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Hadrons in Born approximation

Paul Hoyer∗†

Physics Department, University of Helsinki
E-mail: paul.hoyer@helsinki.fi

Bound states are stationary in time and interact continuously. Even a first approximation of atomic
wave functions in QED requires contributions of all orders in α . Bound state perturbation theory
depends on the choice of this first approximation, just as the Taylor expansion of an ordinary
function depends on the expansion point. Considering the expansion to be not in α but in h̄,
i.e., in the number of loops, defines the perturbative expansion uniquely also for bound states.
I show how the Schrödinger equation for Positronium with the classical potential V (r) = −α/r
corresponds to the Born, O

(
h̄0) bound state approximation in QED.

Standard perturbation theory is based on an expansion around O
(
α0
)

free states that have no
overlap with bound states. Perturbing around bound states requires using interacting in and out

states. For Born states the binding potential arises from a classical gauge field. In the absence of
loops the QCD scale ΛQCD can originate from a boundary condition imposed on the solution of
the classical gluon field equations. A perturbative expansion may be relevant even for hadrons,
if their non-perturbative features such as confinement and chiral symmetry breaking are present
already in the Born term.
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1. The h̄ expansion for bound states

Scattering amplitudes are typically well described by perturbation theory at energy scales
where bound state effects may be neglected (or factorized). The lowest order (Born term) con-
tribution is given by O(αn) tree diagrams, where n depends on the number of external legs (n = 1
for 2→ 2 processes). The perturbative expansion is equivalent to a loop expansion, with each loop
contributing a factor α h̄. Since the powers of α and h̄ are linked one usually sets h̄ = 1.

The powers of h̄ may be viewed as arising from fluctuations in the quantum field. The func-
tional integral measure of a a generic field ϕ is∫

[dϕ] exp
(
iS[ϕ]/h̄

)
(1.1)

where S[ϕ] is the action. The leading contribution in the h̄→ 0 limit is given by the classical field
ϕcl , for which the action is stationary. Fluctuations ϕ −ϕcl are suppressed by powers of h̄, as are
the loops of Feynman diagrams. I shall argue that the h̄ expansion is useful for bound states, and
distinct from the expansion in α .

Bound state contributions to a scattering process involve all powers of α , even in a first ap-
proximation. For example, the formation of Positronium in the direct channel of e+e− → e+e−

implies a pole in the scattering amplitude,

A(e+e−→ e+e−)∼
Φ∗i Φ f

s−M2 + iε
(1.2)

The Positronium mass is M = 2me +Eb, where the binding energy is Eb =−1
4 meα2 for the ground

state (at lowest order in α). The denominator of (1.2) expands to an infinite series in powers of α .
Furthermore, the wave functions Φi, f which describe the coupling of the Positronium to the initial
and final e+e− states are exponential functions of α .

Bound state perturbation theory depends on the choice of the O(α∞) first approximation.
Powers of α may be shifted between the first approximation and the perturbative expansion around
it, giving an infinite set of equivalent, formally exact expansions for bound states. This is in stark
contrast to scattering amplitudes, where the first approximation (Born term) is unique.

Φ(P,k) =
∫ d4q

(2π)4 Φ(P,k+q)S(P,k,q)K(P,k,q)

(1.3)

The non-uniqueness of bound state perturbation theory may be illustrated by the Bethe-Salpeter
equation (1.3) for the Positronium wave function Φ [1]. The B-S equation is formally exact when
the e+e− propagator S and the (2-particle irreducible) interaction kernel K are expanded to all or-
ders in α . Caswell and Lepage [2] pointed out that the expansion of K depends on the choice of S.
This allowed for considerable simplifications. The B-S equation (1.3) has no analytic solution even
when S is given by free (relativistic) propagators and K has only single photon exchange. Choosing
non-relativistic propagators for S the B-S equation reduces to the familiar Schrödinger equation at
lowest order in K, with calculable power corrections in α .
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Present calculations of atomic spectra make use of the effective theory NRQED, which is
based on an expansion of the QED action in powers of ∇∇∇/m [3]. Applications of NRQED to atoms
perturb around a lowest order term defined by the Schrödinger equation, which is a practical and
successful choice. The purpose of the present note is to point out that this choice is also consistent
with a general principle. The Schrödinger state has no loop contributions, i.e., it corresponds to an
O
(
h̄0) Born contribution. Since the h̄ expansion is defined also for relativistic dynamics one may

consider whether the Born approximation could be a useful starting point even for QCD hadrons.
For atomic kinematics the momenta in e+e− → e+e− scale with α as |p| ∼ meα (Bohr mo-

mentum) and p0 ∼ p2/2me ∼ 1
2 meα2. This gives rise to inverse powers of α from the propagators,

causing all “ladder” diagrams to scale with the same power of α . Their sum is a geometric se-
ries of the single photon exchange contribution, and has bound state poles in agreement with the
Schrödinger equation.

The sum of ladder diagrams appears to be a fully perturbative derivation of the Schrödinger
states. However, it suffers from a flaw of principle which is crucial in applications to QCD. Feyn-
man diagrams are generated by the expression for the S-matrix in the Interaction Picture,

S f i = out〈 f , t→ ∞|
{

Texp
[
− i
∫

∞

−∞

dt HI(t)
]}
|i, t→−∞〉in (1.4)

where |i〉in and out〈 f | are eigenstates of the free Hamiltonian H0. The interaction Hamiltonian HI

dresses the bare asymptotic states, ensuring that they scatter as physical states. The free e+ and
e− in the in and out states are assumed to be infinitely separated and thus have no overlap with a
Positronium state. Hence the expression (1.4) is, in principle, not applicable to bound states.

Even for Positronium in QED we thus need to choose a first, O(α∞) approximation for the
bound state, in place of the O

(
α0
)

in and out states of (1.4). Any asymptotic state that overlaps
Positronium is allowed, since states at t =±∞ will relax to the physical states during time evolution.
The interactions included in the first approximation (Coulomb photon exchange for the Schrödinger
atom) should be subtracted from those generated by HI to avoid double counting.

The choice of potential in the Schrödinger equation is motivated by V (r) = −α/r being the
classical potential. Recalling the relation (1.1) between the classical field and the h̄→ 0 limit sug-
gests that the Schrödinger atom is the Born term of physical Positronium, similarly as tree diagrams
are Born terms of scattering amplitudes. In the next section I demonstrate how the Schrödinger
equation for Positronium arises from binding by the classical electromagnetic field. The h̄ expan-
sion is a guide in the choice of bound state around which the perturbative series is developed. This
may allow a perturbative approach to hadrons in QCD, with the non-perturbative features present
already in the Born term.

2. Positronium in Born approximation

Let us consider how the Schrödinger equation for Positronium at rest is obtained in the Born
approximation of QED. The general bound state condition for a state |M〉 is

HQED |M〉= M |M〉 (2.1)
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In the non-relativistic limit |M〉 has only an |e+e−〉 Fock state described by the Schrödinger wave
function φ(xxx), which is independent of the e± helicities λ1,2 ,

|M〉=
∫ dkkk

(2π)3 φ(kkk)b†
kkk,λ1

d†
−kkk,λ2
|0〉=

∫
dxxx1 dxxx2 ψα(0,xxx1)Φαβ (xxx1−xxx2)ψβ (0,xxx2) |0〉 (2.2)

Comparing the coefficient of b†d† in the two expressions, given that

ψα(t = 0,xxx) =
∫ dkkk

(2π)32Ek
∑
λ

[
uα(kkk,λ )eikkk·xxxbkkk,λ + vα(kkk,λ )e−ikkk·xxxd†

kkk,λ

]
(2.3)

allows to express the 4×4 wave function Φ(xxx1−xxx2) in terms of the Schrödinger wave function,

Φαβ (xxx) = α

[
γ

0u(−i∇∇∇,λ1)
][

v̄(i∇∇∇,λ2)γ
0]

β
φ(xxx) where φ(xxx) =

∫ dkkk
(2π)3 φ(kkk)eikkk·xxx

(2.4)

The Dirac equations satisfied by the u and v spinors ensure that with E =
√
−∇∇∇2 +m2 and α = γ0γ ,[ 1

E
(iα ·

→
∇∇∇+mγ

0)−1
]
Φ(xxx) = Φ(xxx)

[
(iα ·

←
∇∇∇−mγ

0)
1
E
−1
]
= 0 (2.5)

The Born approximation implies that we use the classical photon field in the Hamiltonian of
the bound state condition (2.1). We may neglect the 3-vector fields A j due to the non-relativistic
dynamics of Positronium (in the rest frame): The A j couple to the 3-momenta p j ∼ α m of the
fermions, which are negligible compared to p0 ' m.

The operator equation of motion for the Â0 field does not involve a time derivative,

δSQED

δ Â0(t,xxx)
= 0 ⇒ −∇∇∇

2Â0(t,xxx) = eψ
†(t,xxx)ψ(t,xxx) (2.6)

Hence it determines Â0(t,xxx) in terms of the electron field at each instant of time, for all positions xxx.
In gauge theories there are no retardation effects for Â0(t,xxx) even when the dynamics is relativistic.

The photon field energy contributes to HQED as

1
2

∫
dxxxFi0F i0 = 1

2

∫
dxxx Â0

∇∇∇
2Â0 =−1

2

∫
dxxxψ eγ

0Â0
ψ (2.7)

which cancels half of the interaction term in the fermion part of the Hamiltonian. Thus

HQED(t) =
∫

dxxxψ
†(t,xxx)

[
− i∇∇∇ ·α +mγ

0 + 1
2 eÂ0(xxx)

]
ψ(t,xxx) (2.8)

The classical photon field for a state where the electron is at xxx1 and the positron at xxx2 is the
expectation value of Â0(t,xxx) in that state, |xxx1,xxx2〉 ≡ ψ†(t,xxx1)ψ(t,xxx2) |0〉,

A0(t,xxx;xxx1,xxx2)≡
〈xxx1,xxx2| Â0(t,xxx) |xxx1,xxx2〉
〈xxx1,xxx2|xxx1,xxx2〉

(2.9)

Note that the classical field depends on the positions xxx1, xxx2 of the e− and e+. In discussions of the
Schrödinger equation one commonly reduces the two-body problem to that of a single particle in a
fixed potential. This obscures the notion of the classical field that is used here.
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The operator relation (2.6) implies the usual Gauss’ law for the classical photon field (at t = 0),

−∇∇∇
2
xA0(xxx;xxx1,xxx2) = e

[
δ (xxx−xxx1)−δ (xxx−xxx2)

]
(2.10)

with the standard solution

eA0(xxx;xxx1,xxx2) =
α

|xxx−xxx1|
− α

|xxx−xxx2|
(2.11)

Having determined the classical field for each configuration |xxx1,xxx2〉 we may impose the bound
state condition (2.1). We use HQED |0〉= 0 (no pair production in the non-relativistic limit), and

[H,ψ(xxx1)] = ψ(xxx1)
[
− iα ·

←
∇∇∇1 +mγ

0 + 1
2 eA0(xxx1)

]
(2.12)

[H,ψ(xxx2)] =−
[
− iα ·

→
∇∇∇2 +mγ

0 + 1
2 eA0(xxx2)

]
ψ(xxx2) (2.13)

where the direction of differentiation is indicated by an arrow and we used the short-hand notation
A0(xxx1) ≡ A0(xxx1;xxx1,xxx2) for the classical field at xxx1 in the state |xxx1,xxx2〉. According to (2.11) both
A0(xxx1) and A0(xxx2) contain a “self-energy” term ∼ α/0. They shift the Positronium mass by an
(infinite) amount that is independent of xxx1, xxx2 and may be subtracted. Thus we have

eA0(xxx1;xxx1,xxx2) =−eA0(xxx2;xxx1,xxx2) =−
α

|xxx1−xxx2|
≡V (xxx1−xxx2) (2.14)

The bound state condition (2.1) imposes (after partial integrations) the bound state equation
for the wave function Φ(xxx1−xxx2) of the |xxx1,xxx2〉 component of the Positronium state,

[
iα ·

→
∇∇∇+mγ

0 + 1
2V (xxx)

]
Φ(xxx)+Φ(xxx)

[
iα ·

←
∇∇∇−mγ

0 + 1
2V (xxx)

]
= MΦ(xxx) (2.15)

with the classical potential V (xxx) defined in (2.14). If we bring the term ∝ M over to the lhs., share
it equally between the two terms and divide the equation by 1

2(M−V ) the BSE becomes[ 2
M−V

(iα ·
→
∇∇∇+mγ

0)−1
]
Φ(xxx)+Φ(xxx)

[
(iα ·

←
∇∇∇−mγ

0)
2

M−V
−1
]
= 0 (2.16)

The potential V as well as the binding energy Eb ≡M−2m are of O
(
α2
)

so we may expand,

2
M−V

' 1
E
+

1
2m2

[
−∇∇∇2

m
+V −Eb

]
(2.17)

where we used E =
√
−∇∇∇2 +m2 'm−∇∇∇2/2m. The constraints (2.5) ensure that the term 1/E does

not contribute in the BSE (2.16). The second term in (2.17) can be brought past the derivatives in
the expression (2.4) for Φ, since ∇∇∇V (xxx) is of O

(
α3
)

and may be ignored. Both terms in the BSE
(2.16) then vanish separately since φ(xxx) satisfies the Schrödinger equation (with reduced mass 1

2 m),

[
−∇∇∇2

m
+V

]
φ(xxx) = Ebφ(xxx) (2.18)
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3. Comments

Bound state perturbation theory requires to select an initial, approximative state around which
the perturbative expansion is developed. For this state to have a non-vanishing overlap with the
physical bound state it must be non-polynomial in α . All such states are formally equivalent since
the difference in their α-dependence may be shifted into the perturbative expansion. The S-matrix
with bound states in the initial or final states should be determined by an expression analogous to
(1.4), where an approximative bound state is used in the in and out states at t =±∞.

In practice already the lowest order of the perturbative expansion should provide a good ap-
proximation of the physical state. The h̄ or loop expansion is successful for scattering amplitudes
and at O

(
h̄0) selects bound states formed by the classical gauge field of their constituents. I illus-

trated how the Born state of Positronium is defined by the Schrödinger equation with the potential
arising from the classical photon field A0(xxx;xxx1,xxx2) given in (2.11). Since A0 is a solution of the
equations of motion it is different for each component |xxx1,xxx2〉 of the bound state.

The sum of ladder diagrams seems like a purely perturbative derivation of the Schrödinger
atom. However, Feynman diagrams describe perturbative corrections to the non-interacting in and
out states of (1.4) which have no overlap with bound states. In QCD the standard perturbative
expansion around free quark and gluon states implies initial configurations with infinitely separated
color charges. Establishing confinement from Feynman diagrams is therefore challenging, if not
impossible. This does not exclude the possibility of a perturbative expansion around initial bound
states that already have confinement. The loop (h̄) expansion provides a principle for the choice of
lowest order term.

In the absence of loops αs is frozen, plausibly at a low enough value to make the Born approx-
imation meaningful. The ΛQCD scale then cannot originate from renormalization. At Born level
the only possibility is a non-vanishing boundary condition in solving the classical field equations
for the gluon field. A conceivable scenario for hadrons is that the Born term includes the relevant
non-perturbative effects and the perturbative corrections are moderate [4].
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