χ2〉= ν , 〈(χ2−〈χ2〉)2〉= 2ν2. For ν � 1
the χ2 ∈ N(ν ,

√
2ν) whence χ2 = ν±

√
2ν at the 68% confidence level. Thus, the assumption that

data differ from theory by fluctuations, Eq. (3.1), holds at Nσ -standard deviations level if

χ2
min
ν

= 1±Nσ

√
2
ν
, ν = N−M ,d.o.f (degreesof freedom) . (3.4)

Table 1 provides the case Nσ = 1. Thus, χ2
min/ν outside the confidence interval is unlikely (for

Nσ = 1,2,3 is less than 32,5,1% respectively) and implies either a bad model or bad data or
both. On the contrary, an acceptable χ2/ν suggests consistency between model and data and, more
importantly, errors on the parameters reflect statistical uncertainties of the input data p = p0 +∆p
which can be propagated to functions of the parameters F(p) not involved in the fitting procedure.

Single energy fits. The simplest situation corresponds to have complete data in a given energy
E (or momentum p), namely (σ(θ1,E), . . . ,σ(θN ,E)). In this case one can determine the lmax∼ pa
phase-shifts directly from the data as fitting parameters (δ0(E), . . . ,δlmax(E)) by minimizing

χ
2(δ1(E), . . . ,δlmax(E),Z) =

N

∑
i=1

[
σ exp(θi,E)−Zσ th(θi,δ1(E), . . . ,δlmax(E))

∆σ(θi,E)

]2

+

(
1−Z
∆Z

)2

(3.5)

Here the normalization Z with estimated uncertainty ∆Z (provided by experimentalists) is com-
mon for one energy. Phase-shifts become “experimental” and model independent observables,
δ

exp
l (E)±∆δ

exp
l (E) for l = 0, . . . , lmax.
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Figure 2: The χ2 distribution for ν = 10 (blue),100 (pink),1000 (brown),10000 (green). Left panel:√
2νPν(χ) as a function of χ2/ν . Right panel: p-value defined as p = 100×

∫
∞

χ2
min

Pν(χ)dχ .

Multiple energy fits. If one has incomplete data in energies and angles (σ(θ1,E1), . . . ,σ(θN ,EN))

one cannot generally determine phase-shifts δl(Ei) at those energies. Instead, a model dependent
interpolation with fitting parameters p in the energy is needed. Thus, one minimizes

χ
2(p,Z) =

N

∑
i=1

[
σ(θi,Ei)

exp−Zσ th(θi,Ei,p)
∆σ(θi,Ei)

]2

+

(
1−Z
∆Z

)2

(3.6)

Different experiments have different normalizations so that generally

χ
2(p,Z1, . . .ZE) =

E

∑
i=1

χ
2
i (p,Zi) (3.7)

Coarse graining. In the present situation a multienergy fit becomes mandatory and the ques-
tion is how to choose the fitting parameters p. Our approach is based in separating the potential
into a field theoretical piece and a unknown coarse grained piece at points rn suitably located

V (r) =
[
∑
n

∆rV (ri)δ (r− rn)

]
θ(rc− r)+VQFT(r)θ(r− rc) , rn = n∆r (3.8)

with ∆r ∼ 1/pmax the shortest de Broglie wavelength and rc provides a boundary which should be
larger than the elementarity size of the hadrons re and turns out to be rc = 1.8−3fm. This allows to
determine a priori the number of fitting parameters, V (ri), to be N ∼ (prc)

2, which are determined
with errors ±∆V (ri) and turn out to be mostly uncorrelated for NN in different partial waves [8].

4. Selecting data

The accumulation of data improves the statistics and the precision but often generates mutually
incompatible data. The need for selection becomes evident from Fig. 3 for the cases of elastic πN
and NN scattering where the considered SAID fits display unlikely large Nσ from Eq. (3.4). Taking
data is painstaking and costs money. As theoreticians we do not feel qualified enough to discuss
what our colleagues experimentalists do in their labs, specially since questioning one experiment
means in fairness questioning all experiments. This may not necessarily mean genuinely wrong

5
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Figure 3: Evolution of the standard deviation Nσ defined by Eq. (3.4) as a function of the number of data in
5 years steps for πN at T π

LAB ≤ 200MeV in the period 1965-2015 (left panel) and NN = np+ pp at TLAB ≤
350MeV in the period 1955-2015 (right panel). We use the SAID database http://gwdac.phys.gwu.edu/.

experiments, but rather unrealistic error estimates. Note that the goal of a fit is to determine the
true values of certain parameters with a given and admissible confidence level. Fortunately, for
a large number of experiments we can use statistics and select data according to a principle of
consensus among experiments arbitrated by a fitting model. Therefore, we will assume that all
published experiments are correct unless proven otherwise and look for the flexible enough theory
which congregates the largest number of data with an acceptable χ2

min/ν ∼ 1±
√

2/ν .
For NN scattering and TLAB ≤ 350MeV we have extended the standard 3σ criterion into a self-

consistency by the following selection process (see [7] for details): 1) Fit to all data. If χ2/ν . 1
you can stop. If not, proceed further. 2) Remove data sets with improbably high or low contribu-
tions to the total χ2 (3 σ criterion). 3) Refit parameters for the remaining data. 4) Re-apply 3σ

criterion to all data. 5) Repeat until no more data are excluded or recovered.
The effect of this selection procedure is to go from χ2/ν |all = 1.41 to χ2/ν |selected = 1.04 with

a reduction in the number of data from NData = 8173 to NData = 6713. While this seems a drastic
rejection, the NN Granada-2013 database is the largest one to date providing a self-consistent fit
below 350 MeV. For this number of data this is not a minor improvement as can be seen from Fig. 2.
When the pion-nucleon coupling constants become fitting parameters χ2/ν |selected = 1.025 [13].
Moreover, normalization factors in Eq. (3.7) turn out to be very close to unity [7] reducing the
impact of an interlab bias [15] 3 an issue which will be reported elsewhere. Finally, one should
keep in mind that the needed data need not be (E,θ) distributed in a way that information is most
useful, precise and non-redundant, a relevant aspect for large databases. If we have many data
and/or accurate data in a given region of energies and angles they will tend to dominate the fit over
some other regions for which there exist less data. Therefore, there is an abundance bias.

5. Discussion and outlook

There is a natural reluctance to discard data without going into the intricacies of the experi-
ment, particularly if they are produced by influential collaborations and possibly one should simply

3We thank Jacobo Ruiz de Elvira for drawing our attention to this issue.
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ask the experts. When the number of experiments is large and data have been collected over the
years there is no sound reason to discard old data as if wrong, because any data will eventually
become old at some point. While errors are expected to be realistic, one should keep in mind
that any experiment may appear to be consistent simply because both statistical and systematic
errors are taken to be “conservatively” large (but also irrelevant in the χ2) and inconsistent if errors
are “boldly” small (and extremely influential). A decision needs some underlying model and the
best one should provide an acceptable fit, congregating as many data as possible. In the present
contribution we have shown that we can invoke statistics to discard scattering data according to
the principle of maximal consensus. The coarse graining approach has proven to be a successful
framework to select NN scattering data and hence to answer important questions [12, 13, 14]. It
remains to be seen if such an approach can be extended to other hadronic systems of interest.
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