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The scalar and electromagnetic form factors of the
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We present a method for calculating the nucleon form factors of G-parity-even operators. This
method combines chiral effective field theory (χEFT) and dispersion theory. Through unitar-
ity we factorize the imaginary part of the form factors into a perturbative part, calculable with
χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and
electromagnetic (EM) form factors of the nucleon. The results show an important improvement
compared to standard chiral calculations, and can be used in analysis of the low-energy properties
of the nucleon.
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Scalar and EM form factors of the nucleon in DIχEFT

1. Introduction

The form factors (FFs) of the nucleon parametrize the transition matrix elements of local
operators between nucleon states. They provide information about the internal structure and can
be related to the spatial distribution of the properties encoded in the corresponding operator. A
deeper knowledge of these quantities is needed in order to understand the properties of the nucleon
in terms of its QCD constituents, which is required in many experimental programs. The scalar
form factor encodes the response of the nulceon under scalar probes, and plays an important role
in studies of direct Dark Matter detection [1]. The electromagnetic form factors, on the other hand,
provide information about the internal charge distribution of the nucleon, and are key ingredients
in order to understand, and ultimately solve, the so-called "Proton Radius Puzzle" [2, 3]. Form
factors of higher spin operators, like the traceless part of the QCD energy-momentum tensor, are
related to the momentum and angular momentum of quarks and gluons in the nucleon, and to the
forces acting on them.

In this contribution we consider the extraction of the scalar and electromagnetic form factors of
the nucleon using a recently developed method called Dispersively Improved Chiral Effective Field
Theory (DIχEFT). This approach combines Chiral Effective Field Theory (χEFT) and techniques
from dispersion theory. The former has experienced important developments in the single-baryon
[4, 5, 6, 7, 8] and multi-baryon interactions [9, 10], and it has shown that it can provide important
results in areas of great interest, like in searches of physics beyond the Standard Model [11, 12, 13].
A more detailed discussion about the benefits of this approach and recent results were presented in
Refs. [14, 15, 16]. Other matrix elements of G-parity-even local operators can be studied with this
approach as well, and will be considered in future publications.

2. Formalism

The matrix elements related to the scalar and electromagnetic FFs are

〈N(p′,s′)|Oσ (0)|N(p,s)〉= σ(t)ū(p′,s′)u(p,s) (2.1)

〈N(p′,s′)|Jµ(0)|N(p,s)〉= ū(p′,s′)
[
γµF1(t)+

iσµνqν

2mN
F2(t)

]
u(p′,s′) (2.2)

where Oσ (x)≡ m̂∑q=u,d q̄(x)q(x) and Jµ(x)≡∑q=u,d eqq̄(x)γµq(x), being eq the electric charge
of the quark q, m̂ = (mu +md)/2, t = (p′− p)2, mN the nucleon mass and σ(t) (F1,2(t)) the scalar
(Dirac/Pauli) FFs. F1 and F2 can be related to the Sachs form factors in the following way

GE(t) = F1(t)+
t

4m2
N

F2(t) GM(t) = F1(t)+F2(t) GV,S
E,M ≡

1
2
(Gp

E,M∓Gn
E,M), (2.3)

where GV,S
i (i = E,M) are the isovector and isoscalar component of the FFs, respectively.

For nucleon matrix elements of G-parity-even operators, like the ones we are considering here,
the imaginary part of the form factors are related to the pion form factors (the scalar pion FF, σπ ,
for Oσ , and the electromagnetic pion FF, Fπ , for Jµ ) and the ππ → N̄N amplitude projected into
the channel with the quantum numbers of the operator ( f 0

+ for the scalar operator Oσ , and f 1
± for
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the electromagnetic operator Jµ ), if we consider 4M2
π ≤ t ≤ 16M2

π (being Mπ the pion mass). The
relation is the following:

Imσ(t) =
3kcm

4
√

t(m2
N− t/4)

σ
∗
π (t) f 0

+(t) =
3kcm

4
√

t(m2
N− t/4)

f 0
+(t)

σπ(t)
|σπ(t)|2 (2.4)

ImGV
E(t) =

k3
cm

mN
√

t
F∗π (t) f 1

+(t) =
k3

cm

mN
√

t
f 1
+(t)

Fπ(t)
|Fπ(t)|2 (2.5)

ImGV
M(t) =

k3
cm√
2t

F∗π (t) f 1
−(t) =

k3
cm√
2t

f 1
−(t)

Fπ(t)
|Fπ(t)|2 (2.6)

As was noticed in Ref. [19], the ratios J0
+ ≡ f 0

+(t)/Fπ(t), J1
+ ≡ f 1

+(t)/Fπ(t), J1
− ≡ f 1

−(t)/Fπ(t)
have no contribution from the two-pion cut. Therefore the real functions J0

+ and J1
± are better

suited for perturbative calculations than the spectral functions themselves, because are free from
ππ rescattering effects. On the other hand, the pion FFs can be taken from experimental data (in
the case of the electromagnetic FF), dispersion theory results or LQCD. This approach permits a
factorization of the spectral function into a perturbative part (J0

+ and J1
±), related to the coupling

of pions to nucleons, which is calculable with χEFT, and a non-perturbative part related to the
coupling of the operator to the pions, that we take from other sources. The functions J0

+ and J1
±

receive contributions from the left-hand cut and a right-hand cut starting at the four-pion threshold.1

They are directly extracted from χEFT, without the necessity of determining any free parameter
(low-energy constant). Therefore, the results come out as predictions based on chiral calculations
for πN scattering.

For the calculation of J0
+ and J1

± we use SU(2)F -χEFT with relativistic nucleons and deltas.
The relativistic formulation is important in order to have the correct analytic structure in the am-
plitudes. We take the πN amplitudes of Ref. [4], and the low-energy constants (LECs) extracted
from πN scattering in Refs. [4, 20]. In order to avoid double counting in the contribution of the
t-channel resonances such as the σ or ρ , already present in σπ and Fπ , we need to subtract it from
the LECs determined in Refs. [4, 20]. To estimate this effect, we use the results of Ref. [21]. For
more details about the method, we refer the reader to Refs. [15, 16].

3. Results

Once J0
+ and J1

± are determined, one can make predictions about the scalar and electromag-
netic form factors. Since the quantity of interest for chiral EFT are precisely these functions, we
compared the chiral predictions based on πN scattering to the dispersive ones. The results are
shown in Figs. 1. There, one observes how the the chiral prediction converges to the dispersive
result at low momentum transfer, while the large t part is well described once we add an estimated
contribution of the N2LO (NLO+N2LO). See Refs.[15, 16] for details about this estimation.

Inserting the results for J0
+ and J1

± into Eqs. (2.4)-(2.6) and using the dispersive results for the
pion FFs (see Refs.[15, 16]), we get the spectral functions shown in Figs. 2 (left panel) and 3. At
leading order (LO) and next-to-leading order (NLO) the chiral prediction agrees very well with
the dispersive results close to threshold (. 0.2 GeV2). Beyond that energy, the N2LO corrections
become necessary in order to agree with dispersion theory up to t ≈ 0.8 GeV2.

1Dispersive calculations claim that the four-pion contribution is negligible below ≈ 1 GeV2.
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Figure 1: χEFT results for the functions 3kcm/(4p̃2
N
√

t)J0
+(t), k3

cm/(mN
√

t)J1
+(t) and k3

cm/(
√

2t)J1
−(t),

which enter in the last term of Eqs. (2.4), (2.5) and (2.6). Long-dashed red line: LO. Blue band: NLO.
Red band: NLO + N2LO. Dashed-dotted black line: Dispersion-theoretical result of Ref. [17]. Solid orange
lines: Roy-Steiner analysis results [18].

3.1 Scalar Form Factor

After calculating the spectral functions, one only needs to compute the dispersive integral to
reconstruct the form factor. Given that part of our spectral function is calculated with χEFT, we
perform one subtraction in oder to suppress the high t contributions in the integral. The results are
shown in Fig. 2. Again, one observes that the DIχEFT results converge well, especially below the
two-pion threshold. At LO, the chiral calculation is in overall good agreement with the dispersive
result. The NLO contribution helps in improving the agreement at low t, but is only after adding
the N2LO contribution that we can reproduce very well the result from dispersion theory even up
to t ≈ 0.8 GeV2.
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Figure 2: Nucleon scalar spectral function (left panel) and scalar FF (right panel). Red long-dashed line:
LO. Blue band: NLO. Red band: NLO+N2LO. The results for the spectral function (scalar FF) are compared
to the calculation of Hoferichter et al. [22] (Gasser et al [23]).

3.2 Electromagnetic Form Factor

With the spectral functions calculated in DIχEFT we have access only to the isovector compo-
nent of the form factor. To account for the isoscalar component, we use the results for the nucleon
shown in Ref. [14]. We consider a once subtracted dispersion relation for the former, and a twice
subtracted for the latter. We observe an excellent reproduction of ImGV

E up to t ≈ 1 GeV2, while
the ImGV

M would require the complete inclusion of the N2LO to achieve similar agreement (see
Ref. [16]). This situation is also observed in the proton and neutron Sachs FFs. For proton and
neutron the predicted GE agrees well with the data up to Q2 ≈0.5 GeV2, while the N2LO contribu-
tion is necessary in GM in order to have the same agreement.
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Figure 3: Nucleon isovector electromagnetic spectral functions. Long-dashed red line: LO. Blue band:
NLO. Red band: NLO + N2LO. Solid back line: Result of Ref. [24]. Orange band: Roy-Steiner analysis
results [18].
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Figure 4: Long-dashed red line: LO. Blue band: NLO. Red band: NLO + N2LO. Black and green points
correspond to experimental (Ref. [25]) and LQCD (Ref. [26]) data, respectively.

4. Summary and Outlook

We have presented a new method to calculate matrix elements of G-parity-even operators. We
considered here the scalar and electromagnetic FFs of the nucleon, but it can be extended to FFs
of higher spin. Through unitarity, one can factorize the spectral function into a perturbative part,
calculable in χEFT (J0

+ and J1
±), and a non-perturbative part (σπ and Fπ ). The chiral part of the

calculation shows good convergence at low momentum transfers based on the chiral results for πN
scattering up to NLO. At higher energies one needs to include the higher order contributions. An
estimation of these contributions anticipates a good agreement with dispersion theory results up
to t ≈ (0.8− 1.0) GeV2. This translates into a good agreement at the spectral function level up
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to that energies. From these spectral functions we could predict the t-dependence of the scalar
and electromagnetic isovector FFs up to energies of |t| ≈ 0.5 GeV2. We are currently working on
the extension of this method to higher spin FFs and to G-parity-odd operators. Together with the
results shown here, they will provide information related to the structure of the nucleon required in
low-energy nuclear physics experimental programs and searches of new physics.
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