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A general approach to the construction of bound states in quantum field theory, called the renor-
malization group procedure for effective particles (RGPEP), was applied recently to single heavy-
flavor QCD in order to study its utility beyond illustration of its general features. This heavy-flavor
QCD is chosen as the simplest available context in which the dynamics of quark and gluon bound
states can be studied with the required rigor using Minkowski-space Hamiltonian operators in the
Fock space, taking the advantage of asymptotic freedom. The effective quarks and gluons differ
from the point-like canonical ones by having a finite size s. Their size plays the role of renor-
malization group parameter. However, instead of integrating out high-energy degrees of freedom,
our RGPEP procedure is based on a transformation of the front-form QCD Hamiltonian from its
canonical form with counterterms to the renormalized, scale-dependent operator that acts in the
Fock space of effective quanta of quark and gluon fields, keeping all degrees of freedom intact
but accounting for them in a transformed form. We discuss different behavior of effective par-
ticles interacting at different energy scales, corresponding to different size s. Namely, we cover
phenomena ranging from asymptotic freedom at highest energies down to the scales at which the
formation of bound states occurs. We briefly present recent applications of the RGPEP to quarks
and gluons in QCD, which have been developed using expansion in powers of the Fock-space
Hamiltonian running coupling. After observing that the QCD effective Hamiltonian satisfies the
requirement of producing asymptotic freedom, we derive the leading effective interaction between
quarks in heavy-flavor QCD. An effective confining effect is derived as a result of assuming that
the non-Abelian and non-perturbative dynamics causes effective gluons to have mass.
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Effective-particle approach to bound states of quarks and gluons in QCD

1. Introduction

In spite of decades of research the bound-state equation in quantum chromodynamics remains
to be an exhausting problem without an exact solution. The elements that build the Schrödinger-
like equation in QCD, Ĥ|ψ〉 = E|ψ〉, which gives hadron masses and wave functions in the Fock
space are full of complexities. It is not straightforward how to determine the Hamiltonian whose
eigenvalues correspond to hadron masses starting from the QCD Lagrangian density of the theory
and using first principles.

The main source of difficulties concerns the fact that in quantum field theory one is forced to
deal with an infinite number of degrees of freedom. For instance, a heavy-quarkonium state – the
simplest possible system one may consider in QCD – has the structure of an infinite series of Fock
components

|ψ〉= |QQ〉+ |QQG〉+ |QQGG〉+ . . . , (1.1)

and in principle, there is no limit on the number of particles allowed.
The renormalization group procedure for effective particles (RGPEP) was formulated as a

nonperturbative tool for constructing bound states in QFT. The method stems from the similar-
ity renormalization group (SRG) for Hamiltonians [1, 2] and introduces the concept of effective
particles. It provides a framework for the description of the interaction of particles at different
energy scales. The main idea of the RGPEP is that it is possible to relate the canonical Hamiltonian
operator obtained from QCD with an effective one by means of a similarity transformation. The
Hamiltonian is written in a scale-dependent operator basis which is such that, for a certain scale,
the number of nonnegligible Fock components in the description of hadrons is small. When an
infinite number of terms can be neglected in Eq. (1.1), the bound-state problem is thus drastically
simplified and one can attempt to seek numerical solutions to the bound-state equation.

In this paper, we summarize the most important new results in the application of the RGPEP to
QCD [3, 4]. We start presenting the main elements of the RGPEP method in the next section. The
procedure is general enough and can be applied to any theory. Afterwards, in Section 3we consider
QCD and show how the property of asymptotic freedom arises in the formalism. In Section 4,
we consider a theory of only one heavy flavor in QCD and use asymptotic freedom to formulate
the bound-state equation for heavy quarkonium. We study the confining properties of the effective
potential obtained in the bound-state equation in Section 5. Section 6 concludes the article.

2. RGPEP

2.1 Initial Hamiltonian

The starting point of our formulation of the bound-state equation is the classical Lagrangian
density of the theory. In this work, we are concerned with the Lagrangian of QCD. We use the
front form (FF) of Hamiltonian dynamics [5], often called light-front dynamics.1 The canonical FF
Hamiltonian is obtained by integrating the +− component of the energy momentum tensor T µν

1We adopt the notation and conventions given in [6]. The FF coordinates are defined as xµ = (x+ = x0 + x3,x− =

x+− x3,~x⊥), with x⊥ = (x1,x2).
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over the quantization surface x+ = 0 in the gauge A+ = 0, and replacing the classical fields by
quantum ones in2:

Hcan = P− =
1
2

∫
dx−d2x⊥T+−|x+=0 . (2.1)

The FF canonical Hamiltonian gives divergent integrals in perturbation theory and needs to be
regularized. We introduce two regularization parameters, which regulate interaction vertices: ∆,
which regulates ultraviolet divergences related to big changes of perpendicular momentum compo-
nents k⊥; and δ , which regulates the so-called small-x divergences, related to k+ component of the
momentum.

2.2 The RGPEP equation

The RGPEP introduces the concept of effective particles of size s. The size s is the renormalization-
group parameter. Creation and annihilation operators labeled by s create or annihilate effective
particles of size s:

Q†
0|0〉= |Q0〉 , Q0|0〉= 0 , Q†

s |0〉= |Qs〉 , Qs|0〉= 0 . (2.2)

Effective particles of finite size s and bare or canonical ones of size 0 are related by a unitary
transformation

Qs = Us Q0 U †
s . (2.3)

For later convenience we define t = s4, and express the Hamiltonian in the new basis

Ht(Qt) = H0(Q0) , (2.4)

where Ht(Qt) means that the Hamiltonian is expressed in terms of effective operators Qt with
effective coefficients standing in front of them. The dependence of these coefficients with scale t is
given by the equation

Ht = [[H f ,HPt ] ,Ht ] , (2.5)

where Ht = Ht(Q0), H f is the free part of Ht , and HPt is the same as Ht but multiplied by total
+-component of momentum entering the vertex squared.

Although Eq. (2.5) can be solved nonperturbatively, at this stage and for the purposes of our
current studies, we focus on perturbative solutions to Eq. (2.5),

Ht = Ht 0 +gHt 1 +g2Ht 2 +g3Ht 3 +g4Ht 4 + . . . (2.6)

Solving Eq. (2.5) order by order yields exponentials exp[−t(M 2
c −M 2

a )
2], where Mc and

Ma are invariant masses of particles created and annihilated in a vertex, which play the role of

2We use the usual Fourier decomposition,

Âµ = ∑
σc

∫
[k]
[
tc

ε
µ

kσ
âkσce−ikx + tc

ε
µ∗
kσ

â†
kσceikx

]
x+=0

, ψ̂ = ∑
σc f

∫
[k]
[
χcu f kσ b̂kσc f e−ikx +χcv f kσ d̂†

kσc f eikx
]

x+=0
.
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form factors appearing at interacting vertices [7]. The effective Hamiltonian is determined by the
initial condition that at t = 0 the Hamiltonian must equal the regularized canonical Hamiltonian
plus counterterms. The counterterms are determined by the condition that every matrix element of
the effective theory (t > 0) is cutoff independent when the ultraviolet regularization is removed.

The notion of effective particles can be also understood using the parameter λ = 1/s which
has dimension of mass. Namely, due to form factors, effective particles of type λ cannot change
their relative kinetic energy through a single effective interaction by more that about λ .

3. Asymptotic Freedom

The first check that was made in the application of the RGPEP to QCD was its suitability
to reproduce the property of asymptotic freedom [3] and the agreement of the result with the one
obtained using another generator [8]. The feature of asymptotic freedom at short distances could be
checked in terms of a family of renormalized effective Hamiltonians using RGPEP. The structure of
the three-gluon and quark-gluon vertices can be extracted from third-order solutions to the RGPEP
equation for QCD. It was shown in Ref. [3] that for a quantum Yang-Mills theory the Hamiltonian
running coupling evolves with the scale as

gλ = g0−
g3

0
48π2 Nc 11 ln

λ

λ0
, (3.1)

which agrees with the known function obtained in [9,10]. Whereas the running coupling described
using Feynman diagrams evolves with momentum scale, the Hamiltonian running coupling ob-
tained within RGPEP evolves with the parameter λ .

We will make use of the property of asymptotic freedom to derive an effective theory of heavy
quarks in the next section.

4. Heavy quarkonium problem

The simplest bound system one can consider in QCD is heavy quarkonium. To simplify the
picture, in the following, we consider only one flavor of heavy quarks and neglect light quarks. The
eigenproblem may be simplified drastically with the following choice of the renormalization group
parameter,

m� λ � ΛQCD , (4.1)

where m is the quark mass. On the one hand, λ � ΛQCD allows us to expand the Hamiltonian
in powers of gt and keep only the first few terms due to asymptotic freedom. On the other hand,
because m� λ , Fock sectors with extra quark–antiquark pairs are strongly suppressed by RGPEP
form factors and we may neglect them. Sectors with gluons cannot be a priori neglected, because
gluons are massless and one may produce many of them without adding much to the invariant mass
of a system (contrary to the addition of heavy quarks). This poses a problem, beacause one cannot
deal with infinitely many Fock sectors. The solution we adopt is that we drop all the sectors with
two or more gluons, but make up for their absence by introducing a gluon mass ansatz in the sector
QtQ̄tGt . The gluon mass ansatz is motivated by three observations. First, it is the simplest term one
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can add. Second, an effective gluon mass might arise as a nonperturbative effect when the reduction
of the Fock space is done exactly. This effect contains nonabelian gluon–gluon interactions. Third,
the phenomenology of hadrons seems to exclude massless effective gluons.

The heavy quarkonium bound-state problem with just two Fock sectors and gluon mass ansatz
is (see Ref. [4] for more details)[

H f +µ2 gHt1

gHt1 H f +g2Ht2

][
|QtQ̄tGt〉
|QtQ̄t〉

]
= E

[
|QtQ̄tGt〉
|QtQ̄t〉

]
, (4.2)

where µ2 is the gluon-mass-like operator acting within the QtQ̄tGt sector. An important assumption
about µ2 is that it depends on the relative motion of the gluon with respect to the quark-antiquark
pair in QtQ̄tGt sector. The need for this dependence is briefly explained in Sec. 5.

Because we kept only terms order 1, g and g2 in the approximate eigenvalue problem Eq. (4.2),
we may perturbatively eliminate the sector with gluon reducing the eigenproblem to the lowest
sector [11]. Matrix elements of the effective Hamiltonian obtained as a result of this elimination
are

〈l|Ht eff|r〉 = 〈l|
{

H f +g2Ht2 +
1
2

gHt1

[
1

El−H f −µ2 +
1

Er−H f −µ2

]
gHt1

}
|r〉 , (4.3)

where |l〉 and |r〉 are both in QtQ̄t sector and H f |l〉= El|l〉 and H f |r〉= Er|r〉.

5. Result: Coulomb and harmonic oscillator potentials

As a result of elimination of the sector containing one gluon we obtain a Hamiltonian acting
in the lowest sector, QQ̄. The FF eigenvalue equation is

Ht eff|ψQQ̄t〉 =
M2 +P⊥2

P+
|ψQQ̄t〉 , (5.1)

where M is the mass while P+ and P⊥ are longitudinal and perpendicular momenta of the state

|ψQQ̄t〉 = ∑
24

∫
P+ δc2c4√

3
δ̃ (P− k2− k4)ψt 24(κ

⊥
24,x2)b

†
2td

†
4t |0〉 . (5.2)

δc2c4/
√

3 is the color singlet wave function, δ̃ is a momentum conservation Dirac delta multiplied
by 16π3 and ψt 24(κ

⊥
24,x2) is a FF wave function depending on spins (indicated by subscripts 24,

cf. Figure 1), relative ⊥-momentum κ⊥24 = x4k2− x2k4, and longitudinal momentum fraction xi =

k+i /P+ carried by the particle i. It is a property of the front form that relative motion described by
momenta κ⊥i j and xi decouples from the absolute motion with momenta P+ and P⊥. Therefore, the
FF eigenvalues are in fact masses squared M2. Equation (5.1) is rewritten in terms of the FF wave
function,(

M2
t +κ⊥2

13
x1x3

−M2
)

ψt 13(κ
⊥
13,x1)+g2

∫ dx2d2κ⊥24
2(2π)3x2x4

Ut eff(13,24)ψt 24(κ
⊥
24,x2) = 0 . (5.3)

M2
t = m2 + δm2

t is the quark mass squared plus the second order effective quark self-interaction
term, Ut eff(13,24) is the effective interaction between quark and antiquark coming from exchang-
ing gluons.
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Figure 1: Self-interaction terms and gluon exchange terms in Eq. (5.3).

Equation (5.3) with large relative momenta between quarks suppressed by form factors due to
λ � m and with small coupling constant due to λ � ΛQCD may be approximated by its nonrela-
tivistic limit. However, before looking for approximations we need to check if all regularization
dependence of Eq. (5.3) is removed. The problem is that there might appear small-x divergences
when we add an ansatz. For example, δm2

t , which is zero in the absence of gluon mass ansatz, is
potentially divergent when small-x regularization is lifted. Similar divergences are present also in
the exchange terms. To avoid any regularization dependence we have to assume that µ2 vanishes in
a proper way when x5→ 0. For example, µ2 ∼ xδµ

5 κ2
5 when x5→ 0 (where x5 and κ⊥5 are relative

FF momenta of gluon with respect to the QQ̄ pair) with 0 < δµ < 1/2 is sufficient to guarantee that
the effective Hamiltonian is finite when the regularization is removed. The validity of the gluon
mass ansatz may be checked by performing 4th order calculation of the effective Hamiltonian for
quarkonium. However, details of the gluon mass ansatz turn out not to be important for the main
result, Eq. (5.8).

To write the nonrelativistic approximation of Eq. (5.3) we need momentum variables, which
are more suitable than κ⊥ and x. We define

k⊥i j =
1
2

κ⊥i j√xix j
, k3

i j =
m
√xix j

(
xi−

1
2

)
, (5.4)

where i j = 13 or i j = 24, according to Fig. 1. We define also M = 2m+B, where B is binding
energy, divide both sides of Eq. (5.3) by 4m, and take the limit~ki j/m→ 0. The result is[

~k2
13
m
−B+

δm2
t

m

]
ψ13(~k13)+

∫ d3q
(2π)3 [VC,BF +W (~q)] ψ24(~k13−~q) = 0 , (5.5)

where VC,BF stands for Coulomb potential with Breit-Fermi spin-dependent interactions,

VC,BF = −4
3

4πα

~q 2 (1 + BF)e−16s4(k2
13−k2

24)
2
, (5.6)

4πα = g2,~q =~k13−~k24, and

W (~q) = −4
3

4πα

(
1
q2

z
− 1
~q2

)
µ2

µ2 +~q2 e
−2tm2 q4

q2z . (5.7)

The exponential factor limits q to small values for λ � m, hence µ2/(µ2 + q2)→ 1 as long as
µ 6= 0 and we can expand the wave function ψ24(~k13−~q) at~q = 0. The first term (independent of~q)
cancels with the mass term δm2

t /m =−
∫

d3qW (~q)/(2π)3, while the terms linear in~q vanish when
integrated over ~q. Terms quadratic in ~q produce a correction to Coulomb interaction proportional
to −∆~kψ = r2ψ , where r is the distance between quark and antiquark. The final result is

~k2
13
m

ψ13(~k13)+
∫ d3q

(2π)3 VC,BF ψ24(~k13−~q)+
1
2

m
2

ω
2r2

ψ13(~k13 ) = Bψ13(~k13) , (5.8)
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where the harmonic oscillator frequency is ω =
√

α

18
√

2π

λ 3

m2 .

6. Conclusion

The RGPEP is a tool suitable for the task of calculating bound states in QCD. It passes the
test of producing asymptotic freedom in the running of the effective coupling constant and in the
second order calculation with a gluon mass ansatz it produces a Schrödinger equation for heavy
quarks with Coulomb and harmonic oscillator potentials. Harmonic oscillator potential in front
form corresponds to linear potential in the usual equal-time formulation [12]. Therefore, it is
expected to be a good first approximation for calculations of hadron spectra. Moreover, the same
harmonic oscillator potential was found using a different version of RGPEP [13], establishing
a welcome degree of universality of the harmonic oscillator potential result. Although this result
relies on the ansatz, the method presented here can be extended to g4 order and to include QtQ̄tGtGt

sector. In such calculation, the gluon mass ansatz from QtQ̄tGt sector will be replaced by true QCD
and the ansatz will be verified. Another research goal is a nonperturbative determination of running
of effective quark and gluon masses with renormalization scale λ .
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